
Providing Quality of Service Support in Object-Based File System

Joel C. Wu Scott A. Brandt

Department of Computer Science
University of California, Santa Cruz

{jwu,sbrandt}@cs.ucsc.edu

Abstract

Bourbon is a quality of service framework designed to
work with the Ceph object-based storage system. Ceph
is a highly scalable distributed file system that can scale
up to tens of thousands of object-based storage devices
(OSDs). The Bourbon framework enables Ceph to become
QoS-aware by providing the capability to isolate perfor-
mance between different classes of workloads. The Bour-
bon framework is enabled by Q-EBOFS, a QoS-aware en-
hancement of the EBOFS object-based file system. Q-
EBOFS allows individual OSDs to become QoS-aware,
and by leveraging on the random element of the CRUSH
data distribution algorithm employed by Ceph, it is pos-
sible for a collection of independent QoS-aware OSDs to
provide class-based performance isolation at the global
level. This preserves the highly scalable nature of Ceph
by avoiding the introduction of any centralized components
or the need to collect and propagate global state informa-
tion. This paper presents the Bourbon framework by first
describing Q-EBOFS, and then examines how a collection
of OSDs running Q-EBOFS can work together to provide
global-level QoS.

1. Introduction

Storage systems are becoming larger with the ever in-
creasing demand for storage capacity. Storage systems
must also handle different types of data objects, many of
which have timing constraints [4]. In addition, different
accesses to a storage system can have different relative im-
portance. Large storage systems are likely to serve differ-
ent groups of users and different workloads that have dif-
ferent characteristics and priorities. Without performance
management, they compete with each other for bandwidth
resource on a first-come first-serve basis, where less impor-
tant bulk traffics may starve more important traffics. The
ability to manage bandwidth as a resource can be benefi-

cial in many situations as it enhances the usability of the
storage system.

Ceph [24] is a peta-scale object-based storage system
designed to provide high scalability and reliability. This
paper examines how quality of service (QoS) support can
be added to Ceph, giving it the capability to partition
performance amongst different classes of users or work-
loads (class-based performance partitioning/isolation). The
unique architecture of Ceph presents challenges to QoS
provisioning unlike that of traditional distributed stor-
age systems. Namely, a file in Ceph is broken up into
objects, hashed into placement groups (PG), and then
pseudo-randomly distributed to object-based storage de-
vices (OSD) using the CRUSH algorithm [25]. The QoS
mechanism in Ceph must accommodate this striping and
randomized distribution of data.

Most existing QoS mechanisms for storage system can
throttle data traffic for a single logical storage node inde-
pendently [11, 17, 28]. Some QoS mechanisms for dis-
tributed storage can provide performance management at
the global level [3], but require centralized components for
the gathering and processing of global state information.
One of the main design goals of Ceph is extreme scal-
ability. The performance of Ceph scales nearly linearly
with the number of OSDs [24]. The main objective un-
derlying the design of Bourbon is that a QoS mechanism
should not hamper the scalability of Ceph, and the addi-
tional complexities introduced should be minimized. We
take a two step approach toward the issue of providing
QoS support for Ceph. First, we want to enable individual
OSD to become QoS-aware by giving them the ability to
shape disk traffic. Second, we investigate how a collection
of QoS-aware OSDs working independently can provide
global level QoS.

Bourbon is enabled by Q-EBOFS, a QoS-aware object-
based file system intended to run locally at the OSD. It is
developed from the EBOFS file system originally created
by Weil [24]. Q-EBOFS can shape disk traffic to provide
class-based bandwidth partitioning at each of the OSDs.
By leveraging on the properties of CRUSH, we then use

simulations to show how a collection of OSDs running
Q-EBOFS can work together to provide global-level QoS
without requiring the use of global state information.

The rest of this paper is organized as follows. Section 2
gives an overview of the Ceph object-based file system and
its implications on QoS. Section 3 presents the design and
implementation of Q-EBOFS. We then discuss achieving
global-level QoS in section 4. Related works are presented
in section 5, and conclusions in section 6.

2. The Bourbon QoS Framework

This section presents an overview of the Bourbon QoS
framework. We first give a brief background description of
the Ceph object-based file system that forms the context of
of this work, and then outline the objective and design of
the Bourbon framework.

2.1. Ceph Object-Based File System

Object-based storage [12] is an emerging paradigm in
distributed storage architecture with the potential to achieve
high capacity, throughput, reliability, availability, and scal-
ability. The main difference between the object-based stor-
age model and the traditional distributed storage models
is that object-based storage offloads the handling of low
level storage details to the storage devices themselves—
functions such as disk space management and request
scheduling are handled by object-based storage devices au-
tonomously. In addition, metadata management is decou-
pled from data management and clients are able to access
the storage devices directly at the object level. A typical
object-based storage system are composed of three main
components: clients, metadata servers (MDS), and object-
based storage devices (OSD). The client locates data by
first contacting the metadata server, it can then transfer data
directly to and from the OSD.

Ceph is an object-based storage system developed by
Weil et al. [24] and is the system under study for this work.
In addition to reaping the benefits of object-based archi-
tecture, Ceph is designed with extreme scalability in mind,
both in its metadata server cluster [26] and its object-based
storage devices. The OSDs in Ceph have peer-to-peer ca-
pability and manages replication and failure handling au-
tonomously. The collection of OSDs and a number of
highly scalable monitor nodes appear as a single large re-
liable store, referred to as the Reliable and Autonomous
Distributed Object Store (RADOS) [22].

