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Abstract

Deduplication for Large Scale Backup and Archival Storage

by

Deepavali Bhagwat

The focus of this dissertation is to provide scalable solutions for problems unique to chunk-

based deduplication. Chunk-based deduplication is used in backup and archival storage systems

to reduce storage space requirements. We show how to conduct similarity-based searches over

large repositories, and how to scale out these searches as the repository grows; how to dedupli-

cate low-locality file-based workloads, and how to scale out deduplication via parallelization,

data and index organization; how to build a unified deduplication solution that can adapt to tape-

based and file-based workloads; and, how to introduce strategic redundancies in deduplicated

data to improve the overall robustness of the system.

Our scalable similarity-based search solution finds for an object, highly similar ob-

jects from within a large store by examining only a small subset of its features. We show how

to partition the feature index to scale out the search, and how to select a small subset of the

partitions (less than 3%), independent of object size, based on the content of query object alone

to conduct distributed similarity-based searches.

We show how to deduplicate low-locality file-based workloads using Extreme Bin-

ning. Extreme Binning uses file similarity to find duplicates accurately and makes only one

disk access for chunk lookup per file to yield reasonable throughput. Multi-node backup sys-

tems built with Extreme Binning scale gracefully with the data size. Each backup node is



autonomous—there is no dependency between nodes, making house keeping tasks robust and

low overhead.

We build a ‘unified deduplication’ solution that can adapt and deduplicate a variety of

workloads. We have workloads consisting of large byte streams with high-locality, and work-

loads made up of files of varying sizes without any locality between them. There are separate

deduplication solutions for each kind of workload, but so far no unified solution that works well

for all. Our unified deduplication solution simplifies administration—organizations do not have

to deploy dedicated solutions for each kind of workload—and, it yields better storage space

savings than dedicated solutions because it deduplicates across workloads.

Deduplication reduces storage space requirements by allowing common chunks to be

shared between similar objects. This reduces the reliability of the storage system because the

loss of a few shared chunks can lead to the loss of many objects. We show how to eliminate

this problem by choosing for each chunk a replication level that is a function of the amount

of data that would be lost if that chunk were lost. Experiments show that this technique can

achieve significantly higher robustness than a conventional approach combining data mirroring

and Lempel-Ziv compression while requiring about half the storage space.
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Chapter 1

Introduction

This dissertation presents scalable solutions for problems unique to chunk-based de-

duplication. We show how to conduct similarity-based searches over large repositories, and how

to scale out these searches as the repository grows; how to deduplicate low-locality file-based

workloads, and how to scale out deduplication via parallelization, data and index organization;

how to build a unified deduplication solution that can adapt to tape-based and file-based work-

loads; and, how to introduce strategic redundancies in deduplicated data to improve the overall

robustness of the system.

Digital data continues to grow at an unprecedented rate. The amount of digital infor-

mation created in 2007 was 281 exabytes; by 2011, it is expected to be 10 times larger [38].

35% of this data originates in enterprises and consists of unstructured content, such as office

documents, web pages, digital images, audio and video files, and electronic mail. Enterprises

retain data for the purposes of corporate governance, regulatory compliance [1, 2], litigation

support, and data management. As data grows, so does the need to find cost-effective storage

1



solutions. Deduplication, a technique for eliminating duplicate data and reducing storage space

requirements, is gaining prominence. Backup data is particularly well suited for deduplication.

Storage space requirements can be reduced by a factor of 10 to 20 or more when backup data is

deduplicated [13].

Chunk-based deduplication [37, 57, 66], a popular deduplication technique, first di-

vides input data streams into fixed or variable-length chunks. Typical chunk sizes are 4 or 8 kB.

A cryptographic hash or chunk ID of each chunk, computed using techniques such as SHA-

1 [59], is used to determine if that chunk has been backed up before. Chunks with the same

chunk ID are assumed identical [41, 14]. New chunks are stored and references are updated

for duplicate chunks. Chunk-based deduplication is very effective for backup workloads, which

tend to be files that evolve slowly, mainly through small changes, additions, and deletions [83].

This dissertation focuses on inline chunk-based deduplication. Inline deduplication is

deduplication where data is deduplicated before it is written to disk as opposed to post-process

deduplication where backup data is first written to a temporary staging area and then dedupli-

cated offline. One advantage of inline deduplication is that extra disk space is not required to

hold and protect data yet to be backed up. This is in contrast to out-of-band or offline dedupli-

cation, where data is first written to temporary storage and then deduplicated offline.

One of the problems concerning scalable inline deduplication has been aptly labelled

the ‘disk bottleneck problem’ [87]. To facilitate fast chunk ID lookup, a single index contain-

ing the chunk IDs of all the backed up chunks must be maintained. However, as the backed

up data grows, the index overflows the amount of RAM available and must be paged to disk.

The index cannot be cached effectively, and as data grows, it is not uncommon for nearly every

2



index access to require a random disk access. This disk bottleneck severely limits deduplication

throughput. To solve this problem, this thesis presents two solutions: Content-based Docu-

ment Routing: a method for conducting scalable similarity-based searches over large document

repositories [11], and, Extreme Binning: a method for scalable chunk-based file backup [10].

1.1 Scalable Similarity-based Search

To deduplicate efficiently and at scale, it is essential that the process of finding similar

objects within large object repositories/stores be efficient. Similar objects are objects that share

content. This shared or duplicate content is what we want to identify so that it can be eliminated.

By eliminating duplicate content, storage space can be conserved. While finding similar objects

can in principle be achieved by a pairwise comparison of the one object with each of the other

objects in the repository, this process quickly becomes very inefficient as repositories grow. To

scale gracefully with the repository size, we propose a new scalable similarity-based search

method. The goal is to find objects that are highly similar to each other. We are not interested

in objects that incidentally share some small content. Focussing our efforts only on the highly

similar objects, allows gracefull scale out—we can continue to find shared content quickly even

as repositories grow. Further, highly similar objects are of the most interest to us because by

eliminating the large chunks of overlapping content between them we get the most ‘bang for

our buck’ in terms of storage space savings.

To find similar objects within a repository, we use the following framework : from

every object, a set of features are extracted, such that if two documents are similar, their sets of

features overlap strongly, and if they are dissimilar, their sets of features do not overlap. Thus,

3



the problem of object similarity is reduced to one of set similarity. The similarity-based search

solution uses this set similarity to find similar documents with high precision.

For fast query and retrieval features are maintained in an index. To scale out the

search, we show how to partition this search index into smaller indices and how to conduct

a distributed search. This is done in such a way so that the number of partitions that need

to be queried per object is very small and moreover, is independent of the object size. This

number, also called the ‘routing factor’ is a tunable parameter which can be used to control how

exhaustive the searches need to be. The decision as to which partitions should be queried is

based solely on the content of the object and not on the contents of the partitions. This makes

our approach stateless. The scalable similarity-based search and routing algorithm are discussed

in Chapter 2.

1.2 Scalable, Parallel Deduplication for Chunk-based Low-locality

File Backup

Deduplication is almost ubiquitous in backup systems. Every night, backup agents

crawl through enterprise and user data to package it into large files using utilities such as ‘tar’.

These large files or byte streams are then sent to the backup systems where they get deduplicated

before being written to backup media. Such a workload made up of large byte streams is

what we call the ‘traditional’ backup workload. It is generated by Virtual Tape Library agents

and then streamed across the network for backup. Traditional backup workloads contain high

locality.

4



Locality is the tendency of groups of chunks to reoccur together. For example, if the

last time chunk A occured, it was surrounded by chunks B, C, and D, then the next time A

occurs (even in a different backup) it is likely that B, C, or D will be nearby. Deduplication

solutions, such as Sparse Indexing [49] and Locality Sensitive Caching [87], designed for the

traditional workload depend on this locality to perform well. They use locality to reduce disk

accesses and improve throughput.

Now consider clients such as NAS file shares and electronic mail servers. These

clients send individual files of varying sizes, rather than large byte streams, for backup. No

locality can be assumed across files arriving within a window of time. When Sparse Indexing

or Locality Sensitive Caching techniques are presented with such a ‘non-traditional’ file-based

workload, their performance deteriorates—their deduplication quality and throughput suffers.

Our next contribution is Extreme Binning: a scalable deduplication technique for

non-traditional backup workloads. Extreme Binning depends on file similarity to guarantee

throughput and deduplication quality. It makes only one disk access for chunk lookup per file,

which gives reasonable throughput. It uses a similarity-based search method to find duplicates

with high accuracy. In Chapter 3, we also show why and how Extreme Binning can be easily

scaled out to accomodate the growth of data. We show how to build a multi-node backup

system where files can be deduplicated in parallel and there is no dependency with respect to

data or indices across nodes. Each file is allocated to only one node using a stateless routing

algorithm [43, 56] for deduplication and storage, allowing for maximum parallelization. Each

backup node is, thus, autonomous, making data management and house keeping tasks robust

and low overhead.

5



1.3 Unified Deduplication

Unified Deduplication is a term we use to describe a deduplication engine that can

deduplicate across a variety of workloads—VTL tape images, electronic mail messages, files

or folders sent by NAS boxes and backup agents installed on PCs. It should be able to adapt

to traditional as well as non-traditional workloads. Such a unified deduplication engine is use-

ful because it simplifies management—a dedicated system does not need to be deployed and

administered to service each category of clients. It also yields better storage space savings

over dedicated systems because it can deduplicate across workloads. For example, consider an

electronic mail attachment saved on the desktop of an employee. This attachment will occur

both as a part of the exchange server’s workload and the weekly/nightly backup generated by a

VTL agent. A unified deduplication solution detects such duplicates whereas dedicated systems

cannot. These advantages, of ease of manageability/administration and storage space savings,

make unified deduplication a desirable solution. In Chapter 4 we show how to design such a

unified deduplication system.

To do this, we first study the state-of-the-art solutions with the objective of assessing

whether they can be adapted to handle the variations in workloads. There is Sparse Indexing

for large byte streams with high locality—essentially the traditional nightly and weekly backup

workload; and there is Extreme Binning for the non-traditional, file-based, low-locality work-

load. Locality Sensitive Caching is another solution developed for traditional backup work-

loads. However, we do not have access to its actual implementation. Both, Sparse Indexing and

Extreme Binning, use a sampling approach to reduce RAM usage. Both amortize the cost of

disk accesses by deduplicating groups of chunks at a time.

6



To assess these approaches, we presented each solution with a workload that it is

not designed for. We presented Sparse Indexing with a file-based, low-locality workload and

Extreme Binning with a traditional workload. For the traditional workload, the byte stream was

segmented into objects of 10 MB. So, as far as Extreme Binning was concerned, it was receiving

10 MB files, one file at a time. Our observation was that Extreme Binning is not well suited

to handle the traditional workload. It only extracts one sample per object which is not enough

to deduplicate objects the size of 10 MB. We can perhaps make these objects smaller and then

feed them to Extreme Binning to improve deduplication, however, this would be at the cost of

reduced deduplication throughput. A high throughput is essential when backing up on a nightly

basis due to hard deadlines and Sparse Indexing achieves that.

When presented with a non-traditional workload, Sparse Indexing did not do as good

a job as Extreme Binning either. This was primarily because the files in the workload were some

times too small to yield any samples. However, we found that by changing the sampling method

and by making a few more modifications, we could improve Sparse Indexing’s performance.

Hence, we extended Sparse Indexing to build a unified deduplication solution. We not only

tested it with traditional and non-traditional workloads, but with combination workloads as

well. Combination workloads are those that contain a mixture of objects varying in size as well

as locality. We evaluated this unified deduplication solution on the basis of its deduplication

quality and RAM usage.
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1.4 Strategic Redundancies for Reliability

Backup and archival systems, in addition to conserving storage space, must also en-

sure that data is preserved over long time periods. Data must be protected so that if required, at a

later date, it be accessible and reproduced faithfully. Deduplication techniques, while they save

storage space, also have the potential to reduce reliability. Deduplication removes redundant

content across objects. Only references are updated for duplicate chunks. This means that de-

pendencies are introduced between objects through such shared chunks. If such a shared chunk

is lost all the objects that share this chunk will not be reconstructible. If a highly shared or

popular chunk is lost, then a disproportionately large number of objects and data may become

inaccessible. In Chapter 5 we show how to solve this problem by re-introducing some duplicate

content.

The key idea is that though all chunks must be protected against loss due to hardware

failures or software errors, some chunks are much more important than the others and thus,

must be protected more aggressively. The measure of a chunk’s importance is the number,

or, the cumulative size of the objects that together share it amongst themselves. The more

‘important’ chunks, then, need to be protected at a higher level than the others to maintain good

overall reliability. To this end, we propose a solution [12] that strategically replicates critical

chunks more aggressively than less popular chunks.

By re-introducing redundancies we are in some ways reversing the effects of dedu-

plication because these redundant chunks consume extra storage space. However, we believe

that our approach of introducing strategic redundancies is a way of re-investing a small frac-

tion of the saved storage space in the interests of improved reliability. Indeed, our results show
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that we achieve even better data reliability than mirrored (degree of mirroring = 2) Lempel-

Ziv (LZ) compressed [88] objects, while still using about half of the storage space of mirrored

LZ-compressed objects and with replication/mirroring as the means to introduce redundancies.

1.5 Summary

To build scalable chunk-based deduplication systems this thesis proposes the follow-

ing solutions:

1. A similarity-based scalable search method for finding similar documents in large cor-

puses. By choosing only a few features of a document, the similarity-based search finds

highly similar documents fast. The document routing algorithm allows for scalability—

the search index can be partitioned into smaller sizes and searches can be parallelized.

2. A scalable, parallel deduplication method for chunk-based file backup where locality

cannot not be assumed. Extreme Binning requires only one disk access per file and can

be parallelized without impacting deduplication ratios. Bin independence makes scale

out, housekeeping and integrity check operations clean and simple.

3. A study of existing technologies to assess their potential use in building a unified dedupli-

cation engine. We show how to adapt the Sparse Indexing technology using variations of

the min-hash sampling algorithm to build a deduplication system that can adapt to varied

workloads.

4. A method for improving the robustness of chunk-based deduplication systems by adding

strategic redundancies. The results show that by re-investing a small amount of conserved
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storage space it is possible to improve robustness while still being more space efficient

that mirrored Lempel-Ziv compression.

The common thread among all the solutions in this dissertation, is that each involves

making a trade-off. The similarity-based scalable search makes a trade-off between efficiency,

scalability and precision—only highly similar objects are found with the less or vaguely similar

objects disregarded. Extreme Binning makes a trade-off between throughput, RAM usage and

deduplication ratio. To ensure throughput, only one disk access is allowed per file. To reduce

RAM utilization, for every object, only one of its chunk IDs is kept in RAM. In exchange for

these desirable properties, a few of duplicates are allowed. Unified Deduplication provides a

single point solution for varied workloads and allows for global deduplication—across work-

loads generated by varied sources. In exchange for this ease of administration, some duplicates

may be allowed—some workloads may not be deduplicated as well as they would have been by

dedicated deduplication solutions. However, our results show that Unified Deduplication, due

to its capability to deduplicate across workloads, achieves better deduplication than dedicated

solutions. Selective chunk replication makes a trade-off between storage space consumption

and reliability. Even though extra storage space is consumed reliability is improved.

The rest of this thesis is organized as follows: Chapter 2 discusses the scalable

similarity-based algorithm. Extreme Binning is described in Chapter 3 while Unified Dedupli-

cation is described in Chapter 4. Chapter 5 describes how selective redundancies help improve

reliability. Finally, Chapter 6 concludes with contributions and future directions.
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Chapter 2

Scalable Similarity-based Searches over Large

Document Repositories

2.1 Introduction

Finding textually similar files in large document repositories is a well researched

problem, motivated by many practical applications. One motivation is the need to identify near

duplicate documents within the repository, to eliminate redundant or outdated files and improve

user experience [37]. Archival systems [66, 84] need to identify content overlap between files

to save storage space by using techniques such as delta-compression [4, 29]. Other applications

arise in information management: similarity based retrieval can be used to find all versions of

a given document, e.g. for compliance, security, or plagiarism detection purposes. Notice that

here we are concerned with textual document similarity, where two documents are deemed to

be similar if they share significant stretches of text. This is in contrast to natural language based

approaches where the linguistic structure of the document is taken into account.
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The operation that is the object of our study is similarity based retrieval. Here, a query

document Q is presented to the system. The aim is to find all the documents D1, D2, . . . , Dn in

the repository that are similar to Q, the most similar documents being presented first.