One of the key features of Ceph is its data distribution
scheme. Ceph breaks a file into objects. The objects are
hashed into placement groups, and placement groups are
mapped to OSDs through CRUSH [25]. CRUSH is based
on a hash function that pseudo-randomly distributes data

request
 class
stream

fine
 coarse

Figure 1. Granularity of assurance

across OSDs in a deterministic way. Any components in
the Ceph system can determine the location of data from
running CRUSH and having a cluster map without con-
sulting any centralized entity. The Bourbon QoS mecha-
nism accommodates and leverages on the unique features
of Ceph.

2.2. Bourbon QoS objective

Mechanisms for storage QoS can make assurances at
different levels of granularity as shown in Figure 1. On the
side of finer granularity, real-time disk schedulers can make
assurances for an individual disk request. A request arriv-
ing at the disk scheduler can be associated with a deadline,
and the scheduler will ensure that the request is serviced
before this deadline. Increasing the granularity, a stream
(sequence of related requests) can be admitted and assured
as a whole, usually with statistical guarantees. In general,
finer grained assurances can be made if the requirement for
a storage task is knowna priori. For example, to stream a
movie file at a rate corresponding to the frame rate, reserva-
tions can be made to the storage ahead of time. Class-based
assurances are coarser grained assurances that attempt to
divide the total bandwidth between different classes of re-
quests.

In the context of Ceph, the type of assurance that we
seek to provide is class-based performance isolation – the
ability to assign bandwidth quota akin to the way storage
space quota is assigned. The motivation for this stems from
the scenario that large storage systems often need to sup-
port multiple unrelated workloads or multiple groups of
users. For example, a high priority scientific application
requiring high storage throughput may not run at the same
time as applications generating bulk traffics such as backup
or indexing, since the lower priority traffics will likely de-
grade the performance of the scientific application. But if
we can assign fractions of the storage bandwidth to the
two classes of workloads, they can both run at the same
time without interfering with each other. Class-based per-
formance isolation isolates different workload classes, but
do not provide protection against intra-class interferences.
Two different workloads within the same class may still in-
terfere with each other. However, if a particular workload
is of sufficient significant, it can always be defined as a
class of its own. Also, hierarchical sharing [30, 6] can be
applied to recursively allocate disk bandwidth if intra-class
performance isolation is desired.

In Bourbon, the specification of the target share is
through weight values. For example, in a two class sce-
nario with class A and class B, if class A is to receive 80%
of the total bandwidth and class B is to receive 20% of
the total bandwidth, the weight of class A would be.8
and the weight of class B would be.2. Since Ceph’s per-
formance scales nearly linearly with the number of OSDs,
knowing the performance of each OSD allows the transla-
tion between weight value and the actual bandwidth.

The performance of disk drives are stateful. The service
time for a request not only depends on the location of the
data, but also depends on the current location of the disk
head. Disk performance varies according to the pattern of
requests and even the zone on the disk [20]. Exacerbating
this issue, disk drives have increased in intelligence and the
onboard buffer also increased in size. In addition, large dis-
tributed storage have multitudes of resources that can have
potential effect on performance. The data path from a client
to the disk goes through a multitude of buffers and different
caching schemes, and the network link and switches also
play a role. True end-to-end QoS requires multi-resource
scheduling. This work represents our initial attempt at ad-
dressing QoS issues for large storage systems. We make the
assumption that the disk drives are the performance bottle-
neck of the system. Other resources such as the intercon-
nect network are outside the scope of this paper but are
parts of the future works1112 plan.

2.3. Bourbon Design

A fundamental requirement for QoS-aware storage sys-
tem is the ability to differentiate and throttle disk traffic.
Bourbon achieves traffic differentiation through client au-
thentication and request tagging. In Ceph, a client must first
contact the MDS for authentication and obtain credentials
with capabilities that allow it to access the OSDs.

One way to use the QoS mechanism is to associate one
or more classes with the client capability. For example,
a client running high-priority scientific application can re-
ceive the capability to issue requests belonging to a high
priority class (more bandwidth share). The same client may
also receive capability that allows it to issue requests be-
longing to other lower priority classes, as it is conceivable
that the same client or application may generate both criti-
cal and non-critical requests. A client is given the capabil-
ity to generate requests belonging to one or more classes.
Determining which class that a particular request belongs
to (and be tagged with) is the responsibility of the clients
and its applications, we do not consider this further in this
paper. The QoS class is embedded in a data structure we
refer to as apass. When the client accesses the OSDs, it
presents the pass along with the request, and the request
will be treated accordingly. The number of valid classes

are defined by administrator and can be changed dynami-
cally. The information on classes are distributed to OSDs
by piggybacking on the cluster map. The cluster map is a
data structure used to describe the OSD cluster [25].

The ability to throttle disk traffic is the responsibility of
each individual OSD. However, with the way that data is
striped across OSDs, we must also consider how we can
achieve sharing at the global level. An intuitive way to
achieve global level QoS is through monitor and react. The
global performance statistics experienced by each class can
be collected and analyzed, and based on the statistics, the
throttling mechanism can be adjusted to steer the actual
global sharing toward the target sharing. However, global
state information are needed in order to control the throt-
tling. As mentioned in earlier section, Ceph distributes data
pseudo-randomly over all OSDs in the system to achieve a
statistical balance of workload over all OSDs. Our hypoth-
esis is that if the CRUSH algorithm does a sufficiently good
job of distributing the workload, each OSD working inde-
pendently enforcing the target share will result in the target
share being enforced at the global level. The rest of this
paper will describe Q-EBOFS and global level sharing in
detail.

3. Q-EBOFS

Bourbon relies on the underlying QoS support provided
by OSDs. This is done by making the local file system on
the OSD QoS-aware. The modular architecture of Ceph al-
lows for different object-based file systems to be used. In
the context of Ceph, the current file system of choice to
run on OSDs is EBOFS [24, 23]. EBOFS is an acronym
for Extent and B-tree based Object File System, it encap-
sulates the block management details and exports an object
interface to the upper layers. We enable the OSD to have
the ability to throttle disk traffic by enhancing EBOFS.
This section presents Q-EBOFS, a QoS enhanced version
of EBOFS.

3.1. Queueing Structure

The EBOFSread andwrite calls are modified to ac-
cept an additional argument of typepass. The pass repre-
sents QoS credential and indicates which class the request
belongs to. All requests coming from clients are pigeon-
holed into a class. Other top level calls such asstat and
rm are also augmented with thepass parameter as they
may generate read/write operations to the disk. For re-
quests that arrive with invalid pass credential, they will be
put into a default class (class 0).

Q-EBOFS consist of a buffer cache layer on top of a
block device driver layer. The enforcement of sharing is

enqueue I/O

dequeue I/O

root queue

ElevatorQueue

ElevatorQueue

ElevatorQueue

BarrierQueue

.
.

(a) Original queues in EBOFS

FifoQueue

FifoQueue

FifoQueue

BarrierQueue

ElevatorQueue
.
.

.
.

enqueue I/O

dequeue I/O

root queue

FifoQueue

FifoQueue

FifoQueue

BarrierQueue

ElevatorQueue
.
.

(b) Enhanced queueing structure in Q-EBOFS

Figure 2. Enhancing the queues in EBOFS for
QoS

done at the block device driver’s request queues, before re-
quests are dispatched to the disk. In Q-EBOFS, there is a
FIFO queue for each QoS class and a single dispatch queue
(elevator queue). As requests arrive, they are sorted into
their respective FIFO queue first. Requests from the FIFO
queues are then selectively moved to the dispatch queue to
enforce the sharing. Requests in the dispatch queue are ar-
ranged in elevator order to increase disk throughput. The
requests are then dispatched from the elevator queue to the
disk.

The sharing is enforced by how the requests are moved
from the FIFO queues to the dispatch queue. The modu-
lar architecture of Q-EBOFS allows different schemes to
be used here. Current implementation of Q-EBOFS uses
weighted round robin (WRR) for proportional sharing. For
example, a 20% - 80% sharing between two classes would
entail the dequeue of one request from the first FIFO queue
for every four requests from the second FIFO queue. The
dequeueing is work conserving, if the next FIFO queue to
dequeue from is empty, the algorithm will simply move on
to the subsequent FIFO queue without waiting.

While most metadata requests can be associated with a
class and sorted into the appropriate FIFO queue, there are
some file system originated requests that can not be associ-
ated with any particular class. These requests are inserted
directly into the dispatch queue. Although we do not ex-
pect these requests to impact the effectiveness of the QoS
mechanism under typical usage, a separate FIFO queue can

be set up for them to provide more control and reduce in-
terference if it becomes an issue.

Modern disk schedulers that rearrange requests must
also support the barrier function. A barrier request ensures
that all requests sent before the barrier will be completed
before requests after the barrier. They are useful to support
upper layer functionalities such as journaling file system
that requires requests to be committed to disk in certain
order to ensure integrity. EBOFS supports barrier func-
tionality to prevent starvation from occurring in the eleva-
tor queue, and Q-EBOFS must also preserves the barrier
functionality in the same way as originally implemented
by Weil [24, 23]. The queueing structure (multiple FIFO
queues and an elevator queue) described in the previous
paragraph are actually encapsulated within an abstract bar-
rier queue. A Q-EBOFS file system has a single queue
as viewed from above (buffer cache) and below (disk), re-
ferred to as a root queue. A root queue is composed of a
list of barrier queues. When requests are added to the root
queue, they are added to the barrier queue at the tail of the
list. When requests are dequeued from the root queue, they
are dequeued from the head of the list. When a barrier re-
quest arrives, a new barrier queue is created at the end of
the list. New requests are always added to the barrier queue
at the end of the list, while requests going to disk are always
drained from the barrier queue at the head of the list. Fig-
ure 2(b) shows the queueing structures of original EBOFS
and Q-EBOFS.

3.2. Buffer Cache Management

The queueing structure where sharing is enforced is in
the block device layer below the buffer cache. This works
well for read requests. However, EBOFS handles all write
calls asynchronously. As shown in Figure 3, a write call
to EBOFS will return as soon as the data is in the buffer
cache (in memory of the OSD) and the request is added to
the block device driver’s queue. A write to EBOFS will
never block except when the buffer cache is approaching
full. If the size of dirty buffer in the buffer cache exceeds a
threshold value, write requests will be blocked while flush-
ing takes place (trimming of the buffer cache). Once the
size of dirty buffer has been reduced, the write will then be
unblocked.

A consequence of this design is that throttling write re-
quests at the queues in the block device driver will enforce
the proper sharing going to the disk, but will not enforce the
sharing as seen by entities above the buffer cache. Since a
write will only be blocked when the buffer cache is full
and the blocking occurs indiscriminately regardless of the
class of the request, throttling below the buffer cache will
change the composition of the buffer cache but not the way
the sharing is viewed by the clients above the buffer cache.

queues

block device

driver

buffer cache

disk

write
 asynchronous,

non-blocking

I/O thread

Figure 3. EBOFS Writes are asynchronous -
once the data is in the buffer cache and the
request placed in the queue, the write call
returns immediately.