While finding textually similar documents can in principle be achieved by a pairwise

comparison of the query document with each one of the documents in the repository using a

program such as Unix diff, this is clearly very inefficient. To solve this problem, the following

framework is commonly used: from every document, a set of features are extracted, such that

if two documents are similar, their sets of features overlap strongly, and if they are dissimilar,

their sets of features do not overlap. Thus, the problem of document similarity is reduced to one

of set similarity. Then, an inverted index [72, 73] is created mapping features to documents.

Upon the presentation of the query document Q, its features are extracted, and used to query

the inverted index. The result is a set of documents that share some features with Q; these

are then ranked with the document sharing most features coming first. Various authors have

developed techniques for extracting features from a document: Manber [52], Broder et al. [18,

19], Pearce et al. [63], Kulkarni et al. [47] and Forman et al. [37]. All these approaches generate

very specific features: when two documents share even a single feature, they share a relatively

large stretch of text (tens of characters). As a result, when the inverted index is consulted,

relatively few documents are returned. This is in contrast with techniques such as bag of words

analysis, where most documents are expected to share at least a few words.

A single feature index becomes a bottleneck as the size of the repository gets very

large, and the index needs to simultaneously handle a large number of updates and queries. Such

a situation is typical of document management systems for large enterprises, as well as archival
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systems dealing with large, continuous streams of documents. One solution is to partition the

feature index into a number of sub-indices, placing each partition on a different server, so that

the servers can be updated and queried in parallel. The partitioning scheme used must be such

that only a small fraction of the partitions need to be accessed for each update and query. Here,

the most obvious schemes, such as using a Distributed Hash Table (DHT) [68, 71, 76, 86] to

store the 〈feature,Document〉 pairs fail. In this scheme, the partitioning of the index is based

on the hash of the individual features. For example, given 2k servers, each hosting a hash table,

and the pair 〈feature,Document〉 that needs to be added to the index, the first k bits of the

hash of the feature are used for identifying the server that this particular pair needs to be added

to. The problem is that there is no locality of reference for the individual feature hashes: each

one of the document features is routed independently, most likely to a different server. As a

result, a large number of servers will need to be accessed for each document update and query.

We present an alternative index partitioning and document routing scheme; one that

does not route each individual feature of every document independently, but rather routes all the

features in a document together. The outline of our scheme is as follows:

• At ingestion time, i.e. when a document is being added to the repository, the document’s

features are extracted using a feature extraction algorithm. Based on these features, a

fraction of the index partitions are chosen, and the document is routed to these partitions,

i.e. the document’s features are sent to these partitions and added to the index there. We

call the algorithm by which the partitions are chosen the document routing algorithm.
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• At query time, the same feature extraction and document routing algorithms are used for

choosing the partitions to query. The chosen partitions are queried with the document’s

features, and the results are merged.

using the file’s contents as guide

...............

Partitioned Indices
1 2 n−2 nn−1

File

Route file to a fraction of the
total number of partitions 

Figure 2.1: Our solution for document routing

This situation has been depicted in Figure 2.1. Notice that the choice of which servers

to contact, both at ingestion and query time, is entirely based on the contents of the document;

at no time do we have to have an interaction with the partitions to determine which one should

be chosen. This sets us apart from approaches which apply a clustering algorithm [45, 62, 74]

to all the documents in the repository; these approaches need to use knowledge of the existing

clusters to route the new document. Our approach, by contrast, is incremental and stateless:

only the contents of the document are used to decide which partitions it should be routed to. As

a result, we have a very lightweight, client based routing capability.
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2.2 Background

As stated above, our work assumes the existence of a mechanism to extract features

from documents, such that document similarity is reduced to set similarity. We use the Jaccard

index as a measure of set similarity. Let H be an algorithm for extracting features from docu-

ments, where H(f) stands for the set of features extracted by H from document f . Then, the

similarity measure of two documents f1 and f2 according to Jaccard index is

|H(f1) ∩H(f2)|
|H(f1) ∪H(f2)|

There are a number of feature extraction algorithms in the literature that satisfy the

requirements above. Shingling [17] is a technique developed by Broder for near duplicate

detection in web pages. Manber [52], Brin et al. [16] and Forman et al. [37] have also developed

feature extraction methods for similarity detection in large file repositories.

For the experiments, we used a modified version of the chunk based feature extractor

described by Forman et al. [37]. This algorithm is described below.

2.2.1 Chunk Based Feature Extraction

Content-based chunking, as introduced in [57], is a way of breaking a file into a

sequence of chunks so that chunk boundaries are determined by the local contents of the file.

The Basic Sliding Window Algorithm is the prototypical content-based chunking algorithm.

This algorithm is as follows: an integer, A, is chosen as the desired average chunk size. A fixed

width sliding window is moved across the file, and at every position k, the fingerprint, Fk, of

the contents of this window is computed. This fingerprint is calculated using a technique known
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as Rabin’s fingerprinting by random polynomials [67]. The position k is deemed to be a chunk

boundary if Fk mod A = 0. We actually use the TTTD chunking algorithm [34], a variant of

the basic algorithm that works better [37].

The rationale for using content-based chunking for similarity detection is that if two

files share a stretch of content larger than the average chunk size, it is likely that they will share

at least one chunk. This is in contrast to using fixed size chunks, where inserting a single byte

at the beginning would change every chunk due to boundary shifting.

We use the characteristic fingerprints of chunks (see below) as the features of the file.

Again, the intuition is that if two files are similar, they share a large number of chunks, and thus

their feature sets overlap strongly; if they are dissimilar, they will not share any chunks, and

thus their feature sets will be disjoint.

Here is the feature extraction algorithm in more detail. This algorithm uses a hash

function, h, which is an approximation of a min-wise independent permutation (see Section 2.3.2

below). There are three steps in our feature extraction algorithm:

1. The given file is first parsed by a format specific parser. We handle a range of file formats,

including PDF, HTML, Microsoft Word and text. The output of the parser is the text in

the document.

2. The document text is divided into chunks using the TTTD chunking algorithm [34]. The

average chunk size chosen for these experiments was 100 bytes.

3. For each chunk, a characteristic fingerprint is computed, as follows: let {s1, s2, . . . sn}

be the overlapping q-grams in the chunk, i.e. the set of all subsequences of length q in
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the chunk. Then the characteristic fingerprint of the chunk is the minimum element in

the set {h(s1), h(s2), . . . h(sn)}, where h is the hash function described above. For the

experiments we chose q to be 20.

To summarize, the features of the document are the characteristic fingerprints of the

chunks of the document. This algorithm has been demonstrated to produce good features for

document similarity. We will not discuss its properties further here, since it is not the subject of

this paper.

2.2.2 The Structure of Feature Indices

Here, we describe the structure of the feature indices, be they a monolithic feature

index for all the documents in the repository, or one of the indices corresponding to a partition

of the bigger index.

Figure 2.2 depicts one of the possible designs of a feature index. The index key is the

feature itself. Each feature points to the list of files that it occurs in. This design is analogous

to that of an inverted keyword index [72, 73] used commonly in Information Retrieval Systems.

This index contains lookup information for every file that has been routed to it at ingestion time.

2.2.3 Building the Feature Indices

When a new file, fn, needs to be added to the repository an entry for each feature

in H(fn) must be added to the feature index. For every feature in H(fn), if an entry already

exists in the feature index, then the detail for that entry is appended with fn. If no entry is found
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h1 → f2, f3, f4

h2 → f11, f2
.

.

.

.

...

h9 → f100
.

.

Figure 2.2: Feature Index

then a new entry for that feature is inserted. If fn is routed to multiple partitions this process is

repeated at every one of the destination partitions.

2.2.4 Querying Feature Indices

When a feature index needs to be accessed to find files in the repository similar to a

query file, fq, then the index is queried using each feature in H(fq). The set of files similar to

fq is the set ⋃
0≤i<|H(fq)|

(I(hi))

where I(hi) is the set of all the files that hi points to in the feature index I . Each file in the

result set is ranked based on its Jaccard similarity index with respect to fq.

If multiple partitions need to be queried for fq then the above querying process is

carried out for every partition. The results obtained from each partition are collated such that
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the set of all the files similar to fq is given by

⋃
i∈R

 ⋃
0≤j<|H(fq)|

(Ii(hj))


where the set R is the set of all the partition numbers that were queried for fq.

2.3 Partitioning the feature index

As mentioned before, our main interest is to partition the index I into a number of

sub-indices I1, I2, . . . , IK while preserving the following properties:

• Each one of the partitions has the structure described in Section 2.2.2, i.e. it is a reverse

map from features to files.

• At ingestion time, the features of each file, fn, are used to choose m partitions to which

the file will be routed. We call m the routing factor and m < K. The chosen partitions

receive all the features of the file, i. e. H(fn) is added to each one of the chosen partitions.

This algorithm is the document routing algorithm.

• At query time, given the query document fq, the same document routing algorithm is used

to choose which partitions to query. The query process for each partition is as described

in Section 2.2.2. The chosen partitions are queried in parallel and independently; there is

no background communication among them. The results of the queries from the chosen

partitions are merged to form the answer to the query.

• Even though we query only a small subset of the partitions (i. e. m is much smaller than

K) there is minimal loss of recall compared to the case where there is one global index.
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We first describe the document routing algorithm and then provide the justification

for why it works.

2.3.1 The Document Routing Algorithm

The input to the algorithm is

• H(fn), the set of features of the document fn

• an integer K, the number of partitions

• an integer m, the routing factor

We assume that m < K, and |H(fn)| ≥ m. The feature extraction algorithm, H ,

extracts features using a min-wise independent hash function as explained in Section 2.2.1. The

routing algorithm computes a set of integers R = {r0, r1, . . . , rm−1} where 0 ≤ i < m.

r0, r1, . . . , rm−1 are the partitions to which the document will be routed. The document routing

algorithm is as follows:

1. Compute botm(H(fn)) where botm is a function that picks the m smallest integers in a

set. In other words, for a set of integers S where |S|≥m, botm(S) ⊆ S, |botm(S)| = m

, and x ∈ botm(S) ∧ y ∈ S ⇒ x ≤ y.

2. For every hash h in botm(H(fn)) compute (h mod K). Any other consistent distri-

bution scheme can also be used [43, 56]. R is the set of the resulting integers, R =

{h mod K|h ∈ botm(H(fn))}. The document is now routed to all the partitions indi-

cated by R.

The routing algorithm has been depicted in Figure 2.3.
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Figure 2.3: Document Routing Algorithm

2.3.2 Why It Works

The routing algorithm is based on a generalization of Broder’s theorem [18]. Broder’s

theorem relies on the notion of a min-wise independent family of permutations.

Definition 1 Let Sn be the set of all permutations of [n]. The family of permutations F ⊆ Sn

is min-wise independent if for any set X ⊆ [n] and any x ∈ X , when p is chosen uniformly and

at random from F we have

Pr(min{p(X)} = p(x)) =
1
|X|

In practice, truly min-wise independent permutation are expensive to implement.

Practical systems use hash functions that approximate min-wise independent permutations.

Theorem 1 Consider two sets S1 and S2, with H(S1) and H(S2) being the corresponding sets

of the hashes of the elements of S1 and S2 respectively, where H is chosen uniformly and at

random from a min-wise independent family of permutations. Let min(S) denote the smallest

element of the set of integers S.

Pr(min(H(S1)) = min(H(S2))) =
|S1 ∩ S2|
|S1 ∪ S2|

Broder’s theorem states that the probability that the two sets S1 and S2 have the same

minimum hash element is the same as their Jaccard similarity measure.
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Now, consider two files fi and fj , and let m = 1, i.e. we route each file to only one

partition. According to the theorem above, and the definition of similarity measure between two

files, the probability that H(f1) and H(f2) have the same minimum element is the same as the

similarity measure of the two files. In other words, if the two files are very similar, the minimum

elements of H(f1) and H(f2) are the same with high probability. But if the minimum elements

are the same, the two files will be routed to the same partition, since the partition number to

which they are routed is the minimum element modulo K, the number of partitions.

While the probability of being routed to the same partition is high when the two files

are very similar, the probability drops significantly when the degree of overlap between the two

files goes down. For example, if half the features of the two files are the same, and the two files

have the same number of features, the Jaccard similarity measure of the two files is 1/3, i.e.

there is only one third chance that they would be routed to the same partition.

To overcome this problem, we route the files to more than one partition, i.e. we

choose m > 1. The intuitive justification for using the bottom m features for routing is that if

by chance a section of a file changes such that the minimum feature is no longer in the set of

features, the second least feature will now become the minimum feature with good probability.

Our experiments and the theorem below show that with m a modest number (less than 5), we

have a very good chance that two files with a fair degree of similarity will be routed to at least

one common partition.

To formalize our intuition, we can generalize the Broder theorem as follows:

Lemma 1 Let S1 and S2 be two sets. Let I = |S1 ∩ S2| and U = |S1 ∪ S2|. Let B1 =

botm(H(S1)) and B2 = botm(H(S2)), where H is a min-wise independent hash function.
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Then

Pr(B1 ∩B2 = ∅) ≤ (U − I)(U − I − 1) . . . (U − I −m− 1)
U(U − 1) . . . (U −m− 1)

Let s = I/U , i.e. s is the Jaccard similarity measure between S1 and S2. A good approximation

of the above, when m is small and U is large, is

Pr(B1 ∩B2 = ∅) ≤ (1− s)m + ε

ε is a small error factor in the order of 1/U .

When we translate this lemma to the case of documents, we get the following:

Corollary 1 Let f1 and f2 be two documents with similarity measure s. When they are each

routed to m partitions using the algorithm above, the probability that there will be at least one

partition to which both of them are routed is at least 1− (1− s)m

Now, consider the case where the document f1 has been ingested into the system,

and we now wish to use f2 as the query document to do similarity based retrieval. Let us say

that the similarity measure of f1 and f2 is 1/3, and m, the routing factor, is 4. Since the same

routing algorithm is used for ingestion and query processes, and for the query to succeed it

suffices that at least one partition be in common between the two files, the probability that we

find the document f1 when we query with f2 is better than 80%. Contrast this with the case

where m = 1, when the probability of finding f1 is only 33%.

The following sections discuss the experimental setup and results.
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2.4 Experimental Setup

The experimental data set consisted of 179874 files. These were Hewlett Packard’s

internal support documents in HTML format. There were 1504984 unique features extracted

from this set. A randomly selected subset, Fq, of 332 files was chosen from the original corpus

to be used as query files. The rest of the files, the set Fd, was our document repository. Our goal

was to find for every file fq ∈ Fq the files in Fd that were highly similar to fq. The similarity

measure between two files was calculated using their features as explained in Section 2.2.

Since Fd was our document repository every file fd ∈ Fd was used to build the

partitions using the document routing algorithm as explained in Section 2.2.3. Every file in Fq

was then used to query the partitions as explained in Section 2.2.4 to find similar files to itself

in Fd. The number of partitions, K, were varied from 1 through 128. The routing factor, m,

used to route every file in Fd (for building the partitions) and in Fq (for querying the partitions)

was also varied from 1 through 10.

The result set for every query in Fq using a single non-partitioned index was then used

as a standard to judge the quality of results produced when the index was partitioned.

2.5 Results

In the first set of experiments we have compared the quality of results obtained when

using a single monolithic feature index (K = 1) to search for similar files with those obtained

when we had multiple partitions (K >1). First, a monolithic feature index was built using every

file in Fd. Next, for every query file fq ∈ Fq the set of files similar to it were identified by
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Figure 2.4: Effect of the routing factor on the average similarity measure
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querying the monolithic feature index. Each file, fr, in the result set for every query fq was

then ranked based on its Jaccard similarity index with fq. The file with the highest similarity

measure was the file that was most similar to the query file and hence, the best result. The

best result, thus calculated, was recorded for every query file. The average similarity measure,

calculated as the average of the best results for all fq, was then calculated for the entire query

set Fq.

The next round of experiments was conducted with increasing number of partitions,

K >1. For every value of K, the routing factor, m for every file in Fd and Fq was varied from

1 through 10. Once again, the first step was to build the partitions using Fd for the appropriate

values of K and m. Using the same values for K and m files in Fq were used to query the par-

titions. The results obtained from the respective partitions were collated and the best result was

recorded for every fq ∈Fq. The average similarity measure, for every K and m combination,

was then calculated for Fq.

Figure 2.4 shows the effect of increasing the number of partitions, K, and the routing

factor, m, on the average similarity measure of Fq. The inset shows the same graph with an

expanded Y-axis to show the small differences. In the inset, the data point corresponding to

K = 1 and m = 1 corresponds to the average similarity measure for Fq with one monolithic

index. This value is 0.342. We can see that for K =128 and m=1 this value is less than 0.27.

This is because with increasing number of partitions while using only the minimum feature

(m=1) to route the query file it is possible to not find the best match, or the file with the highest

similarity measure. In this case, for 213 out of 332 files, or 64% of the query files we did not

find the result with the highest similarity measure. When m=1 even a single change that affects
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the minimum feature of the query file can prevent us from finding the best match as has been

explained in Section 2.3.2.

The overall average similarity measure for Fq, thus, reduces. However, as we increase

m, we improve our chances of finding the best result because we now route every file fd ∈ Fd

and fq ∈ Fq to multiple partitions. We can see that even with m = 3 there is a significant

improvement in the average similarity measure of Fq for all values of K. For K =128,m=3

this value is more than 0.33. Here, only 51 or 15% of the 332 query files did not find their

optimal results. This means that for a large percentage of query files we are being able to find

the file in Fd that shares the highest content overlap with them. For m > 4 the average similarity

measure for all values of K is 0.342 which means that for every query file we were able to find

the best match.
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Figure 2.5 depicts the average recall obtained for all the queries for increasing values

of m and for K = 128. The recall for every query was calculated as the fraction of the size

of the result set obtained when K > 1 with respect to the original size of results with K = 1.

The ideal recall, thus, is 1. The graph in figure 2.5 depicts the average recall for K = 128 for

increasing values of m in two forms. The first form is the overall recall which takes into account

the complete result set obtained for every query. The second form is the recall for only a subset

of the result set — specifically the top-20 results in the result set. In this case we retained only

the top-20 results for every query. We can see that for m=3 the overall recall is 24% whereas

the recall for the corresponding top-20 results is 73%. This result shows us that though with

K = 128 and m = 3 we were able to fetch only 24% of the total result set on an average, this

subset contained most of the highest ranking results. This means that we were able to retain and

produce the strong resemblances between documents.

We may have lost some of the weak similarity relationships but this loss is acceptable

given the gain in scalability. Moreover, for many applications, only the documents with the

strongest similarity to the query are of interest, and the low-similarity hits may not be of interest

or get filtered out. For example, in the case of a standard search engine users are interested in

only the the top few results of their query or the first page of results returned by the search

engine. In such a situation the recall achieved by our routing algorithm with respect to the

top-20 results is sufficient. However, if an application requires that every similar document to a

query be found, then one can easily adopt a policy of querying each and every partition instead

of just m out of K. Such a scheme will preserve the original recall of every query as was the

case when there existed just one index(K = 1).
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Figure 2.6: Identical and disjoint top-2 lists, 128 partitions

Figure 2.6 shows us exactly how many of the top-2 results with K =128 were iden-

tical or disjoint when compared to those with K =1. This data was obtained using techniques

developed by Fagin [36]. Identical results were those in which the contents of results were

preserved with K =128. Disjoint results were those in which none of the contents of the orig-

inal top-2 results with K = 1 were preserved when K = 128. The rest of the top-2 results for

K = 128 contained at least one of the original top-2 results. We can see that as m increases,

even with m = 3, more than 70% of the top-2 lists were identical and less than 10% were dis-

joint. This means that overall more than 90% of the queries returned at least one of their top

results.

Figure 2.7 depicts the average partition sizes as compared with the size of the mono-

lithic index for increasing values of m. The average partition sizes have been shown as a
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percentage of the size of the monolithic index. The partition size is the number of keys in the

partition — the number of features indexed at every partition. This size does not take into ac-

count the list of files that every feature occurs in. Even if we had accounted for it we would

observe the same trend as has been shown in the figure. We can see that with K = 128 and

m=3 the average partition size is less than 3% of the size of the monolithic index.

We have already seen from our previous results that with K = 128 and m = 3 we

obtain very good average similarity for our queries (Figure 2.4) more than 70% of the queries

returned their top-2 results identical to when K = 1 and more than 90% of the top-2 results

contained at least one of the original top-2 results. We can clearly see that our routing algorithm

has performed very well while reducing the individual partitions to more manageable sizes,
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enabling the parallel execution of similarity based searches while at the same time has not

compromised the quality of our results.

2.6 Related Work

Routing keyword queries to promising sources of information has been an active area

of research in the field of distributed information retrieval and peer-to-peer networks [22, 24, 26,

51]. Cooper [24] and Lu et al. [51] use past information about query results to guide queries to

promising sources in peer-to-peer and federated information systems. Distributed Hashing has

also been studied widely. Litwin et al. [50] proposed Scalable Distributed Data Structures based

on linear hash tables for parallel and distributed computing. Distributed Hash Tables(DHT) have

also been widely used in the area of peer-to-peer systems to distribute and locate content without

having to flood every node in the system with content and queries. Content Addressable Net-

work (CAN) [68], Chord [76], Pastry [71] and Tapestry [86] are some of the DHT implementa-

tions used in a distributed environment. Manku [54] has categorized the DHT routing methods

into deterministic and randomized. Oceanstore [46] is an infrastructure that provides access to

data stored across a large-scale globally distributed system and uses the Tapestry DHT protocol

to route queries and place objects close to their access points with the objective of minimizing

latency, preserving reliability and maximizing the network bandwidth utilization. PAST [30] is

an internet scale global storage utility that uses Pastry’s routing scheme. PAST routes a file to

be stored to k nodes within the network such that those node identifiers are numerically closest

to the file identifier. Pastiche [25] is a peer-to-peer data backup facility that aims to reduce the

storage overhead by identifying nodes that share common data at a sub-file granularity. Pastiche
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aims to conserve storage space by identifying overlapping content using techniques introduced

in the Low-Bandwidth Network File System [57]. In order to route data to appropriate nodes,

Pastiche needs to access and maintain an abstract of the file system’s contents.

2.7 Summary

The similarity-based search techniques choose, for every file, only a few of its feature

hashes to find documents within a large repository highly similar to it. It is based on Broder’s

theorem which states that the degree of similarity between two sets is proportional to the prob-

ability that their minimum hash is the same. Features extracted from every document are stored

in an inverse index for fast retrievals. Each feature in the index points to a list of files that it

occurs in. To find similar documents, the features of the query document are are sorted and only

the top m features are used to query the feature index. m is the routing factor which influences

the size of the result. In general, increasing the routing factor identifies more similar documents.

However, this also means more number of queries.

The document routing algorithm enables scalable and parallel similarity-based sea-

rches. This helps the searches scale gracefully as the repository grows. The feature index is

partitioned using distributed placement techniques. How many partitions to query is dictated by

the routing factor. Which partitions to query is dictated by the first m features of the document,

and, hence, dictated by the contents of the document. Our results show that by querying less

than 3% of the partitions the quality of the results is not compromised. It is always possible to

increase the routing factor if a more exhaustive search is required.

32



Chapter 3

Scalable, Parallel Deduplication for

Chunk-based File Backup

3.1 Introduction

The amount of digital information created in 2007 was 281 exabytes; by 2011, it is

expected to be 10 times larger [38]. 35% of this data originates in enterprises and consists of

unstructured content, such as office documents, web pages, digital images, audio and video

files, and electronic mail. Enterprises retain such data for corporate governance, regulatory

compliance [1, 2], litigation support, and data management.

To mitigate storage costs associated with backing up such huge volumes of data, data

deduplication is used. Data deduplication identifies and eliminates duplicate data. Storage

space requirements can be reduced by a factor of 10 to 20 or more when backup data is dedu-

plicated [13].
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Chunk-based deduplication [37, 57, 66], a popular deduplication technique, first di-

vides input data streams into fixed or variable-length chunks. Typical chunk sizes are 4 to 8 kB.

A cryptographic hash or chunk ID of each chunk is used to determine if that chunk has been

backed up before. Chunks with the same chunk ID are assumed identical. New chunks are

stored and references are updated for duplicate chunks. Chunk-based deduplication is very ef-

fective for backup workloads, which tend to be files that evolve slowly, mainly through small

changes, additions, and deletions [83].

Inline deduplication is deduplication where the data is deduplicated before it is writ-

ten to disk as opposed to post-process deduplication where backup data is first written to a

temporary staging area and then deduplicated offline. One advantage of inline deduplication

is that extra disk space is not required to hold and protect data yet to be backed up. Data Do-

main, Hewlett Packard, and Diligent Technologies are a few of the companies offering inline,

chunk-based deduplication products.

Unless some form of locality or similarity is exploited, inline, chunk-based dedupli-

cation, when done at a large scale faces what has been termed the disk bottleneck problem: to

facilitate fast chunk ID lookup, a single index containing the chunk IDs of all the backed up

chunks must be maintained. However, as the backed up data grows, the index overflows the

amount of RAM available and must be paged to disk. Without locality, the index cannot be

cached effectively, and it is not uncommon for nearly every index access to require a random

disk access. This disk bottleneck severely limits deduplication throughput.

Traditional disk-to-disk backup workloads consist of data streams, such as large direc-

tory trees coalesced into a large file, or data generated by backup agents to conform with legacy
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tape library protocols. There are large stretches of repetitive data among streams generated on a

daily or weekly basis. For example, files belonging to a user’s My Documents directory appear

in approximately the same order every day. This means that when files A, B, C, and, thus their

chunks, appear in that order in today’s backup stream, tomorrow when file A’s chunks appear,

chunks for files B and C follow with high probability.

Existing approaches exploit this ‘chunk locality’ to improve deduplication through-

put. Zhu et al. [87] store and prefetch groups of chunk IDs that are likely to be accessed together

with high probability. Lillibridge et al. [49] batch up chunks into large segments, on the order of

10 MB. The chunk IDs in each incoming segment are sampled and the segment is deduplicated

by comparing with the chunk IDs of only a few carefully selected backed up segments. These

are segments that share many chunk IDs with the incoming segment with high probability.

We now consider the case for backup systems designed to service fine-grained low-

locality backup workloads. Such a workload consists of files, instead of large data streams, that

arrive in random order from disparate sources. We cannot assume any locality between files that

arrive in a given window of time. Several scenarios generate such a workload: File backup and

restore requests made by Network-attached Storage (NAS) clients; Continuous Data Protection

(CDP), where files are backed up as soon as they have changed; and electronic mails that are

backed up as soon as they are received. In absence of locality, existing approaches perform

poorly: either their throughput [87] or their deduplication efficiency [49] deteriorates.

Our solution, Extreme Binning, exploits file similarity. Similar files share content and

hence are good candidates to deduplicate against each other. However, the key to our solution

is to be able to find similar files in a way that is scalable and effective. One cannot do a pairwise
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comparison of files using, for example, a unix ‘diff’ application. This is because such a solution

does not scale as the number of files grow. Hence, we borrow from the similarity-based search

solution proposed in Chapter 2. We use the concepts of ‘set similarity’ and Broder’s theorem.

For every incoming file we need to achieve two objectives: we must find which chunks of the

file are duplicates and we need to do this fast. This means that we do not have the bandwidth for

executing an exhaustive search to deduplicate every incoming file. To speed up the search, we

need to limit our search space. Hence, we do not compare the incoming file’s contents with all

the files in the store. Instead we only compare it with a well chosen subset of files—this subset

consists of only those files that we know are similar to the incoming file with high probability.

By limiting the search space, we speed up deduplication.

To reduce disk accesses, we split up the chunk index into two tiers. One tier is small

enough to reside in RAM and the second tier is kept on disk. Extreme Binning makes a single

disk access for chunk lookup per file, thus alleviating the disk bottleneck problem. In the

absence of locality, a disk access would have been required per chunk.

We also show how to scale out and parallelize file deduplication. In a distributed

setting, with multiple backup nodes – nodes that perform file based backup – every incoming

file is allocated, using a stateless routing algorithm, to a single backup node only. Backup

nodes are autonomous – each node manages its own index and data without sharing or knowing

the contents of other backup nodes. To our knowledge, no other approach can be scaled or

parallelized as elegantly and easily as Extreme Binning.

One disadvantage of Extreme Binning compared to approaches by Zhu et al. [87] and

Rhea et al. [69] is that it allows some duplicate chunks. In practice, however, as shown by our
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experiments, this loss of deduplication is minimal for representative workloads, and is more

than compensated for by the low RAM usage and scalability of our approach.

3.2 Chunk-based Deduplication

Chunking divides a data stream into fixed [66] or variable length chunks. Variable-

length chunking has been used to conserve bandwidth [57], to weed out near duplicates in

large repositories [37], for wide-area distributed file systems [5], and, to store and transfer large

directory trees efficiently and with high reliability [35].

Previous Chunk

Fixed Width Sliding Window

Chunk 
Boundary

Chunk 
Boundary

f mod D ≠ r f mod D = r

Figure 3.1: Sliding Window Technique

Figure 3.1 depicts the sliding window chunking algorithm. To chunk a file, starting

from the beginning, its contents as seen through a fixed-sized (overlapping) sliding window

are examined. At every position of the window, a fingerprint or signature of its contents, f , is

computed using hashing techniques such as Rabin fingerprints [67]. When the fingerprint, f ,

meets a certain criteria, such as f modD=r where D, the divisor, and r are predefined values;

that position of the window defines the boundary of the chunk. This process is repeated until

the complete file has been broken down into chunks. Next, a cryptographic hash or chunk ID of

the chunk is computed using techniques such as MD5 [70], or SHA [59, 58].
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After a file is chunked, the index containing the chunk IDs of backed up chunks is

queried to determine duplicate chunks. New chunks are written to disk and the index is updated

with their chunk IDs. A file recipe containing all the information required to reconstruct the

file is generated. The index also contains some metadata about each chunk, such as its size and

retrieval information.

How much deduplication is obtained depends on the inherent content overlaps in the

data, the granularity of chunks and the chunking method [65, 31]. In general, smaller chunks

yield better deduplication.

3.3 Our Approach: Extreme Binning

C11          
C71          

.

.

bin(c11)
bin(c71)

RAM

DiskPrimary Index

Bins

Figure 3.2: A two-tier chunk index with the primary index in RAM and bins on disk

Extreme Binning splits up the chunk index into two tiers. The top tier called the

primary chunk index or primary index resides in RAM. The primary index contains one chunk

ID entry per file. This chunk ID is the representative chunk ID of the file. The rest of the file’s

chunk IDs are kept on disk in the second tier which is a mini secondary index that we call bin.
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Each representative chunk ID in the primary index contains a pointer to its bin. This two-tier

index has been depicted in Figure 3.2. The two-tier design distinguishes Extreme Binning from

some of the other approaches [87, 69] which use a flat chunk index – a monolithic structure

containing the chunk IDs of all the backed up chunks.

3.3.1 Choice of the Representative Chunk ID

The success of Extreme Binning depends on the choice of the representative chunk ID

for every file. This choice is governed by Broder’s theorem [17] as explained in Section 2.3.2.

Broder’s theorem states that the probability that the two sets S1 and S2 have the

same minimum hash element is the same as their Jaccard similarity coefficient [44]. So, if S1

and S2 are highly similar then the minimum element of H(S1) and H(S2) is the same with

high probability. In other words, if two files are highly similar they share many chunks and

hence their minimum chunk ID is the same with high probability. Extreme Binning chooses the

minimum chunk ID of a file to be its representative chunk ID.