To enable the desired sharing to work for EBOFS writes,
the buffer cache must be managed as well. Since the only
blocking point in the write path is when the buffer cache
is full, by selecting which request to block when the buffer
cache is full, we can control and enforce the desired shar-
ing. A simple way to achieve this is by dividing up the
buffer cache space between classes according to the de-
sired share. For example, if there are two classes with a
sharing of 20% and 80%, we can split the buffer cache
into a 20% and a 80% portion. Whenever the portion of
a buffer cache is full, write request to that class will be
blocked while flushing of the cache takes place to create
space for the blocked request. This correlates the blocking
(throttling) of requests for a class to the target share. While
simple, this method has the drawback that a request may
be blocked even if the cache as a whole still has sufficient
space.

A more efficient approach than the strict partitioning of
buffer cache is to allow a class to use more than its share
of the space if sufficient space are available. This can be
beneficial in situations where one class does not fully uti-
lize its share. The spare capacity belonging to this class
can be reallocated to other classes that is demanding more
than their share. However not all spare capacity should be
reallocated. Some spare capacity for a class not fully uti-
lizing its share must be reserved to avoid penalizing them
if the class started to have requests arriving and it must be
blocked because the buffer cache is being used by another
class.

Q-EBOFS allows a class to use any free buffer space
until the amount of buffered data exceeds some high water-
mark. After that point, each class is limited to its reserved
space and blocks if it is using more than that. This allows
for greater utilization of the buffer cache. Q-EBOFS uses
a simple algorithm, shown in Figure 4, to decide whether
to block a write request. This simple algorithm decides

write request for class C

Class C used up its

own share?

Buffer usage under water-mark?
Let request through

Block request
 Let request through

no

no
 yes

yes

Figure 4. Throttling writes at the buffer cache

whether to block a write request or not. It is the only poten-
tial blocking point in the write path. The selective block-
ing of requests achieves bandwidth partitioning for asyn-
chronous writes through the management of buffer space
usage.

3.3. Using Q-EBOFS with other QoS mechanisms

In addition to being used as an integral part of Ceph,
Q-EBOFS can also be used independently of Ceph, either
by linking directly with the user program or access through
FUSE [19]. The fact that Q-EBOFS (and EBOFS) are im-
plemented in user space using C++ makes it modular and
portable. A secondary goal of this work is to make Q-
EBOFS a modular QoS-aware file system that can be used
to test other QoS approaches for disk based storage. De-
velopers can plug in their QoS mechanism without having
to modify other parts. For example, the current Q-EBOFS
implementation provides sharing through WRR and uses
number of requests as unit of throttling. Methods other than
WRR as well as other cost function (such as data size) can
be used. The different algorithms can simply be plugged
into EBOFS without extensive modifications to other parts
of the file system.

3.4. Experiments

This section presents the experimental results of Q-
EBOFS. The purpose of these experiments is to validate
the ability of Q-EBOFS’s request throttling mechanism to
differentiate and isolate traffics. The following experiments
were performed on a PC with 1.8 GHz Pentium 4 proces-
sor and 512 MB of RAM. The disk is a 80 GB Maxtor
DiamondMax STM3200820 formatted with Q-EBOFS.

First, we examine the performance of original EBOFS
without QoS enhancement. Figure 5 shows an experiment
with 6 clients writing simultaneously to EBOFS. All the
clients are greedy, they issue writes as fast as they can.
Without any performance isolation mechanism, the result-
ing bandwidth received by each client through time is plot-
ted in Figure 5(a). Each client receives approximately the
same performance – an average of 7.69 MB/s per client,

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180

B
an

dw
id

th
 (

M
B

/s
)

Time (s)

Client 1
Client 2
Client 3
Client 4
Client 5
Client 6

(a) Original EBOFS with no bandwidth
isolation

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180

B
an

dw
id

th
 (

M
B

/s
)

Time (s)

Client 1 (class A)
Client 2 (class A)
Client 3 (class A)
Client 4 (class B)
Client 5 (class B)
Client 6 (class B)

(b) Q-EBOFS with two classes, class A with
30% and class B with 70%

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (

M
B

/s
)

Time (s)

Class A
Class B

(c) Aggregate throughput of the two classes

Figure 5. Q-EBOFS allocating bandwidth between different c lasses

with the minimum of 7.22 MB/s and the maximum of 8.1
MB/s. The aggregate throughput of all clients is 46.13
MB/s.

To show the result when using the throttling mechanism,
we set up two different classes with a sharing of 30% and
70%. Class A receives 30% of the bandwidth and class B
receives 70% of the bandwidth. Clients 1, 2, and 3 are al-
located to class A, and clients 4, 5, 6 are allocated to class
B. The result is shown in Figure 5(b). It can be seen clearly
that the three clients of class A receive lower bandwidth
than the three clients of class B. This shaping of the writes
are the effect of the buffer cache management scheme. Fig-
ure 5(c) plots the aggregate amount of data transferred for
the entire class. The amount of data transferred over the ex-
periment’s run time for the two classes are 31% and 69%.
Sufficiently approximating our target share.