Our previous work [11] has shown that Broder’s theorem can be used to identify

similar files with high accuracy without using brute force methods. In this previous work, chunk

IDs extracted from each file within the given corpus were replicated over multiple partitions of

the search index. Each partition was expected to fit in RAM. Such a solution is not feasible in

the context of large scale backup systems that can be expected to hold exabytes of data, and are

the focus of this work.

Extreme Binning extends our previous work in that it applies those techniques to

build a scalable, parallel deduplication technique for such large scale backup systems. Our
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contributions in this work are: the technique of splitting the chunk index into two tiers between

the RAM and the disk to achieve excellent RAM economy, the partitioning of the second tier

into bins, and the method of selecting only one bin per file to amortize the cost of disk accesses

without deteriorating deduplication. Together, these contributions extend our previous work

considerably.

3.3.2 File Deduplication and Backup using Extreme Binning

Representative Chunk ID SHA-1 Hash Pointer to bin
045677a29c.... 09591b28746.....

Primary Index

Chunk ID Chunk Size
a07b41fcbd11d... 1570
89cf1bf1c8bfc... 2651

... ...

Bin

38a0acc909.... a20ae8a2eeb.....

... ...

Figure 3.3: Structure of the primary index and the bins

Figure 3.3 shows the structure of the primary index and one bin. There are three

fields in the primary index – the representative chunk ID, the whole file hash and a pointer to a

bin. Each bin contains two fields: the chunk ID and the chunk size. In addition, bins may also

contain other metadata, such as the address of the corresponding chunk on disk. File backup

proceeds as follows:
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When a file arrives to be backed up, it is chunked, its representative chunk ID is

determined and its whole file hash is computed. The whole file hash is a hash of the entire file’s

contents computed using techniques such as MD5 and SHA-1.

The primary index is queried to find out if the file’s representative chunk ID already

exists in it. If not, a new secondary index or bin is created. All unique chunk IDs of the file

along with their chunk sizes are added to this bin. All the chunks and the new bin are written to

disk. The representative chunk ID, the whole file hash and a pointer to this newly created bin,

now residing on disk, is added to the primary index.

If the file’s representative chunk ID is found in the primary index, its whole file hash

is compared with the whole file hash in the primary index for that representative chunk ID.

If the whole file hashes do not match, the bin pointer in the primary index is used to load the

corresponding bin from disk. Once the bin is in RAM, it is queried for the rest of the file’s chunk

IDs. If a chunk ID is not found, it is added to the bin and its corresponding chunk is written to

disk. Once this process has been completed for all the chunk IDs of the file, the updated bin is

written back to disk. The whole file hash in the primary index is not updated.

A whole file hash match means that this file is a duplicate file: all its chunks are

duplicates. There is no need to load the bin from disk. File deduplication is complete. By

keeping the whole file hash in the primary index, we avoid making a disk access for chunk

lookup for most duplicate files.

Finally, references are updated for duplicate chunks and a file recipe is generated and

written to disk. This completes the process of backing up a file.
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The cost of a disk access, made for chunk ID lookup, is amortized over all the chunks

of a file instead of there being a disk access per chunk. The primary index, since it contains

entries for representative chunk IDs only, is considerably smaller in size than a flat chunk index

and can reside in RAM. Hence, it exhibits superior query and update performance.

Our experiments show that Extreme Binning is extremely effective in deduplicating

files. To explain why Extreme Binning is effective, we need to understand the significance of

the binning technique. We know from Broder’s theorem that files with the same representative

chunk ID are highly similar to each other. By using the representative chunk ID of files to bin

the rest of their chunk IDs, Extreme Binning groups together files that are highly similar to

each other. Each bin contains chunk IDs of such a group of files. When a new file arrives to

be backed up, assuming its representative chunk ID exists in the primary index, the bin selected

for it contains chunk IDs of chunks of files that are highly similar to it. Therefore, duplicate

chunks are identified with high accuracy.

Only one bin is selected per file, so that if any of the file’s chunk IDs do not exist in

the selected bin but exist in other bins, they will be deemed as new chunks. Hence, duplicates

are allowed. However, Extreme Binning is able to deduplicate data using fewer resources, e.g.,

less RAM and fewer disk accesses, which translates to high throughput. Extreme Binning, thus,

represents a trade off between deduplication throughput and deduplication efficiency. However,

our results show that this loss of deduplication is a very small one.

We now discuss how Extreme Binning can be used to parallelize file backup to build

a scalable distributed system.

42



3.4 A Distributed File Backup System using Extreme Binning

Network

Backup Nodes

Backup Node

Bins File 
recipesData ChunksDisk

Primary IndexRAM
Pointers to bins

Incoming Files
distributed for chunking and deduplication

Figure 3.4: Architecture of a Distributed File Backup System build using Extreme Binning

To distribute and parallelize file backup using multiple backup nodes, the two-tier

chunk index must first be partitioned and each partition allocated to a backup node. To do this,

every entry in the primary index is examined to determine to which backup node it should go.

For example, if there are K backup nodes, then every representative chunk ID ci, in the primary

index, is allocated to backup node ci modK. Techniques such as RUSH [43] or LH∗ [50] can

also used for this distribution. These techniques are designed to distribute objects to maximize

scalability and reliability.

When a primary index entry moves, the bin attached to it also moves to the same

backup node. For every chunk ID in the bin there exists a corresponding data chunk. All the

data chunks attached to the bin also move to the same backup node. Each bin is independent.

The system has no knowledge of any common chunk IDs in different bins. This means that if a

chunk ID appears in two bins, there will be two copies of its corresponding data chunk. Hence,

moving a primary index entry to a new backup node, along with its bin and data chunks, does
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not create any dependencies between the backup nodes. Even if more backup nodes are added

in the future to scale out the backup system, the bins and their corresponding chunks can be

redistributed without generating any new dependencies. This makes scale out operations clean

and simple.

The architecture of a distributed file backup system built using Extreme Binning has

been shown in Figure 3.4. It consists of several backup nodes. Each backup node consists of a

compute core and RAM along with a dedicated attached disk. The RAM hosts a partition of the

primary index. The corresponding bins and the data chunks are stored on the attached disk as

shown in the figure.

When a file arrives to be backed up, it must first be chunked. This task can be dele-

gated to any one of the backup nodes, the choice of which, can be based on the system load at

that time. Alternatively, a set of master nodes can also be installed to do the chunking. The file

is thus chunked by any one of the backup nodes. Its representative chunk ID is extracted and is

used to route the chunked file to another backup node – the backup node where it will be dedu-

plicated and stored. The routing is done using the technique described above for partitioning

the primary index. If this file is a large file, instead of waiting for the entire file to be chunked,

only the first section of the file can be examined to select the representative chunk ID. Note that

a file can be chunked by one backup node and deduplicated by another.

When a backup node receives a file to be deduplicated, it uses the file’s representative

chunk ID to query the primary index residing in its RAM. The corresponding bin, either existing

or new, is loaded or created. The primary index and the bin are updated. The updated or new

bin, the new chunks, and the file recipe are written to the disks attached to the backup node.
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Because every file is deduplicated and stored by only one backup node, Extreme

Binning allows for maximum parallelization. Multiple files can be deduplicated at the same

time.

Though Extreme Binning allows a small number of duplicates, this number does not

depend on the number of backup nodes. This loss will be incurred even in a single node backup

system. Parallelization does not affect the choice of representative chunk IDs, the binning of

chunk IDs, and it does not change what bin is queried for a file. Hence, system scale out does

not affect deduplication.

The above distributed design has several advantages. First, the process of routing

a file to a backup node is stateless. Knowledge of the contents of any backup node is not

required to decide where to route a file. Second, there are no dependencies between backup

nodes. Every file – its chunks, index entries, recipe and all – resides entirely on one backup

node, instead of being fragmented across multiple nodes. This means that data management

tasks such as file restores, deletes, garbage collection, and data protection tasks such as regular

integrity checks do not have to chase dependencies spanning multiple nodes. They are clean

and simple – all managed autonomously. A file not being fragmented across backup nodes also

means better reliability. A fragmented file, whose chunks are stored across multiple backup

nodes, is more vulnerable to failures since it depends on the reliability of all those nodes for its

survival. Autonomy of every backup node, is thus, a highly desirable feature.
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3.5 Experimental Setup

Our data sets are composed of files from a series of backups of the desktop PCs of

a group of 20 engineers taken over a period of three months. These backups consist all the

files for full backups and only modified files for incremental backups. Altogether, there are

17.67 million files containing 162 full and 416 incremental backups in this 4.4 TB data set. We

call this data set HDup since it contains a high number of duplicates on account of all the full

backups. Deduplication of HDup yields a space reduction ratio of 15.6:1.

To simulate an incremental only backup workload, we chose from this data set the files

belonging to the first full backup of every user along with the files belonging to all incremental

backups. The first full backup represents what happens when users backup their PCs for the

first time. The rest of the workload represents backup requests for files that changed thereafter.

This data set is 965 GB in size and consists of 2.2 million files. We call this set LDup since it

contains few duplicates with a space reduction ratio of 3.33:1.

To evaluate Extreme Binning on a non-proprietary and impartial data set, we have

also tested it on widely available Linux distributions. This 26 GB data set consisted of 450

versions from version 1.2.1 to 2.5.75.

It has been shown that data deduplication is more effective when there is low variance

in chunk sizes [34]. Consequently, we used the Two Threshold Two Denominators (TTTD) [37]

to chunk files. TTTD has been shown to perform better than the basic sliding window chunking

algorithm in finding duplicate data and reducing the storage overheads of chunk IDs and their

metadata [34]. The average size of the chunks was 4 KB. The chunks were not compressed.

Any other chunking algorithm can also be used.
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We chose SHA-1 for its collision resistant properties. If SHA-1 is found to be unsuit-

able, another hashing technique can be used.

Our approach simply enables one to perform scalable efficient searches for duplicate

chunks using chunk IDs. Once it has been determined that another chunk with the same chunk

ID exists in the backup store, it is always possible to actually fetch the chunk and do a byte by

byte comparison instead of a compare by hash [41, 14] (chunk ID) approach, though, at the cost

of reduced deduplication throughput as reported by Rhea et al. [69].

Our hardware setup was: each backup node ran Red Hat Enterprise Linux AS release

4 (Nahant Update 5). HP MPI (Message-Passing Interface), which contains all the MPI-2 func-

tionality, was used for inter-process communication. Berkeley DB v.4.7.25 [61] was used for

the primary index and the bins.

3.6 Results

Extreme Binning was tested for its deduplication efficiency, load distribution, and

RAM usage when used to deduplicate the three data sets.

3.6.1 Deduplication Efficiency

Figure 3.5 shows how Extreme Binning did while finding duplicates in HDup. The

three curves show how much storage space was consumed when there was no deduplication, if

every duplicate chunk was identified (perfect deduplication), and when Extreme Binning was

used. A small number of duplicate chunks are allowed by Extreme Binning. With perfect

deduplication, the storage space utilization was 299.35 GB (space reduction ratio: 15.16:1),
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Figure 3.5: Deduplication for HDup
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whereas with Extreme Binning it was 331.69 GB (space reduction ratio: 13.68:1). Though

Extreme Binning used an extra 32.3 GB, this overhead is very small compared to the original

data size of 4.4 TB.
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Figure 3.6: Deduplication for LDup

Figure 3.6 shows Extreme Binning’s deduplication efficiency for LDup. Perfectly

deduplicated, LDup data set required 288.03 GB (space reduction ratio: 3.33:1) whereas Ex-

treme Binning consumed 315.09 GB (space reduction ratio: 3.04:1). From these graphs, it is

clear that Extreme Binning yields excellent deduplication and that the overhead of extra storage

space is small.

Figure 3.7 shows similar results for the Linux data set. The distributions were ordered

according to the version number before being deduplicated. Every point on the x-axis corre-
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sponds to one version; there are a total of 450 versions. Perfectly deduplicated data size was

1.44 GB (space reduction ratio: 18.14:1) while with Extreme Binning it was 1.99 GB (space

reduction ratio: 13.13:1). In this case too, Extreme Binning yields very good deduplication.

3.6.2 Load Distribution
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Figure 3.8: Size of backup data on each backup node for HDup when using 4 backup nodes

Figures 3.8 and 3.9 show how much data, both deduplicated and otherwise, is man-

aged by each backup store for HDup and LDup respectively. It is clear that no single node

gets overloaded. In fact, the deduplicated data is distributed fairly evenly. The same trend was

observed when 2 through 8 nodes were used. This means that the distribution of files to backup
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Figure 3.9: Size of backup data on each backup node for LDup when using 4 backup nodes
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nodes is not uneven. This property of Extreme Binning is vital towards ensuring smooth scale

out and preventing any node from becoming a bottleneck to the overall system performance.
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Figure 3.10: Size of backup data on each backup node for Linux when using 4 backup nodes

Figure 3.10 depicts the load distribution of Extreme Binning for Linux when 4 nodes

were used. Once again, the same trend was observed when 2 through 8 nodes were used.

3.6.3 Comparison with Distributed Hash Tables

A flat chunk index could be partitioned like a DHT; by using a consistent hashing

scheme to map every chunk ID to a partition. Every partition can then be hosted by a dedicated

compute node. To deduplicate a file, the same hashing scheme can be used to dictate which

partition should be queried to ascertain if the corresponding chunk is duplicate. Assume a file
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containing n chunks is to be deduplicated and that the flat chunk index has been partitioned

into P partitions such that n > P . In the worst case, all P partitions will have to queried to

deduplicate this file. Our experiments using the DHT technique have shown that for HDup,

with P =4, for 52% of the files more than 1 partition was queried and for 27% all 4 partitions

were queried. For Linux distributions too, for 50% of the files more than 1 partition was queried

and for 12% all 4 partitions were queried. Such a wide query fanout to deduplicate a file reduces

the degree of parallelization – fewer files can be deduplicated at the same time. Further, such

an infrastructure cannot be used to design a decentralized backup system where every backup

node autonomously manages the indices and the data. It is not clear which node in the DHT-

like scheme stores the deduplicated file given that the file’s duplicate chunks may spread across

more than one node. Autonomy of backup nodes is not possible in such a design. Further,

partitioning the flat chunk index does not reduce RAM requirements. The total RAM usage

remains the same whether the index is partitioned or not. Because Extreme Binning only keeps

a subset of all the chunk IDs in RAM, its RAM requirement is much lower than a flat chunk

index. This means that fewer backup nodes will be required by Extreme Binning than a DHT

like scheme to maintain throughput.

3.6.4 RAM Usage

Each primary index entry consisted of the representative chunk ID (20 bytes), the

whole file hash (20 bytes), and a pointer to its corresponding bin. The size of the pointer will

depend on the implementation. For simplicity we add 20 bytes for this pointer. Then, every

record in the primary index is 60 bytes long. With only one backup node, the RAM usage
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for Extreme Binning was 54.77 MB for HDup (4.4 TB). Even with the overheads of the data

structure, such as a hash table used to implement the index, the RAM footprint is small. For

the same data set a flat chunk index would require 4.63 GB. The ratio of RAM required by the

flat chunk index to that required by Extreme Binning is 86.56:1. For LDup this ratio is 83.70:1,

which proves that Extreme Binning provides excellent RAM economy.

Though the flat chunk index can easily fit in RAM for HDup and LDup, we must

consider what happens when the backed up data is much larger. Consider the case of a petabyte

of data. If the average file size is 100 kB and the average chunk size is 4 kB, there will be 10

billion files and 250 billion chunks. If the deduplication factor is 15.6, as in the case of HDup,

16 billion of those chunks will be unique, each having an entry in the flat chunk index. Given

that each entry takes up 60 bytes, the total RAM required to hold all of the flat chunk index will

be 895 GB, while for Extreme Binning this will be only 35.82 GB. For LDup, because of fewer

duplicates, the flat chunk index would need over 4 TB of RAM, while Extreme Binning would

require 167 GB. Even if the flat index is partitioned, like a DHT, the total RAM requirement will

not change, but, the number of nodes required to hold such a large index would be very high.

Extreme Binning would need fewer nodes. These numbers prove that by splitting the chunk

index into two tiers, Extreme Binning achieves excellent RAM economy while maintaining

throughput – one disk access for chunk lookup per file.

3.7 Related Work

Two primary approaches have been previously proposed for handling deduplication

at scale: sparse indexing [49] and that of Bloom filters with caching [87].
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Sparse indexing, designed for data streams, chunks the stream into multiple megabyte

segments, which are then lightly sampled (e.g., once per 256 KB) and the samples are used to

find a few segments that share many chunks. Obtaining quality deduplication here is crucially

dependent on chunk locality, where each chunk tends to appear together again with the same

chunks. Because our use cases have little or no file locality sparse indexing would produce

unacceptably poor levels of deduplication for them.

Zhu et al.’s approach [87] always produces perfect deduplication but relies heavily on

inherent data locality for its cache to be effective to improve throughput. This approach uses an

in-memory Bloom filter [15] and caches index fragments, where each fragment indexes a set of

chunks found together in the input. The lack of chunk locality renders the caching ineffectual

and each incoming new version of an existing chunk requires reading an index fragment from

disk.

Foundation [69] is a personal digital archival system that archives nightly snapshots of

user’s entire hard disk. By archiving snapshots or disk images, Foundation preserves all the de-

pendencies within user data. Our approach is distinct from Foundation in that Extreme Binning

is designed to service fine grained requests for individual files rather than nightly snapshots.

However, what sets Extreme Binning decisively apart from all these approaches is

that it is parallelizable. It is not clear how to parallelize any of these systems in order to obtain

better throughput and scalability.

DEDE [23] is a decentralized deduplication technique designed for SAN clustered

file systems that support a virtualization environment via a shared storage substrate. Each host

maintains a write-log that contains the hashes of the blocks it has written. Periodically, each host
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queries and updates a shared index for the hashes in its own write-log to identify and reclaim

duplicate blocks. Deduplication is done out-of-band so as to minimize its impact on file system

performance. Extreme Binning, on the other hand, is designed for in-line deduplication and,

in a distributed environment the backup nodes do not need to share any index between them.

Rather, each backup node deduplicates files independently, using its own primary index and

bins only, while still being able to achieve excellent deduplication.

Chunk-based storage systems detect duplicate data at granularities that range from

entire file, as in EMC’s Centera [33], down to individual fixed-size disk blocks, as in Venti [66]

and variable-size data chunks as in LBFS [57]. Variable-width chunking has also been used in

the commercial sector, for example, by Data Domain and Riverbed Technology. Deep Store [84]

is a large-scale archival storage system that uses three techniques to reduce storage demands:

content-addressable storage [33], delta compression [4, 29] and chunking [57].

Delta compression with byte-by-byte comparison, instead of hash based comparison

using chunking, has been used for the design of a similarity based deduplication system [6].

Here, the incoming data stream is divided into large, 16 MB blocks, and sampled. The samples

are used to identify other, possibly similar blocks, and a byte-by-byte comparison is conducted

to remove duplicates.

Distributed Hashing is a technique for implementing efficient and scalable indices.

Litwin et al. [50] proposed Scalable Distributed Data Structures based on linear hash tables for

parallel and distributed computing. Distributed Hash Tables (DHT) have also been widely used

in the area of peer-to-peer systems [25] and large-scale distributed storage systems [46, 30] to

distribute and locate content without having to perform exhaustive searches across every node
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in the system. Chord [76], Pastry [71] and Tapestry [86] are some of the DHT implementations

used in a distributed environment.

3.8 Summary

We have introduced a new method, Extreme Binning, for scalable and parallel dedu-

plication, which is especially suited for workloads consisting of individual files with low local-

ity. Existing approaches which require locality to ensure reasonable throughput perform poorly

with such a workload. Extreme Binning exploits file similarity instead of locality to make only

one disk access for chunk lookup per file instead of per chunk, thus alleviating the disk bot-

tleneck problem. It splits the chunk index into two tiers resulting in a low RAM footprint that

allows the system to maintain throughput for a larger data set than a flat index scheme. Partition-

ing the two tier chunk index and the data chunks is easy and clean. In a distributed setting, with

multiple backup nodes, there is no sharing of data or index between nodes. Files are allocated

to a single node for deduplication and storage using a stateless routing algorithm – meaning it is

not necessary to know the contents of the backup nodes while making this decision. Maximum

parallelization can be achieved due to the one file-one backup node distribution. Backup nodes

can be added to boost throughput and the redistribution of indices and chunks is a clean opera-

tion because there are no dependencies between the bins or between chunks attached to different

bins. The autonomy of backup nodes makes data management tasks such as garbage collection,

integrity checks, and data restore requests efficient. The loss of deduplication is small and is

easily compensated by the gains in RAM usage and scalability.
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Chapter 4

Unified Deduplication

4.1 Introduction

Unified Deduplication is a term we use to describe a deduplication engine that can

deduplicate across a variety of workloads. Figure 4.1 shows such a setup. It shows a dedu-

plication engine servicing a variety of clients. VTL clients send tape images, mail servers

send electronic mail messages, NAS boxes and backup agents installed on PCs send a mix-

ture of files/folders. Such a unified deduplication engine is useful because it simplifies man-

agement. Organizations do not need to install and administer a separate solution for each of

their backup/archival needs—whether it is VTL, NAS or electronic mail. Such a solution is

also useful because it can deduplicate across different workloads, yielding better storage space

savings. For example, consider an electronic mail attachment saved on the desktop of an em-

ployee. This attachment will occur both as a part of the exchange server’s workload as well

the weekly/nightly backups generated by a VTL client. A NAS box hosting an archival folder

may have this file as well. A unified deduplication solution can detect such duplicates across

59



Deduplication Engine

NAS box

Email Server

VTL clients

Backup agents installed 
on user stations 

Tape images

Files, folders
 CIFS/NFS

Files, folders 
CIFS/NFS

Email

Figure 4.1: Deduplication ratio when using prefix-hash and min-hash sampling
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workloads. This is not possible when a dedicated backup/archival deduplication solution has

been deployed for each workload. These advantages, of ease of manageability/administration

and storage space savings, make unified deduplication a desirable solution.

Implementing a unified deduplication solution is a challenging task. Each workload

is unique in its characteristics. Tape images are large files or byte streams on the order of several

hundred gigabytes. Individual files and electronic messages vary in size, but are expected to be

much smaller than a tape image. They also differ on the amount of locality within their content.

There are separate deduplication solutions for each, but so far no unified solution that works

well for all situations.

4.2 Workloads, Traditional and Non-traditional

The traditional backup workload consists of large byte streams containing high local-

ity. Tape images generated by virtual tape libraries, large directory nightly snapshots generated

using utilities such as ‘tar’ are examples of such a workload. State-of-the-art technologies such

as Sparse Indexing [49] and Locality Sensitive Caching [87] exploit the high locality in such

traditional workloads to alleviate the disk bottleneck for maintaining throughput.

Non-traditional backup workloads are made up of files of varying sizes with unreli-

able locality. Files arrive from disparate sources and there is no locality among objects arriving

within a given window of time. Disk-to-disk backup system are fast gaining popularity and

deduplication has been incorporated into file-systems [85, 42, 20]. Backup agents installed on

NAS boxes periodically send new and modified files and directories to be backed up. Elec-

tronic mail messages are sent to be backed up as soon as they arrive. These objects are of much
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smaller granularity than streams and lack locality. Extreme Binning [10] exploits file similarity

to deduplicate such non-traditional file-based backup workloads yielding excellent deduplica-

tion ratios.

Each solution exploits the salient features of its own workload to maximize dedupli-

cation quality and throughput. However, there is no unified solution that works well for all

situations. Sparse Indexing and Extreme Binning, both, use a sampling approach to reduce

RAM usage. Both aim to amortize disk accesses by deduplicating groups of chunks at a time.

However, neither can deduplicate the others’ workload while still maintaining their deduplica-

tion quality. Extreme Binning, which extracts only one sample per object, cannot preserve the

deduplication quality when presented with large byte streams. Similarly, Sparse Indexing does

poorly when deduplicating small objects.

While it is not possible for Extreme Binning to deduplicate traditional workloads

because it extracts only one sample per object, we have found Sparse Indexing to be more

adaptable. Hence, we extend Sparse Indexing to build a ‘unified deduplication’ solution. The

objective is to evaluate whether Sparse Indexing can be adapted to use as a unified deduplication

solution. How well does it deduplicate files? Can it deduplicate across workloads? We evaluate

its performance on the basis of its deduplication quality and RAM usage. We use a combination

of traditional and non-traditional workloads. We also experiment with two sampling methods:

min-hash and prefix-hash.
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4.3 Sampling Chunk Hashes

To sample the chunk hashes of any object is to pick, from the entire set of hashes,

certain hashes that obey predefined constraints. The prefix-hash method, used in Sparse Index-

ing at this time, picks only those hashes whose first n bits are zero. n defines the sampling

rate of 1/2n. Thus, on average, one out of 2n hashes are chosen per object. A 10 MB object,

for example, yields 2560 4K chunks. A sampling rate of 1/27 yields, on average, 20 samples

for this 10 MB object using the prefix-hash method. Since this is probabilistic, there may not

always be 20 samples per object—there may not be 20 hashes whose first n bits are zero.

Min-hash, or max-hash, sampling method is one in which all the chunk hashes of the

given object are first sorted and then the top m hashes, as defined by the sampling rate, are

chosen. Here, m=( number of hashes × sampling rate). For the 10 MB object and a sampling

rate of 1/27, min-hash sampling yields exactly 20 samples.

Apart from the actual sampling process, this is the key difference between prefix-hash

and min-hash sampling. Min-hash sampling always yields as many samples as defined by the

sampling rate, whereas prefix-hash may or may not. This difference is not very significant when

objects are large in size, on the order of megabytes. However, for small objects, on the order of

100 KB, there is a high probability that they will not contain the expected number of samples

when prefix-hash is used. There is another advantage to min-hash sampling. If one wants to

enforce a particular number of samples per object, irrespective of size, it can be done using

min-hash and not with prefix-hash. Min-hash, therefore, is more adaptable.
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4.4 Sparse Indexing

A concise description of this approach is given here. For a thorough study we refer to

the work of Lillibridge et al. [49]. Under the sparse indexing approach, segments are the unit of

storage and retrieval. A block diagram of the process can be found in Figure 4.2. A segment is a

sequence of chunks. Data streams are broken into segments in a two step process: first, the data

stream is broken into a sequence of variable-length chunks using a chunking algorithm, and,

second, the resulting chunk sequence is broken into a sequence of segments using a segmenting

algorithm. Segments are usually on the order of a few megabytes. Two segments are similar if

they share a number of chunks.

The Two-Threshold Two-Divisor (TTTD) chunking algorithm [34] is used to subdi-

vide the incoming data stream into chunks. TTTD produces variable-sized chunks with smaller

size variation than other chunking algorithms, leading to superior deduplication. To avoid the

segment boundary-shifting problem, the segmentation algorithm, variable-size segmentation,

uses the same trick used at the chunking level: the boundaries are based on landmarks in the

content, not distance. Variable-size segmentation operates at the level of chunks rather than

bytes and places segment boundaries only at existing chunk boundaries. Every Segment is rep-

resented in the store using its manifest: a manifest or segment recipe [80] is a data structure that

allows reconstructing a segment from its chunks. A segment’s manifest records its sequence of

chunks, giving for each chunk its hash, where it is stored on disk, and possibly its length. Every

stored segment has a manifest that is stored on disk.

Incoming segments are deduplicated against similar, already existing segments in the

store. To identify similar segments, the chunk hashes of the incoming segment are sampled,
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and an in-RAM index is used to determine which already stored segments contain how many

of those hashes. The in-memory index, called the sparse index, maps hooks to the manifests in

which they occur—it keeps pointers to the manifests on disk.

Looking up the hooks of an incoming segment S in the sparse index results in a pos-

sible set of manifests against which that segment can be deduplicated. Since loading manifests

from disk is costly, only a few well chosen manifests—the champions—are fetched from disk.

Champions one at a time, until the maximum allowable number of champions are found, or

there are no more candidate manifests. Each time the manifest with the highest non-zero score,

where a manifest gets one point for each hook it has in common with S that is not already

present in any previously chosen champion, is chosen. If there is a tie, the manifest most re-

cently stored is chosen. The choice of which manifests to choose as champions is done based

solely on the hooks in the sparse index; that is, it does not involve any disk accesses.

The hashes of the chunks in the incoming segment are then compared with the hashes

in the champion manifests to find duplicate chunks. Use of the SHA1 hash algorithm [59]

makes false positives extremely unlikely. Those chunks that are found not to be present in any

of the champions are stored on disk in chunk containers, and a new manifest is created for the

incoming segment. The new manifest, written to disk, contains the location of each incoming

chunk on disk.

Finally, the sparse index is updated with an entry for this manifest. New hooks are

added and existing hooks are updated with a pointer to this manifest. To conserve space, a

maximum limit is set for the number of manifests that can be pointed to by any one hook. If
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the maximum is reached, the oldest manifest is removed from the list before the newest one is

added.

There is no full chunk index in this approach, either in RAM or on disk. The only

index in RAM is the sparse index, which is much smaller than a full chunk index: for example,

if only one out of every 128 hashes is sampled, then the sparse index can be 128 times smaller

than a full chunk index. The cost of a handful random disk accesses per segment in order to load

in champion manifests, is amortized over the thousands of chunks in each segment, leading to

acceptable throughput. This is how the chunk-lookup disk bottleneck is avoided..

4.5 Experimental Setup

The first data set is called the Workgroup data set. It is composed of files from a series

of backups of the desktop PCs of a group of 20 engineers taken over a period of three months.

These backups consist of all the files for full backups and only modified files for incremental

backups. Altogether, there are 17.67 million files containing 157 full and 409 incremental

backups. The total size was 4.4 TB with the average file size being 25 kB.

The second data set is called the SE3D data set. It consists of semi-regular copies

of the work directories of 11 groups of animators taken during an animation showcase called

SE3D. There are a total of 448 versions of directories copied over a period of 10 months. The

animators used a commercial content creation application called R©Maya [7] to create digital

models that defined their 3D animated movie, including the shape and movement of characters,

backgrounds and objects, and associated textures, lighting, and camera definitions. Maya uses

over a dozen file formats including a variety of image formats (e.g., JPG and TIFF) and several
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proprietary formats; most of these are binary formats, although a few are ASCII (e.g., the MEL

scripting language). This data set was 203 GB in size with the average file size being 1.2 MB.

The objective of the experiments is to determine if Sparse Indexing can be used for

unified deduplication. To do this, we use Sparse Indexing to deduplicate high locality stream-

based workloads, low locality file-based workloads and combination workloads made up of a

mixture of these two. We will also determine whether one sampling method is better than the

other in terms of its adaptability and the deduplication ratio yielded when using it.

For each data set we generated three workloads:

4.5.1 Files

This workload consisted of a series of individual files within the user directories. Files

were not coalesced. For the Workgroup data set, for each user’s backup, its files were ordered

alphabetically based on their relative path and name. These ‘backup groups’ were then ordered

by the time the backup was taken. For the SE3D data set, for each directory version, its files

were also ordered alphabetically. These ordered lists of files were further ordered by the time the

directory versions were recorded. Such an ordered list of files constituted the Files workload for

Workgroup and SE3D. Each file was chunked separately. For every file, the first chunk began

at the beginning of the file, and the last chunk ended with the file. No chunk boundaries cross

over file boundaries. This workload represents a file-based workload generated by a NAS box

or electronic mails sent by mail servers. Files are deduplicated one file at a time and not in bulk.