Next we show the throttling mechanism on reads. In
this experiment we have 20 clients reading from EBOFS.
In the original EBOFS without QoS mechanism, the re-
sult is shown in Figure 6(a). Because of the large demand,
each client receives only around 1 MB/s, the data points
are overlapped and appear as a single line in the figure.
Next we run the same experiment on Q-EBOFS with a two
class setup of 20% and 80%. The result for the aggregate
throughput of the classes is shown in Figure 6(b), and it
matches the 20%-80% target share.

Figure 7 shows an experiment mixing reads and writes.
We define two classes with sharing of 25% for class A and
75% for class B. There are four clients in each class. Each
client issues mixed read and write requests. The read/write
distribution has a read percentage set to 68%. In this case
both the queues and the buffer management mechanisms
contributes to the shaping of the bandwidth. The figure
plots the aggregate throughput each class receives. Class
A receives 25.8% of the bandwidth and class B receives
74.2% of the bandwidth, closely matching the target share.

4. Global-level QoS

We have shown how Q-EBOFS can allocate fractions
of disk bandwidth to different classes of workloads at
each OSD. However, in Ceph, a file is broken up and
striped across OSDs pseudo-randomly through CRUSH.
Any piece of data can potentially end up on any OSD.
There is no correlation between a particular client or class
to any particular OSD due to the random element in
CRUSH. We now return to examine the question of how in-
dependent OSDs can work together to provide global-level
QoS.

4.1. Global level class-based sharing

In the context of this work, global level class-based shar-
ing implies that the storage system, although made up of
large numbers of distinct underlying storage devices, can
allocate bandwidth to different classes of data traffic as a
whole. The global level sharing are not be visible at an in-
dividual OSD or client, but are visible when we consider
the entire storage system as a whole. Recall the concept
of RADOS, where the collection of OSDs function and be-
have as a large single logical store. Our goal of class-based
performance isolation is to allow the bandwidth of this sin-
gle large logical store to be allocated to different classesof
workloads (Figure 8).

Existing QoS mechanisms providing global-level QoS
support require the use of global state information. Typ-
ically some centralized components are involved, or the
global state information needs to be propagated to each
storage node for coordination. One of the design goals
for Ceph is extreme scalability. The introduction of cen-
tralized component(s) or the need to propagate global state
information creates potential bottlenecks that may hamper
scalability. Even well designed and highly scalable cen-
tralized management entities can undesirably increases the
complexity of the system. We consider simplicity and scal-
ability as highly desirable to preserve the elegance of Ceph
as it is.

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140 160 180

B
an

dw
id

th
 (

M
B

/s
)

Time (s)

Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
Client 7
Client 8
Client 9

Client 10
Client 11
Client 12
Client 13
Client 14
Client 15
Client 16
Client 17
Client 18
Client 19
Client 20

(a) Original EBOFS with no bandwidth isola-
tion (lines overlapped)

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140 160 180

B
an

dw
id

th
 (

M
B

/s
)

Time (s)

Class A
Class B

(b) Q-EBOFS with two classes, class A with
20% and class B with 80%. Aggregate through-
put of each class is plotted.

Figure 6. 20 clients reading from EBOFS

In Ceph, because of the random element in how CRUSH
distributes data, device load is on average proportional to
the amount of data stored [25]. Randomized data distri-
bution has the property of creating a probabilistically bal-
anced distribution, where on average, all devices will be
similarly loaded. This remains true even across different
types of workloads [25], as different workloads would end
up generates the same random distribution of requests [15].
Because of this property, an interesting question arises: if
the random data distribution sufficiently disperses the data
(and workload) onto all OSDs in the system as it is sup-
posed to, if each OSD enforces the desired sharing inde-
pendently, will the global sharing approximates the desired
sharing? Figure 9 depicts this scenario. For example, if
we set up two classes, A and B, where class A is to receive
25% of the global share and class B is to receive 75% of the
global share. If each OSD enforces the 25%-75% share in-
dependently, will the resulting share observed at the global
level also matches 25%-75%.

4.2. When sharing matters

Bourbon is intend to be work conserving. The OSD
should not sit idle while there are requests in the queue.
This is in contrast with other scheme where artificial de-
lays are inserted to ensure global proportional sharing [21].
As noted in that work, sometimes it is not possible to
be work conserving while maintaining global proportional

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (

M
B

/s
)

Time (s)

Class A (25%, 4 clients)
Class B (75%, 4 clients)

Figure 7. Mixed read/write

sharing. In Bourbon, the allocation of bandwidth between
classes should approximate the ideal Max-Min fair share
with weights [8]. A consequence of being work conserving
is that the actual sharing will match the target sharing only
when all classes demand more than their share.

In the following description, we consider the system to
be overloaded when the supply of bandwidth exceeds ag-
gregate demand from all classes; and a class is satisfied
when its demand is being met.

When system is not overloaded.Then all classes are sat-
isfied, and one of the following is true.
1. All classes are demanding less than their share.
2. Some classes are under-demanding and some classes
are over-demanding. The aggregate slack from under-
demanding classes are greater than the aggregate over-
demands (demand beyond share) from over-demanding
classes.

When system is overloaded.One of the following is true.
1. All classes are over-demanding.
2. Some classes are over-demanding and some are under-
demanding. The aggregate slack from under-demanding
classes are less than the aggregate over-demands from over-
demanding classes.