Hence, to Sparse Indexing, every file was a segment. No locality is assumed between files that

arrive within a given window of time. Figure 4.3 shows such a workload.
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Figure 4.3: Files workload

4.5.2 Streamed Archives

This workload consists of a series of archived files—individual files and directory

trees concatenated using the ‘tar’ software. The archived files were not compressed. For the

Streamed Archives data set, one archive file was generated for each of the 20 engineer’s full

and incremental backups. The files within every archive were ordered alphabetically by their

path and name. An ordered list of these 566 archive files, ordered by the time that each backup

was taken, made up the Streamed Archives workload for Workgroup. For the SE3D data set,

one archive file was generated for each of the 448 directory versions. The files and directories

within the archive were ordered alphabetically. The list of archives was then ordered by the

time that the directory contents were recorded. For both the data sets, each archive file was

chunked separately: the first chunk began at the beginning of the archive and the last chunk

ended with the archive. No chunk boundary crossed over an archive boundary to include a

piece of another archive. Within an archive, a chunk could contain parts of two files coalesced

together or even parts of metadata along with content. This is because the chunking program

does not use any format specific parser to interpret the contents of the archive. This workload
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represents a traditional stream-based workload generated by a virtual tape library where weekly

full and daily incremental backups are taken by concatenating files using a ‘tar’ like software

and then streamed to the deduplication engine. Figure 4.4 shows a Streamed Archive workload.

Streamed Tar Files and metadata

Segment

Figure 4.4: Streamed Archives workload

4.5.3 Streamed Chunked Files

This workload consisted of the same series of files as in the Files workload except

that these files were concatenated together as follows: each file was first chunked, so the chunk

boundaries respected file boundaries. One additional chunk, containing this file’s metadata, was

created. The metadata consisted of the file path and name, size, access date and time, owner

and permissions. A chunked file, then, consisted of the chunks of its contents followed by its

metadata chunk. A stream of such chunked files formed the Streamed Chunked Files workload

as shown in Figure 4.5. This workload also represents a traditional stream-based workload, but

one that has been generated by a client that is aware of and obeys file boundaries when chunking

them. Such a client, installed across NAS boxes crawls through user directories or application

folders, that are either specially marked or selected based on some criteria, chunks files and

generates their metadata chunks. Periodically, it groups together such chunked files and then
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transmits a stream of chunks to the deduplication engine. We have chosen to experiment with

this workload to study the effect of two factors on deduplication: locality and file boundary

recognition. By streaming files one after the other, locality is preserved. By chunking one file

at a time and by demarcating the metadata chunks, file boundaries are respected. In a Streamed

Archive workload, locality is preserved because files are coalesced, but as the chunking software

is not privy to the positions of metadata and file boundaries, chunk boundaries may cross over

file and metadata boundaries.

Streamed 
Chunked

 Files

SegmentFile
Content Chunk

Metadata Chunk

Figure 4.5: Streamed Chunked Files workload

In addition to these, a few ‘combination’ workloads were also generated.

The combination workloads test whether Sparse Indexing can find duplicates across

workloads that contain duplicate data packaged in different forms. They contain a mixture of

streamed (both Streamed Archives and Streamed Chunked Files) and Files workloads. Such

workloads represent systems where files are packaged into streams, alike traditional backup

workloads, and some of the same files may also be transmitted on a file-by-file basis. For

example, consider a setup where files are packaged every weekend into a streamed archive for
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a full backup, and during the weekdays, only files that change are transmitted individually for

incremental backups.

4.6 Results

Various workloads were deduplicating using Sparse Indexing to study its efficacy.

The two sampling methods—min-hash and prefix-hash—were also compared.

4.6.1 Deduplicating Streamed Archives, Streamed Chunked Files, Files
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Figure 4.6: Deduplication for Workgroup using min-hash sampling for Files, Streamed

Archives, Streamed Files

Figures 4.6 and 4.7 depict the deduplication ratio for the Workgroup and SE3D data

sets when using Sparse Indexing. This is compared with the perfect deduplication ratio. Perfect
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deduplication is achieved when a full chunk index is maintained and all the duplicate chunks

are removed. Due to the use of sampling, Sparse Indexing can miss some duplicates. It has

been shown that this loss of duplicates is small [49] for traditional workloads.

Figure 4.6 shows that Sparse Indexing yields close to perfect deduplication ratios for

the Streamed Archives and Streamed Chunked Files workloads, but not for the Files workload.

The reason is that Streamed Archives and Streamed Chunked Files workloads contain high

locality and hence, even with sampling, duplicates can be identified with high precision. The

Files workload consists of small objects as compared to the 10 MB segments of the streamed

workloads with little or no locality between objects. Due to this, fewer duplicates are identified.

Hence, Sparse Indexing does poorly when deduplicating the Files workload. The figure also

shows that better deduplication is obtained for the Streamed Chunked Files workload—16% less

storage space was consumed over the Streamed Archives workload. This means that obeying file

boundaries and keeping metadata chunks separate from content chunks has definite advantages.

These observations hold for the SE3D data set as well as can be seen in Figure 4.7.

4.6.2 Deduplicating across workloads

Figures 4.8 and 4.9 shows Sparse Indexing’s performance when deduplicating com-

bination workloads for the Workgroup and SE3D data sets while using some variations of min-

hash sampling. Figure 4.8 shows data points for the Workgroup data set for two combina-

tion workloads. The ‘Streamed archives followed by files’ is made up of the entire Streamed

Archives workload followed by the Files workload. After the entire Streamed Archives work-

load, the same data is repeated all over again, except packaged as individual files. Hence, there
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is complete duplication of data as can be seen by the high perfect deduplication ratio of 24.07.

This is compared with the deduplication ratio we would have achieved if the two workloads

were deduplicated separately by dedicated systems. The storage space used by each of those

systems was added to calculate the combined deduplication ratio. The figure shows that dedi-

cated systems would yield a deduplication ratio of 7.09. However, if Sparse Indexing was used

to deduplicate the combined workload, it yields better deduplication—a ratio of 9.01, a 21%

gain in storage space savings over using dedicated systems.

By enforcing at least one hook per object, Sparse Indexing yields much better dedu-

plication — a ratio of 17.50. In this case, a hook was extracted for every object, irrespective of

its size. However, since more hooks were extracted, the number of hooks in the sparse index

increased two fold. This means a proportionate increase of RAM usage too. To curb RAM

usage, another modification was made. At least one hook was extracted per object. However,

the Sparse Index was updated with only those hooks that would have been extracted anyways,

even if this condition was not enforced. Thus, for objects that were too small to yield hooks, one

hook was extracted to look up the index and deduplicate them, but this hook was not added to

the Sparse Index. By doing this, we avoid having to invest RAM for objects that are too small.

This technique yielded a deduplication ratio of 10.73, a 16% increase in storage space savings

over the original scheme where hooks were extracted only if the object size was large enough

to warrant it. The advantage of this scheme is that it has the same RAM requirements to that of

the original scheme. Hence, this 16% increase in storage space savings comes at no additional

RAM cost. Of course, additional I/O’s will be required to deduplicate some small objects.
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The same trend was observed for the second Workgroup combination workload, that

was the ‘Streamed chunked files (full bckp), files (incremental bckp)’. Here, streamed chunked

files were used for the weekly full backup, and the incremental backup was file-based. This

combination represents a case where a streamed workload was generated for a full backup so

as to exploit the locality, but only modified files were sent one at a time during the week for

incremental backup.

Combination workloads were also generated for the SE3D data set. The first workload

‘Streamed archives followed by files’ was generated similar to that of the Workgroup data set.

The second workload ‘Streamed chunked files and files intermixed’ consisted of a mixture—

some directory versions were packaged as streamed chunked files and some were packaged as

individual files. The observations regarding the Sparse Indexing’s performance are the same as

for the Workgroup workload as shown in figure 4.9.

These results depicted in figures 4.8 and 4.9 show that Sparse Indexing when used as

a unified deduplication engine for combination workloads yields better storage space savings

compared to those obtained when using dedicated systems. By using min-hash sampling and

its modifications, it is possible to further improve these savings.

4.6.3 Comparison of sampling methods

Figures 4.10 and 4.11 compare the two sampling methods: prefix-hash and min-hash

for the Workgroup and SE3D data set respectively. We can see that for both data sets min-hash

yields better deduplication than prefix-hash. The reason being that with min-hash every object

always yields the predetermined number of hooks. This may not always be true for prefix-
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hash. Also, using min-hash yielded only 1 to 2% more hooks than with prefix-hash. Therefore,

the RAM overhead was low. It is also important to note that min-hash has other advantages

over prefix-hash. It is more adaptable, in that the variations of minimum hooks per object,

mentioned in the previous section can be implemented. This is not possible with prefix-hash.

The disadvantage may be that some min-hash hooks may go obsolete in the long run. Some

of the hooks may no longer be hooks as objects change over time and hence may not yield

any benefits with respect to deduplication. A housekeeping process that cleans up such aged

hooks may be implemented to phase out such hooks. However, this hook aging needs to be

investigated in more detail.

4.7 Summary

Traditional backup workloads and file-based backup workloads have very different

charateristics. The former is a long stream of bytes containing high locality; the latter consists

of files of varying sizes coming in from disparate sources with little or no locality between files

arriving within a given window of time. Sparse Indexing has been designed for a traditional

backup workload. It exploits the inherent locality within traditional workloads to deduplicate

very well while preserving throughput. Extreme Binning has been designed for file-based low-

locality workloads. However, neither can deduplicate the other’s workload while preserving

their performance.

Extreme Binning cannot deduplicate large streams very well. However, we found

that Sparse Indexing with min-hash sampling works well as a unified deduplication engine.

Min-hash sampling is more adaptable than prefix-hash. It is ideal for workloads that contain
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small objects because we can enforce a minimum hook per object condition. Real world data

sets were used for our experiments. We found that obeying file boundaries when chunking and

keeping metadata chunks separate from content yields better deduplication ratios.

Using these various techniques, we can build an adaptable unified deduplication en-

gine based on the Sparse Index design. Such an engine can deduplicate high locality stream-

based workloads very well, though it may not do as well in the case of low-locality small object

workloads. However, our experiments have shows that combination workloads, where data is

repeated but in different packaging, can be deduplicated by such a unified deduplication engine.

Since duplicates are found across workloads generated by varied clients, the deduplication is

better than that obtained when dedicated systems are used. Such a system is also easier to man-

age and administer than several dedicated systems deployed for each application/workload.
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Chapter 5

Selective Chunk Replication for High

Reliability

5.1 Introduction

Archival digital data continues to accumulate at an astounding pace. It will increase

ten-fold between 2006 and 2010 to over 27 exabytes in the commercial and government sec-

tors [55]. As digital data accrues at ever-increasing rates, organizations also face increasing

regulatory pressure to retain data for long periods of times and may be required to retrieve data

occasionally. In this context, maintaining the availability of archived data becomes part of the

due diligence that organizations are expected to exercise.

To reduce the costs incurred for storing such large volumes of archival data, this

data is compressed using various compression techniques. Several companies [27, 28, 33] al-

ready use various forms of compression for their archival storage solutions. Our project, Deep

Store [84], uses both intra-file and inter-file compression to reduce redundancies. One such
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inter-file compression technique used by Deep Store is chunk-based inter-file compression [57].

In this technique files are split into variable-length chunks and stored. If any redundant chunks

are found, they are stored as references rather than as duplicates. In many cases, this method

achieves excellent compression ratios [83].

While archival systems require good compression, they must also ensure that data

is preserved over long time periods. Compression techniques, while they save storage space,

also have the potential to reduce reliability. For example, when inter-file compression is used,

dependencies are introduced between files that share the same chunk. If such a shared chunk

is lost, a disproportionately large amount of data becomes inaccessible because of the loss of

all the files that share this chunk. As a result, some chunks are much more important than

others and need to be protected at a higher level to maintain good overall reliability. Here,

we consider the effects of inter-file chunk-based compression on the reliability of the archival

system. Our approach to improving reliability is to add redundancy strategically by selectively

replicating chunks. We have developed heuristics that weigh the importance of a chunk and

use this weight to prescribe the level of replication for the chunk. A part of the storage space

saved by compression is thus reinvested in better protecting the important chunks. As a result,

we achieve even better data reliability than mirrored (degree of mirroring = 2) Lempel-Ziv

(LZ) compressed [88] files, while still using about half of the storage space of mirrored LZ-

compressed files and with replication/mirroring as the means to introduce redundancies.

We can also improve reliability by using other redundancy introducing techniques

such as erasure correcting codes used in RAID levels 5 and 6, and by introducing different data

placement, failure detection and recovery disciplines. We do not consider these here mainly

83



because they offer intricate trade-offs between speed of recovery, ease of recovery, and compu-

tational and storage overhead.

To focus our efforts, our analysis assumes constant device failure rates, constant repair

rates, and independence of failures. We only investigated replication as a redundancy strategy

and used a simple concept of robustness, in which we measured the amount of data loss caused

by the loss of a small percentage of devices in addition to a standard failure model with all

usually made simplifying assumptions. We will investigate other redundancy strategies in the

future.

5.2 Deep Store: An Overview

Deep Store [84] is a large-scale archival storage system that stores volumes of im-

mutable data efficiently, with high reliability and accessibility. It incorporates methods for inter-

file and intra-file compression to utilize storage space very efficiently. Deep Store uses three

techniques to reduce storage demands: content-addressable storage [33], delta compression [4,

29] and sub-file chunk-based compression [57]. Other storage systems such as Venti [66], EMC

Centera [33], StorageTek’s Intellistore [77], Nexsan’s SATABeast [60], Avamar’s Axion [8],

and Permabit [64] also use content addressable storage. In content-addressable storage, a single

feature or hash, also called content address is computed over an entire file and this hash is used

to find identical files already in the archive. Two files with the same content address are likely

to be identical, but the system still must check for possible collisions. If the files are identical,

the system only stores a reference to the existing file rather than storing the file again. In delta

compression, the system first searches for a file similar to the file currently being stored, and
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then stores only the differences between the current file and the stored file. A pointer to the

stored file and metadata for reconstructing the current file are stored with the differences.

Our study focuses only on chunk-based compression. Chunk-based compression or

chunking subdivides a file deterministically into variable-sized blocks or chunks. This tech-

nique was first used in the Low-bandwidth Network File System [57]. Chunking is a two step

process. First, a file is divided into chunks in a deterministic fashion. Second, the content within

every chunk is used to compute its features. This process of chunking has been described in

section 3.2. You et al. [83] have evaluated chunking and delta-compression with respect to their

storage space efficiency and computational complexity. They conclude that delta-compression

and chunking outperform traditional stream compression methods with respect to storage space

efficiency. Chunking requires two hashing operations per byte in the input file: one fingerprint

calculation of the fixed size window and one chunk digest calculation. Once the file is broken

into chunks, only the unique chunks are actually stored. Deep Store identifies a chunk in the

same way as it identifies files: using a content address (a hash or digest of the content) to deter-

mine if a chunk already exists in the system. After this type of compression, a file consists of a

set of references to chunks and the metadata necessary to rebuild the file.

5.3 Effect of Compression on Reliability

Chunk-based interfile compression can be quite effective for certain types of data.

You, et al. [83] have characterized this data as files that evolve slowly mainly through small

changes, additions, and deletions. One of the data sets for our experiments consists of 9.8 GB

of several web sites: those of the University of California at Santa Cruz, Santa Clara University,
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Stanford University, University of California at Berkeley, BBC, NASDAQ, CERT, CNN, SANS,

SUN, CISCO, and IBM as they developed over time. We obtained them from the Internet

Archive’s Wayback machine [78]. This data is a representative sample of archival data, and

will greatly profit from chunk-based compression due to the incremental nature of the changes

that it has gone through. Chunk-based inter-file compression stores this data using a storage

space of 1.74 GB for chunks and 280 MB for metadata. On the other hand, when each file

was compressed using LZ-compression, the total storage space required was 5.6 GB. Clearly,

chunk-based compression can use significantly less storage space than LZ-compression.

To study the effect of chunk-based compression on reliability we conducted a pilot

experiment using this data. We compressed the files using chunk-based compression, and then

mirrored the chunks and stored them evenly across a set of 179 devices. The devices were then

randomly selected to fail independently, resulting in the loss of up to 7% of the total devices.

Figure 5.1 shows the availability as a function of device failures in two forms. The first form is

the percentage of raw chunks available. The second form is the percentage of original data that

could be reconstructed from these available chunks. The data robustness is seen to be signifi-

cantly lower than the chunk robustness. For example, when 6% of the devices fail, about 99.5%

of all chunks are still available, but only 96% of all the data is still available. This increased

data loss happens due to inter-file dependencies formed as common chunks are shared amongst

multiple files. These inter-file dependencies are shown schematically in Figure 5.2 where the

dependencies are measured by the number of file references to a chunk. If a common chunk is

no longer available, all the files that depend on the chunk are lost resulting in a disproportion-

ately large amount of data loss that we see in Figure 5.1. This increased data loss illustrates
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how good compression can be detrimental to reliability in the event of device failures, due to

inter-file dependencies formed by common chunks shared between multiple files.

Files

Chunks

1 2 1 2 1 1 5 1

Figure 5.2: Inter-file dependencies

Chunk-based compression achieved excellent compression ratios by removing redun-

dancies across files. However, this introduced inter-file dependencies that hampered reliability.

Since compression saves significant amount of storage space, some of this savings can be used

to regain reliability. A simple way of doing this is to use a higher degree of replication. How-

ever, we have used a more discerning approach to do this — one that decides the replication

level for a chunk depending on its popularity or importance so that we did not end up defeating

our original purpose of efficient storage space utilization.

5.4 Storage Strategy

The simple experiment in the previous section showed that the loss of a small num-

ber of chunks can result in a disproportionately large data loss. To protect against this, our

heuristics replicate certain important or popular chunks more aggressively than the others. To
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accomplish this, we developed some good measures for the importance of a chunk. This mea-

sure of importance, or weight, is used to determine the number of replicas for each chunk and

their distribution across devices.

5.4.1 Replicas Based on Chunk Weight

The effects of the loss of a chunk can be measured by the amount of data lost and by

the number of files that are inaccessible as a result of this loss. Correspondingly, we measure

the importance of a chunk either by the number of files that depend on it (the reference count),

or by the amount of data (the byte count) that depends on it. This approach defines the weight

of a chunk as either the reference count or as the byte count that depend on it, and determines

the number of replicas for each chunk using a logarithmic function of the chunk’s weight.

Central
Chunk

n Files

Peripheral
Chunks

Figure 5.3: Central and peripheral chunks

The following calculation justifies our intuition to use a log-based function to calcu-

late the number of replicas for a chunk based on its weight. Assume that we have n files that

89



all depend on one common chunk, called the central chunk. Each file also depends on another

peripheral chunk, as shown in Figure 5.3, that is particular to that file alone. Assume that we

keep k replicas of the single central chunk and l replicas of the remaining peripheral chunks.

We assume that all chunks have the same size. The total storage used is then proportional to

S = k + l · n

Assume that a single storage device fails with probability p. The central chunk is lost with

probability pk and the peripheral chunks with probability pl each. We lose all files if we lose

the central chunk; otherwise the expected number of lost files L is npl, so that

L = npk + (1− pk)npl ≈ npk + npl

Taking the derivative of the approximation for the loss, we obtain the following relation for an

optimal k:

n log(p)pk − log(p)pl = 0

Solving for k gives

k =
S

n + 1
+

n

n + 1
· log(n)
log(1/p)

The first addend converges to zero and the second is proportional to the log(n). If the central

chunk is much larger than the smaller chunks and n is fixed, then replicating the peripheral

chunks at a higher rate than the central chunk leads to lower expected loss.

Even if a chunk has only a single dependency, it must be protected. Therefore, our

heuristic keeps at least 2 copies of every chunk. We choose a function of type

k = f(w) = min(max(2, a + b log(w)), kmax)
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to calculate the number of replicas k depending on a chunk’s weight w. Here, a and b are

constants that will yield different storage space utilization and robustness levels; a and b need

to be determined experimentally depending on the data set. A base level of replication, a, is

added as an additional tuning parameter that is independent of w to offset the effect of b log(w).

As b increases, the number of replicas, based on the weight w of a chunk, increases. For some

chunks with a large weight, w, the number of replicas suggested by our logarithmic function

can be very large. As k increases the gain in reliability obtained due to each additional replica

diminishes. For this reason, the maximum number of copies of a chunk is capped at kmax.

5.4.2 Chunk Distribution

In addition to the replication level for various chunks, the placement of the replicas

also affects the reliability of our storage scheme. If a device is lost and almost all chunks on the

device belong to the same set of files that reside on the lost device, then the effect of this failure

has limited repercussions for the rest of the system. Conversely, if a file depends on chunks

distributed over a large set of devices, then it is more vulnerable since it is easier to lose this

file through the failure of any of those devices. Consequentially, we want to reduce inter-device

dependencies. Of course, we should store copies of the same chunk on different devices. Other

than that, we try to store chunks belonging to the same file on the same device.

Since our system stores archival data, we assume that files enter the system in batches.

As a file enters, the chunks are extracted and stored, filling up the disks as data arrives, on one

disk at a time. When the current disk is full, a new disk is used. If a chunk is new, it is stored

on the current disk, but not yet replicated in anticipation of another file in the same batch using
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the same chunk. This lazy replication scheme reduces inter-device dependencies. If a chunk is

already in the system, the system determines whether, after updating its weight, another replica

must be stored. If this is the case, the replica is stored on the current disk. Otherwise, the system

does nothing—there are sufficient replicas for the chunk already. After the batch of files has

finished processing, the weights of all the chunks are checked to see if any of them need to be

replicated. In such cases, replicas for the latest chunks are stored on the most recently used disk.

While our scheme does not completely eliminate inter-device dependencies, it greatly reduces

them.

5.5 Experimental Setup

Our data set consists of two sets of files obtained from the Internet Archive [78] and

the other from the Santa Cruz Sentinel [79]. As described in Section 5.3, the data set from the

Internet Archive contains web sites as they develop over time. The Santa Cruz Sentinel, our

local newspaper, maintains an archive, as do many newspapers. This set consists of HTML,

PDF, image (TIFF and JPG) and Microsoft Word files with quite a bit of repetitive information

such as templates for web pages. Table 5.1 gives statistics for both data sets, showing that both

data sets are well-suited for chunk-based compression. The use of chunk-based compression

results in substantial savings in storage space when compared to the storage space required

when using LZ-compression to compress each file individually.

We used our prototype program chc [84] to chunk files. The files that form the target

data set were input to chc, producing an output composed of chunks derived from the origi-

nal files. These chunks were further compressed individually using the zlib [32] compression
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Table 5.1: Statistics of the Experimental Data

Internet Santa Cruz

Archive Sentinel

Number of Files 196664 158900

Minimum File Size 1 B 2 B

Maximum File Size 21 MB 263.78 MB

Average File Size 52.50 kB 301.46 kB

Total File Space 9.84 GB 40.22 GB

LZ-compressed File Space 5.62 GB 31.14 GB

Unique Chunks 6240360 28806477

Minimum Chunk Size 9 B 9 B

Maximum Chunk Size 12.61 kB 12.61 kB

Average Chunk Size 299.90 B 243.11 B

Total Chunk Space 1.83 GB 7.5 GB
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library. chc captures a list of chunk identifiers for each file, as well as the identifier and size

for each chunk. Extended size blocks—megablocks [84]—were used to store both chunks and

LZ-compressed files to minimize the storage overhead from unused portions of blocks. Since

the metadata for file identifiers and size of every file needs to be stored for LZ-compressed files

as well, the storage overhead due to this metadata has been omitted for both chunk-based com-

pression and LZ-compressed files. However, the overhead of a 128-bit content address for every

chunk, whether original or replica, and for all chunk identifiers per file has been accounted for

when calculating the total storage space required when using chunk-based compression.

To evaluate the success of our heuristic-based replication strategy, we measured the

ratio of availability to the utilized storage space. Evaluation of the latter is easy, while the

former is difficult because availability depends on too many factors such as data placement,

speed of recovery and device failure rates. Further, availability calculations make simplifying

assumptions that are not always justified, such as independent failures of devices and constant

device failure rates. In addition, an archival storage system tries to protect data over a period

of time that is longer than the lifespan of the individual devices and, in such a system, common

causes of failures such as batch and vintage failures become important. Instead of trying to make

a number of reasonable assumptions and ending up with a large number of possible storage

systems, we decided to measure availability in the form of robustness, defined as the fraction of

data available given a certain percentage of unavailable storage devices, rather than in the usual

metric of mean time to data loss or percentage of data loss per year.

In this assessment, we assume a simple model based on replication—the only way we

introduce redundancy is by storing more replicas. Though we decided to use replication instead
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of more involved mechanisms to generate redundancy, there are still many potential parameters

to choose in a storage system, such as replica placement, failure detection and repair. Since our

target applications are so large that they store data on hundreds, if not thousands of disk drives,

we use artificially small devices to store the data so that our sample workloads are stored over

many devices. By not modeling repairs of failed devices, we are being conservative. This is

important because, in any real system, repairs would occur after a failure, so there would be a

much smaller chance of data loss.

To test the robustness of the system, we began by selecting a percentage of devices

independently and at random and failing them, starting with 1 device and continuing until 7% of

the total devices have failed. By showing availability at relatively low levels of device failure,

we simulated the effects of temporary device loss. The devices would be replaced later, but

the data on them is lost due to failure. The same is true for mirrored LZ-compressed files. We

used the chunk distribution strategy of Section 5.4 to store chunks extracted from both the data

sets onto a set of devices. The same distribution strategy was used with LZ-compressed files.

The mirrored LZ-compressed files of the Internet Archive were stored evenly on 188 devices

of 64 MB each while those of the Santa Cruz Sentinel were stored evenly on 132 devices of

512 MB each. However, every device was filled to capacity. Hence, measuring the percentage

of failed devices was equivalent to measuring the percentage of data lost. The capacity of every

device was increased for Santa Cruz Sentinel data to avoid fragmentation of a file across several

devices. We had to take care not to fragment files when using LZ-compression because this

would introduce the same type of multiple-device dependencies for files that arise when using

the chunking method, the effects of which we were measuring. Chunks for both data sets were
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stored on smaller devices than those used when storing the same data that was LZ-compressed

to make sure that we distributed chunks onto the same number of devices as those used by

the mirrored LZ-compressed files thereby facilitating a fair comparison between the two. We

ended up using an additional 5 disks on average when storing chunks. We could not ensure

using exactly 188/132 devices since it was not possible to know apriori the number of redundant

chunks that would be added with different redundancy schemes. Once we randomly chose the

failed devices, we then calculated how many files and how much data we could reconstruct using

the remaining devices. The performance of chunk-based compression was compared with that

of LZ-compressed files on the basis of the robustness and storage space consumed.

5.6 Results

We calculate the weight, w, of a chunk using two heuristics: the number of files and

the size of data depending on a chunk. The weight of a chunk in terms of the number of files,

F , depending on a chunk, is calculated as w = F . The weight of a chunk in terms of the size

of the dependent data is calculated as w = D/d, where D is the sum of the sizes of all the

files that depend on this chunk and d is the average size of a chunk. The number of replicas,

k, calculated using w in the log based function of Section 5.4.1, is rounded off to the nearest

integer. For each experiment we have measured the storage space used as a percentage of the

storage space used by the original uncompressed data.

The first set of experiments demonstrates the use of the two heuristics. We wanted to

study how the robustness is affected by varying the base level of replication, a. By increasing

the base replication level, the number of replicas for all the chunks increases, resulting in better
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robustness. The results of these experiments, conducted using Internet Archive data and with

kmax = 4, are shown in Figures 5.4 and 5.5.

In Figure 5.4 we show robustness using the number of files depending on a chunk

as a heuristic, i. e. w = F . The inset shows the same graph with an expanded Y-axis to show

the small differences. Hence, we measured availability in the number of files available, not

amount of data available. Here, with b = 1, we vary a and see that the robustness increases

with increasing values of a. The system is not very robust when a = 1 because when using

a = 1, 90% of the chunks were replicated just once. We showed in Section 5.3 that when all

the chunks are uniformly replicated just once, the robustness suffers. We see the same effects

when a = 2, where around 80% of the total chunks were replicated just once. At a = 3, our

system is more robust than mirrored LZ-compressed files and uses only 52.75% of the storage

space required by mirrored LZ-compressed files.

In Figure 5.5, we show a similar effect of a on the robustness, but, using dependent

data as a heuristic, i. e., w = D/d, with b = 0.4. Again, we see that by increasing a the system’s

robustness improves. At a = 0.5, our system is more robust than mirrored LZ-compressed files

and uses only 61.20% of the storage space used by mirrored LZ-compressed files. Further

increase in a increases the robustness even more, albeit at the expense of additional storage

space.

The results of the above experiments show that the robustness of our system exhibits

the same trends when we use either heuristic, w = F or w = D/d. The rest of the results

presented here use dependent data as the heuristic, i. e., w = D/d; however, the same trends

are found with the number of references being used as a heuristic.
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Figure 5.5: Effect of a on robustness using heuristic w = D/d with b = 0.4, kmax = 4
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Figure 5.6: Effect of limiting k on robustness using heuristic w = D/d, b = 0.55, a = 0
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If we do not restrict the number of replicas of a chunk, k, to a predefined maximum,

kmax, some chunks end up having a very large number of replicas, especially for higher values

of b. However, as the number of replicas increases, the gain in robustness that every replica

rewards us with diminishes in value. To study the effect of varying kmax, we measured the

robustness of the Internet Archive data with b = 0.55 and a = 0, as shown in Figure 5.6 for

kmax = 4 and kmax = 5 compared with that obtained with no limit on k. It is clear that limiting

the number of replicas with kmax does not result in a noticeable loss in robustness, but does

result in significant savings in storage space.

In our next experiment, we studied the effects of varying b, which will improve ro-

bustness by increasing the number of replicas for the more important (higher weight) chunks.

This comparison is shown in Figure 5.7 using Internet Archive data. As b increases, for a given

w we begin to get higher values for k, resulting in an increase in the storage space required and

the robustness of the system as can be seen in Figure 5.7. At b = 0.55, our system is more

robust than mirrored LZ-compressed files, but uses only 61.98% of the storage space required

by LZ-compressed files.

Figure 5.8 depicts the robustness of the second data set, from the Santa Cruz Sentinel,

when using different values for b. Here, too, our approach is more robust than when using

mirrored LZ-compressed files. With b = 1, we use only 48.41% of storage space of the base

LZ-compression approach.

As we increase the redundancies the storage space required by metadata also in-

creases. For the Internet Archive data the storage space used by the metadata constituted 5%
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Figure 5.7: Effect of b on robustness using heuristic w = D/d with a = 0, kmax = 4

102



of the total storage space. For the Santa Cruz Sentinel the metadata required 5.6% of the total

storage space.

We have used both, the number of files and the amount of the dependent data as

heuristics for determining the weight of a chunk. The choice of heuristic depends on the cor-

pus. If the sizes of files in a corpus are indicative of their importance, then the dependent data

heuristic should be chosen. However, if the importance of a file in a corpus is independent of

its size, or all the files in the corpus are equally important, then the number of files should be

chosen as a heuristic. The same metric used in the heuristic must then be used for measuring the

robustness of the system; i. e., when using the number of files in the heuristic we use the number

of available files as the measure of robustness, whereas when using dependent data as heuristic

we use the amount of available data. In other words, if all the files are equally important, then

one should measure the system robustness in the number or percentage of files available. We

have investigated the effects of the parameters a, b and kmax on the robustness and the storage

costs of an archival system using chunk-based compression. By choosing an appropriate com-

bination of these parameters we can achieve both a higher robustness and lower storage space

utilization compared to traditional LZ-compression techniques.

5.7 Related Work

Several systems that exploit data redundancy at different levels of granularity have

been developed in order to improve storage space efficiency. One class of systems detects

redundant chunks of data at granularities that range from entire file, as in EMC’s Centera [33],
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Figure 5.8: Effect of b on robustness using heuristic w = D/d with a = 0, kmax = 5, Santa
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down to individual fixed-size disk blocks, as in Venti [66] and variable-size data chunks as in

LBFS [57].