As we can see, being work conserving, there is only one
scenario in which the observed sharing will match target
sharing – when all classes are demanding more than their
share. In other scenarios, the actual sharing observed will
not match the target sharing (except for coincidental cases).
But not matching the target share is acceptable since all
classes are satisfied (and desirable for the reason of work
conserving). Therefore, the objective of Bourbon is not to
maintain the target sharing at all time, but to allocate band-
width according to the weights in such a way to (1) ensure
a class is satisfied when its demand is not greater than its
allocated share, and (2) allow a class to receive more than
its share if slacks are available, and (3) ensure a class will
receive at least its share if the class over-demands.

osd

osd
osd
osd

osd
osd

osd
 osd
osd
 osd

osd

osd

QoS

Aggregate traffic

RADOS

Figure 8. RADOS: A collection of OSDs func-
tioning as a single logical store

4.3. Experiments

We implemented a simulator to study the use of inde-
pendent QoS-aware OSDs to achieve global-level sharing.
The simulator uses the source code for data distribution
from Ceph (hash + CRUSH). Simulation is beneficial in
this case because it enables us to focus on the question at
hand and bypassing other irrelevant complexities and de-
tails. It also allows the exploration on the behavior of much
larger systems that would otherwise not be possible. The
simulator has client and OSD objects and simulates the per-
formance of a large scale Ceph system. The stateful prop-
erty of the disk is incorporated into the simulation by using
a Gaussian distribution for service time [15]. We are ex-
amine the behavior from a higher level, the goal is not to
mimic the behavior of a particular model of hard disk, but
just to introduce variable service time into the experiments.

Recall that Ceph leverages on the random property of
CRUSH for data distribution, and on average all OSDs
should be similarly loaded. In a distributed storage system,
more balanced load will lead to better performance, and in
the case of Bourbon, more chances that individual OSDs
will be able to enforce the target sharing. Since Q-EBOFS
is work conserving, it needs a pool of requests from dif-
ferent classes to pick and choose from. If the workload is
sufficiently dispersed across all the OSDs, an OSD will re-
ceive requests from all classes, and with sufficient backlog,
should be able to attain the target sharing.

To test how well CRUSH can distribute workloads, con-
sider a scenario with 1024 files of 1 GB each, where each
file has a different loading. We use I/O temperature [9],
a concept that quantifies (unit-less) how ”hot” a file is, to
represent how heavily loaded a file is. We consider three
different scenarios: (1) when all files have the same I/O
temperature, (2) when half of the files have the same I/O
temperature and the other half are inactive (I/O tempera-
ture of 0), and (3) a highly skewed workload modeled by
Zipf distribution. Zipf distribution and its derivatives are
often used to model file popularity. The three distributions

OSD

client

A B

OSD
OSD
OSD

client

A B

client

A B

client

A B

A: 25%

B: 75%

A: 25%

B: 75%

A: 25%

B: 75%

A: 25%

B: 75%

A: 25%

B: 75%

Individual

OSD views

Global

View

Figure 9. Global sharing and local sharing

of I/O temperature over the set of files are shown in Fig-
ure 10. For each of the three sets of file loading distribu-
tion, the files are broken up into objects and its associate
loads are distributed to 1024 OSDs with an object size of 1
MB. The resulting load distributed to the OSDs are shown
in Figures 11. We can see that no matter how the load is
distributed across the files, it is effectively dispersed across
all the OSDs, resulting in OSDs with similar loadings (tem-
peratures).

Next we want to test the same scenario with smaller
files. The previous set of experiments uses a file size of
1 GB and an object size of 1 MB, so each file is broken
up into 1024 objects. In the perfect scenario, each object
would be placed on a distinct OSD, since there are a total of
1024 OSDs. When the data distribution is approximating
normal distribution, the loading should approximate nor-
mal distribution as well. In the next experiment, we re-
duced the file size to 32 MB. Therefore each file will only
have 32 objects to stripe across 1024 OSDs. The resulting
loads on the OSDs should be more skewed. The result is
shown in Figure 12. As expected, the result for the Zipf
distribution of file loading has a larger standard deviation.
However the overall loads across the OSDs are still rela-
tively even.

To study the behavior in large systems with heavy load-
ing, consider a scenario with 0.5 million files and 5000
OSDs. Each file is 1 GB and the object size is 1 MB. We
use the three different file loading distributions shown in
Figure 13(a), 13(b), and 13(c). The resulting distribution
across OSDs are shown in Figure 13(d), 13(e), and 13(f).
As shown in the figures, when the loading is heavy, the
resulting loads on the OSDs are virtually identical for the
three different file loadings.

Now, we want to see how local sharing would add up to
global sharing. Figure 14 shows the result compiled from
multiple sets of experiment runs. Each data point in the
figure is the result of a simulation run. In this figure, the
X-axis is the total load (demand) placed on the system as a
percentage of the total capacity. The Y-axis is the load of
each class, also as a percentage of the total capacity. There
are two classes, A and B, set up to receive 25% and 75%

(a) File: Constant (b) File: 50%-50%

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000

I/O
 T

em
pe

ra
tu

re

File

(c) File: Zipf

Figure 10. Distribution of workloads across files

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000

I/O
 T

em
pe

ra
tu

re

OSD

(a) OSD: Constant (stddev: 15.51)

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000

I/O
 T

em
pe

ra
tu

re

OSD

(b) OSD: 50%-50% (stddev: 15.86)

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000

I/O
 T

em
pe

ra
tu

re

OSD

(c) OSD: Zipf (stddev: 16.91)

Figure 11. Resulting distribution of workloads across OSDs . 1024 files, 1 GB file size, 1 MB object
size, 1024 OSDs

 0

 100

 200

 300

 400

 500

 0 200 400 600 800 1000

I/O
 T

em
pe

ra
tu

re

OSD

(a) OSD: Constant (stddev: 16.35)

 0

 100

 200

 300

 400

 500

 0 200 400 600 800 1000

I/O
 T

em
pe

ra
tu

re

OSD

(b) OSD: 50%-50% (stddev: 33.30)

 0

 100

 200

 300

 400

 500

 0 200 400 600 800 1000

I/O
 T

em
pe

ra
tu

re

OSD

(c) OSD: Zipf (stddev: 46)

Figure 12. Resulting distribution of workloads across OSDs . 1024 files, 32 MB file size, 1 MB object
size, 1024 OSDs

(the dotted horizontal lines) of the total capacity. There are
1000 clients and 1000 OSDs, with about 100 placement
groups for each OSD [24]. The experiments were ran at
each loading level with increments of 5.