RAID [21] is a device driven method for introducing redundancy and thus ensuring

the reliability for storage systems. OceanStore [46] aims to provide continuous access to per-

sistent data on a global scale and uses automatic replication strategies to boost reliability of the

system in the face of disasters. FARSITE [3] is a distributed file system that achieves reliability

through replication of file system metadata, such as directories, and file data. FARSITE chooses

replication instead of erasure coding schemes to avoid the additional overhead of latter when

reconstructing a piece of information. Other file systems such as PASIS [39] and Glacier [40]

also make use of aggressive replication to guard against data loss. The LOCKSS project [53]

uses a peer-to-peer audit and repair protocol to preserve the integrity and long-term access to

collections of documents. Baker et al. [9] suggest that long term reliability additionally requires

auditing the integrity of data above the level of the storage devices. The surplus storage space

we save by using interfile compression can be used to implement proactive policies for ensur-

ing reliability [82], verifying the data integrity [75], and developing recovery strategies [81] for

large scale storage systems.

5.8 Summary

The chunk-based inter-file compression yields very good compression ratios by re-

moving inter-file redundancies. However, these reduced redundancies can be detrimental to

the robustness of the data. We have presented a simple strategy to increase the robustness of

data with chunk-based compression without compromising the storage space savings obtained
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by the compression. Our strategy allows us to control the balance between storage space sav-

ings and reliability by a choice of heuristics and parameter variation. This strategy gives both

a higher robustness and significant storage space savings compared with traditional LZ-based

compression.

We have shown that choosing the right number of replicas for each data chunk can

achieve a much higher robustness while using about half of the storage space required by mir-

rored LZ-compression. Furthermore, by controlling the parameters in our replication strategy,

we can achieve an even higher robustness (close to 100%) for a small percentage of device

failures. This higher robustness together with the savings in storage space is useful for future

inclusion of repair models for chunk-based archival systems that use such inter-file compres-

sion. By adjusting the number of replicas of individual data chunks based on our heuristics,

Deep Store and other long-term archives can reduce storage space requirements and thus costs

while simultaneously increasing robustness, making the long-term storage of data both more

affordable and more reliable.
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Chapter 6

Conclusions and Future Directions

This dissertation concludes with a summary of our contributions along with their

conclusions, and a discussion of possible future research in the area of scalable chunk-based

deduplication.

6.1 Similarity-based Searches and Document Routing Algorithm

Finding similar documents within repositories using brute force methods, such as,

pair-wise comparison is not a scalable solution. As repositories grow, the number of such

comparisons grow quadratically making such a solution inefficient. To find highly similar doc-

uments quickly, each document is first processed to extract its set of features. The features

are such that if two documents share even a single feature, then they share large stretches of

overlapping content. Now, similar documents tend to share more features than dissimilar doc-

uments. Using the feature set of every document, we now use the measure of set similarity to

find other similar documents efficiently.
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Broder’s theorem states that the probability that two documents have the same mini-

mum hash is the same as their similarity measure. This means that if two documents are very

similar, their minimum feature is the same with very high probability. Using this intuition, we

developed a similarity-based search algorithm that uses only the top few feature hashes of a doc-

ument to quickly find other highly similar documents in the repository. Feature hashes are held

in an index for fast query. The feature index maintains a mapping between every feature and the

list of files that this feature occurs in. To find similar documents to an incoming document only

the top few feature hashes of the incoming document are used to query the index. The result is

a set of documents in the repository that are highly similar to the incoming document.

Such an index can be partitioned to support the scale out of the repository. In this

case, which partitions to query for any given document is dictated by the document’s features

themselves. Every document is routed based solely on its contents to only a small fraction of the

total partitions. Those chosen partitions are queried using only the top few feature hashes to find

documents that are highly similar to the incoming one. This can be done while still preserving

the precision of the results—highly similar documents are found, less similar documents may

or may not depending on their degree of similarity. The routing factor is a tunable parameter

of the document routing algorithm. By varying it we can control how many partitions should

be queried per document, and how many features should be used. Increasing the routing factor

results in a larger result set—more similar documents, whereas a small routing factor may result

in finding only the highly similar ones. In practise, we find that even with a scale out as large

as 128 index partitions, only 3% of the partitions can be queried while still producing high
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quality results. These results prove that this similarity-based document routing search solution

is a scalable one.

Similarity-based searches in large scale repositories is only one of the applications for

our document routing algorithm. Besides archival and backup systems our document routing

algorithm can be used to distribute and locate content in peer-to-peer cooperative storage and

backup systems [25, 30, 48] and distributed storage systems [3, 46]. Such systems can save

storage space by routing documents to nodes that are expected to store similar content. The

recipe for a document [80] consisting of the feature hashes can be used to locate it without

having to consult a large number of indices.

6.2 Extreme Binning

Traditional workloads are large byte streams that contain a lot of locality. State-of-

the-art techniques, such as, Sparse Indexing and Locality Sensitive Caching exploit this locality

while deduplicating such workloads to alleviate the disk bottleneck. However, in the absence

of locality neither approach can maintain its performance. File-based workloads are workloads

where files are sent from disparate sources. No locality can be assumed between files arriving

within a given window of time. For such workloads, we designed Extreme Binning. Extreme

Binning relies on file similarity instead of locality. Deduplication requires only one disk access

per file thus alleviating the disk bottleneck problem. Extreme Binning economizes RAM usage

because it requires that only one entry per file be made in the RAM index.

Extreme Binning splits up the chunk index into two tiers. The top-tier sits in RAM

as is called the primary index. The second tier is made up of many small indices called bins.
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All the bins reside on disk. Every entry in the primary index points to one bin on disk. Bins are

not shared between any primary index entries. After a file has been chunked, a list of the file’s

chunk IDs is generated. The minimum chunk ID is chosen as the file’s representative chunk

ID. This representative chunk ID is used to query the primary index and the corresponding bin

is loaded from disk. The bin is queried for the rest of the file’s chunk IDs. If no entry for the

file’s representative chunk ID is found in the primary index, a new entry along with a new bin

is created.

A single entry is made in the primary index per file resulting in a low RAM footprint

and only one disk access is required per file. Extreme Binning scales well without sacrificing

deduplication quality. It scales out by allowing parallel file deduplication. Backup nodes can

be added as when a scale out is required. First, the primary index is split up and distributed

amongst the backup nodes. Next, the bins are distributed in tandem with their corresponding

primary index entries. Due to bin independence, partitioning the two tier chunk index is an easy

and clean operation. Since the data chunks are also not shared between bins, re-distributing the

data is straightforward as well. No dependencies need to be resolved when moving indices or

data.

In a distributed setting, with multiple backup nodes files are allocated to a single node

for deduplication and storage using a stateless routing algorithm – meaning it is not necessary

to know the contents of the backup nodes while making this decision. Maximum parallelization

can be achieved due to the one file-one backup node distribution. Experimental results show

that data gets distributed evenly among the various backup nodes. This shows that no single

node will get overloaded. Even load distribution is important in distributed systems because
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the performance of the system is dictated by the slowest node. The autonomy of backup nodes

makes data management tasks such as garbage collection, integrity checks, and data restore

requests efficient. The loss of deduplication is small and is easily compensated by the gains

in RAM usage and scalability. Thus, Extreme Binning is an efficient, scalable solution for

file-based backups.

Further analysis regarding the behavior and design of bins, and storage strategies for

data chunks needs to be done. The behavior of bins, the relationship between the number of

bins and the degree of duplication will help anticipate and design a robust system. For instance,

we would like to know how bins grow, whether any bins get so big that fetching them into RAM

would require more than one disk access and what fraction of the total number of bins is made

up of such unwieldly bins? If there indeed exist such bins, how do we handle them? Should

large bins be partitioned into smaller ones and if so, what is the best way to do it? Strategies for

data placement are influenced by the fact that just as there is no sharing of chunk IDs between

bins, there is no sharing of data chunks represented by different bins either. Hence, all the

chunks belonging to a bin can be placed contiguously or in physical proximity of each other to

speed up restore activities.

6.3 Unified Deduplication using Sparse Indexing with Min-hash

Sampling

Traditional and non-traditional backup workloads, each can be deduplicated effi-

ciently using technique designed specifically to exploit their salient features. Sparse Indexing
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and Locality Sensitive Caching exploit locality to deduplicate traditional workloads. Extreme

Binning uses file similarity to deduplicate non-traditional, file-based workloads. However, nei-

ther can deduplicate the other’s workload without loss in performance.

Dedicated deduplication solutions, specifically designed for a given workload, re-

quire that separate systems be deployed to service each. For example, a Sparse Indexing box

for nightly backups, an Extreme Binning solution for NAS-based clients, another solution for

electronic mail servers. This is clearly not ideal. System administration could be much simpler

if one system were able to handle all the workloads. Further, any duplicates present across

different workloads could then be identified resulting in better storage space savings. Such a

unified deduplication solution would adapt to workloads arriving from different sources, such

as, VTL agents, electronic mail servers, NAS based shared file servers.

We tested Sparse Indexing and Extreme Binning for this purpose. Extreme Binning

was not able to deduplicate large byte streams well. However, we found that Sparse Index-

ing, along with min-hash sampling, could be designed to adapt to a variety of workloads. We

evaluated its performance on the basis of the deduplication quality and RAM usage.

Sparse Indexing chunks objects and samples the objects’ chunk hashes to deduplicate

them. These samples are called hooks. The sampling rate and object size dictate how many

hooks are extracted per object. For larger objects, more hooks are extracted and vice versa.

Though Sparse Indexing originally uses prefix-hash sampling, we found min-hash sampling

to be more suitable. Min-hash sampling gaurantees the number of hooks expected given the

sampling rate and object size. Further, we can enforce a minimum hook condition for objects

that are too small to yield hooks.

112



We used real life data for experiments and generated a variety of workloads using it.

We tested streamed archives, streamed files and individual file-based workloads. In addition,

we also generated combination workloads consisting of a mixture of different workloads. We

found that Sparse Indexing works well as a unified deduplication engine. Min-hash sampling

is ideal for workloads which contain small objects as well as combination workloads because

with min-hash sampling we can enforce a minimum hook condition which helps deduplicate

even small objects.

Further, min-hash sampling yields slightly better deduplication than prefix-hash and

though it uses slightly more RAM than prefix-hash, this overhead is close to 1% and, hence,

not significant. When file boundaries are obeyed while chunking and metadata chunks are

demarkated from content chunks, it gives us better deduplication. When one hook per object

is enforced, it improves deduplication. However, the size of the sparse index almost doubles,

meaning, RAM usage increases. If we use the enforced hook to only query the sparse index

but do not add it to the sparse index, it is possible to improve deduplication without investing

additional RAM.

These findings prove that using the above techniques, we can build an adaptable uni-

fied deduplication engine based on the Sparse Index design. Such a system is also easier to

manage and administer than several dedicated systems deployed for each application/workload.

Our experiments have shown that the unified deduplication solution also conserves more storage

space than dedicated systems.

We have evaluated Sparse Indexing as a unified deduplication solution by measuring

its RAM usage and deduplication quality only. Further evaluation of how its throughput would
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be affected as it adapts to various workloads is required. The deduplication throughput for

small objects is not expected to be as good as that obtained for large byte streams. The reason

being that when deduplicating in bulk (10 MB objects at a time), the cost of every disk access

gets amortized over larger data than it would when deduplicating, say, a 250 kB file. Further,

placement strategies for small objects vs large ones must be studied. For example, should small

objects and large objects be placed separately from one another even if they share content? If

small objects arrive as a part of a weekly incremental backup, can their new chunks be placed

with the chunks that arrived as a part of the most recent full backup for lesser fragmentation?

6.4 Introducing Strategic Redundancies to Improve Robustness

Chunk-based deduplication is a technique used widely in archival and backup sys-

tems systems. By removing duplicates or redundancies across objects it reduces storage space

requirements. Some data, specifically backup data, contain a high number of duplicates. The

storage space savings, sometimes up to 10 ×, clearly justify the resources invested into chunk-

based deduplication.

However, there is an undesirable side-effect. Chunk-based deduplication introduces

inter-file or inter-object dependencies. Duplicate chunks are shared across multiple objects.

The loss of a shared chunk means the loss of all those objects since it will no longer be possible

to reconstruct those objects in their entirety. The higher the degree of sharing, the greater the

impact of such a loss. The loss of a chunk that is shared across many objects results in a large

disproportionate loss of data. This means that deduplication, though desirable because of the

storage space savings, can potentially reduce the robustness of the backup or archival system.
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We have presented a simple strategy to increase the robustness of such data. We

re-introduce strategic redundancies—we replicate certain important chunks so as to improve

robustness. The degree of replication depends on the popularity of the chunk. Popularity is

measured in two ways: the size of the data that depends on a chunk, and, the number of objects

that share it. The size is the cumulative size of all the objects that share that chunk. Chunks that

are highly popular are replicated more aggressively than chunks that aren’t. For unique chunks,

for example, only two copies are maintained.

Our goal was to control the balance between storage space savings and robustness.

By re-introducing redundancies, we want to re-invest the storage space that we had saved via

deduplication. We have used two real-world data sets for our experiments. One data set, the

linux data set, represents the kind of workload you would expect in a backup system. The

second data set was obtained from our local newspaper’s archive. For both data sets our results

show that our strategy gives a higher robustness and significant storage space savings compared

with traditional LZ-based compression.

Our results show that our strategic replication approach can achieve a much higher

robustness while using about half of the storage space required by mirrored LZ-compression.

We can achieve close to 100% robustness for a small percentage of device failures. This higher

robustness together with the savings in storage space is useful for future inclusion of repair

models for backup and archival systems that use chunk-based deduplication. Our performance

can only improve when we use other redundancy strategies such as RAID and erasure codes.

We conclude that by adjusting the number of replicas of individual data chunks based

on our heuristics, backup systems and other long-term archives can reduce storage space re-
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quirements while simultaneously increasing robustness, making the long-term storage of data

both more affordable and more reliable.

6.5 Future Directions

To maximize the throughput of the deduplication process it is necessary to write new

chunks to disk as fast as possible. New chunks are written contiguously while only references

are updated for duplicate chunks. This causes fragmentation—all the chunks of an object are

not placed contiguously on disk. Due to this, restoring an object may require a non-trivial

number of random seeks. In the worst case, one disk seek per chunk, along with any additional

seeks required for accessing the index/metadata to find the location of every chunk. This latency

may be acceptable when restoring small objects/files or for archival data where the performance

requirements are not very stringent. However, when the retrieval request is, for example, for a

previous tape image which is typically hundreds of gigabytes in size, these disk seeks slow down

the restore operation considerably. If this restore is required for crash recovery purposes such a

latency is unacceptable. The degree of fragmentation depends on the fraction of duplicates in

the data. Higher the number of duplicates, fewer the number of new chunks, and hence greater

the fragmentation. This means that the most recent tape image will be more fragmented than

the one backed up, say, a month ago. This also means that fragmentation gets worse with time.

If most restore requests are for the more recently backed up tape images, then fragmentation

will become a cause for concern. Most current products try to defragment data as a part of

their housekeeping tasks, done when the system is not deduplicating data. However, the list

of housekeeping tasks includes garbage collection, integrity checks, and in some cases, further
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duplicate elimination as well. All these need to be done within a quiescent window of time,

when the system is not deduplicating data. As the list of housekeeping tasks gets longer, it is

crucial that every job be as efficient as possible. Defragmentation, however, is a very resource

intensive operation. Hence, if it does not finish in time it may be throttled so as not to affect the

performance of the primary deduplication jobs. Therefore, defragmentation as a post-process

task scheduled after data deduplication will not be effective.

To solve this problem, we would like to co-locate an object’s chunks at deduplication

time, as opposed to a post-deduplication/housekeeping operation. To do this, some of its chunks,

even if they are duplicate, will be re-written to prevent the object from becoming fragmented.

For example, if more than n disk seeks are required to restore an object of size b bytes, then the

object is deemed to be fragmented. One advantage of our approach is that since defragmentation

is done during the deduplication itself, a separate defragmentation task will not need to be

scheduled along with regular housekeeping tasks. A future direction is to to analyze this trade-

off between storage space consumption and restore performance to measure the goodness of

our approach.
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