As Figure 14 shows, when the load on the system is less
than 100%, both classes are satisfied. They both receive
what they demanded. Although the Q-EBOFS at OSD en-
forces the 25%-75% sharing, the work conserving nature
of Q-EBOFS enables all requests to be served. After the
load passes beyond 100%, the system can no longer sat-
isfy all requests. We see the bandwidth received for class
A started to drop, while the bandwidth for class B contin-
ues to increase as it remains satisfied. This trend continues
until the bandwidth received for each class converges at the
25%-75% target share.

The loading placed on the system versus the utilization
of the system corresponding with this result is shown in
Figure 15. In a hypothetical ideal system, the utilization
should closely follows the load, as all devices in the sys-
tem should be perfectly balanced and equally busy (similar
queue lengths, etc.). The degree of mismatch between the
load and the utilization indicates unbalanced distribution in
that some devices are overloaded while others have slacks.
In the figure, the load on the X-axis is the demand placed
on the system as a percentage of the system capacity. The
Y-axis is the utilization of the entire system, derived from
the utilization of all the OSDs. As the figure shows, the
Ceph’s data distribution component does an excellent job
of distributing the workload across OSDs. When the load
placed on the system is 100 %, the system is more than
90% utilized.

(a) File: Constant (b) File: 50%-50% (c) File: Zipf

0

50k

100k

150k

200k

250k

300k

0 1k 20k 3k 4k 5k

I/O
 T

em
pe

ra
tu

re

OSD

(d) OSD: Constant

0

50k

100k

150k

200k

250k

300k

0 1k 20k 3k 4k 5k

I/O
 T

em
pe

ra
tu

re

OSD

(e) OSD: 50%-50%

0

50k

100k

150k

200k

250k

300k

0 1k 2k 3k 4k 5k

I/O
 T

em
pe

ra
tu

re

File

(f) OSD: Zipf

Figure 13. Distribution of workloads. 0.5 million files, 1 GB file size, 1 MB object size, 5000 OSDs

In the experiment shown in Figure 14, the two classes
generates equal loads. In the next experiment, we show the
scenario when the two classes generate unequal loads on
the system. Figure 16 depicts this results. In this experi-
ment, class B always demand 100% of the system capacity,
while class A increases its demand gradually and linearly.
As the figure shows, as the demand for class A increases,
the demand for class B decreases, down to its allotted share
of 25%, then it does not drop below that. Class A continues
to increase at the expense of class B until class A reaches its
allotted share of 75%, after which case the actual sharing
matches the target sharing of 25%-75%. Figure 17 shows
the load vs. utilization plot of this experiment. When the
load is 100%, utilization is approximately 96.6%. Utiliza-
tion approaches 100% when the load is about 160%.

These experiments show that Ceph does a sufficiently
good job of distributing loads across all OSDs. When the
system is not overloaded, the demands from all classes are
satisfied. The effect of Bourbon is not visible. When the
system is running at or above 80% load, then the effects of
Q-EBOFS’s throttling begin to show. Classes with lower
target share started to become unsatisfied, while classes
with higher target share remains satisfied. The actual band-
width received by each class fully matches the target shar-
ing when the system is about 170% loaded. At which point
there are sufficient requests queued up at each OSD that
the work conserving WRR traffic shaper in Q-EBOFS can
always find a request from a class that it needs to dequeue
from, therefore able to enforce the target share while being
work conserving. The experiments confirm the properties
outlined in section 4.2.

5. Related Work

QoS mechanisms for a single disk are most often found
as disk schedulers. Motivated by the need to support ho-
mogeneous workload of storage-bound soft real-time ap-
plications [7], these type of schedulers associate a deadline
with a request, and orders the requests based on some com-
bination of real-time scheduling technique and disk seek
optimization scheme (e.g.SCAN-EDF [13]). More elabo-
rate disk schedulers (whether real-time or not), which take
into account the seek time and rotational latency, require
the use of accurate disk models [5, 29]. The use of such
low-level information can provide predictable service guar-
antees [14], but limits their effectiveness to special-purpose
systems due to the difficulties of obtaining and maintaining
intricate knowledge of disk drive internals.

Some QoS-aware schedulers are designed specifically to
address mixed workloads [4, 18, 27]. These are typically
two-level schedulers that classify disk requests into cate-
gories such as real-time, best-effort, and interactive. Each
class has its own scheduler, and the requests from differ-
ent classes are merged by a meta-scheduler. YFQ [1] is
a scheduler that offers similar capability to Q-EBOFS, us-
ing different mechanisms. Seelam [16] proposed a virtual
I/O scheduler (VIOS) that can provide fairness and perfor-
mance isolation. The per-class FIFO queues in Q-EBOFS
are similar in concept to the application queues in VIOS.
VIOS can optionally have two layers of schedulers.

QoS mechanisms can also be implemented above the
disk scheduler and treating the disk as a black box [30, 11].
These mechanisms are interposed between the clients and
the disks, they intercept and throttle disk requests for traffic
shaping.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200

P
er

-c
la

ss
 (

%
)

Total load (%)

Class A demanded
Class B demanded

Class A received
Class B received

Figure 14. Demand vs. Receive

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200

U
til

iz
at

io
n

(%
)

Load (%)

load vs. utilization

Figure 15. Load vs. Utilization

A number QoS mechanisms for distributed systems are
designed to manage a single logical storage node [11, 17].
They do not have the mechanism to support global level
QoS management across the entire storage system. Ex-
isting works in distributed storage that can achieve global
level sharing relies on the use of global state information.
SLEDS [3] uses special gateway devices interposed be-
tween clients and storage nodes. The gateway device in-
tercepts requests and collect statistics. Based on the actual
rates different classes are receiving, the gateway will throt-
tled request streams to attempt to steer the actual sharing to
match the desired sharing. Swift [2] is a distributed stor-
age system that also stripes objects across different storage
nodes. A QoS mechanism for Swift was proposed [10].
However, this mechanism differs in that it provides reser-
vation through admission control for storage tasks that are
known a priori, instead of global level sharing between
classes where the loads may not be known in advance.

Wang [21] proposed an approach to achieve global level
proportional sharing. This approach also relies on the feed-
back of global state information. The global state infor-
mation is propagated to the storage nodes by piggybacking
on normal requests to reduce the overhead. Based on the
global state a storage node will insert extra delay to ensure
proportional sharing holds at the global level. Bourbon dif-
fers in that it does not require any global state information.

QoS has been studied extensively in the domain of net-
working. However, techniques for network QoS can not be
directly applied to storage, since the available disk band-

 0

 20

 40

 60

 80

 100

 120

 140

 100 120 140 160 180 200 220

P
er

-c
la

ss
 (

%
)

Total Load (%)

class A demand
class A receive

class B demand
class B receive

Figure 16. Demand vs. Receive

 96

 97

 98

 99

 100

 101

 102

 120 140 160 180 200 220

U
til

iz
at

io
n

(%
)

Load (%)

load vs. utilization

Figure 17. Load vs. Utilization

width fluctuates due to variations in seek times. However,
techniques in storage QoS management are often adapted
from network QoS [21].

6. Conclusions

This paper presents Bourbon, a QoS framework de-
signed for use in the Ceph object-based storage system.
Bourbon is enabled by Q-EBOFS, a QoS-aware object-
based file system running locally at the OSD. Q-EBOFS
is a QoS-enhanced version of EBOFS, the current object
file system of choice for Ceph. Q-EBOFS achieves perfor-
mance isolation through class-based queueing and the man-
agement of buffer cache with selective blocking of asyn-
chronous writes. Experiments showed that Q-EBOFS can
provide class-based performance isolation between differ-
ent classes of workloads. The Bourbon framework consists
of a collection of QoS-aware OSDs running Q-EBOFS.
Our experiments showed that being work-conserving, the
actual share observed at the global level will not match the
target share unless the system is heavily loaded (well be-
yond 100 %). However, this is desirable because when the
observed share does not match the target share, demands
from all classes are either satisfied or at least receiving their
full target share. So although the actual sharing does not
match the target sharing, the QoS goals are still being met.
The target share at the global level will be visible only after
the system is overloaded with a sufficiently large number
of requests in the queues of the OSDs.

Currently, Bourbon (and Q-EBOFS) can only provide
soft assurances and cannot be used to support real-time ap-
plications with hard deadlines. Future work will focus on
using more rigorous methods to achieve tighter assurances,
as well as formal analysis of the workload distribution.

Acknowledgments

We are grateful to Sage Weil, the author of Ceph and
EBOFS, for assistance in all aspects of this work. This
work would not be possible without his indispensable in-
put and support. We would also like to thank Lawrence
Livermore, Los Alamos, and Sandia National Laboratories;
and the UCSC/Los Alamos Institute for Scalable Scientific
Data Management (ISSDM) for support.

References

[1] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Silber-
schatz. Disk scheduling with quality of service guarantees.
In IEEE International Conference on Multimedia Comput-
ing and Systems, volume 2, pages 400–405, June 1999.

[2] L.-F. Cabrera and D. D. E. Long. Swift: A distributed stor-
age architecture for large objects. InDigest of Papers, 11th
IEEE Symposium on Mass Storage Systems, pages 123–128,
Monterey, Oct. 1991. IEEE.

[3] D. D. Chambliss, G. A. Alvarez, P. Pandey, D. Jadav, J. Xu,
R. Menon, and T. P. Lee. Performance virtualization for
large-scale storage systems. InProceedings of the 22th
International Symposium on Reliable Distributed Systems
(SRDS’03), pages 109–118, 2003.

[4] Z. Dimitrijevic and R. Rangaswami. Quality of service sup-
port for real-time storage systems. InProceedings of the
International IPSI-2003 Conference, October 2003.

[5] Z. Dimitrijevic, R. Rangaswami, and E. Chang. Diskbench:
User-level disk feature extraction tool. Technical report,
UCSB, November 2001.

[6] S. Floyd and V. Jacobson. Link-sharing and resource man-
agement models for packet networks.IEEE/ACM Transac-
tions on Networking, 3(4):365–386, 1995.

[7] J. Gemmell, H. Vin, D. Kandlur, P. Rangan, and L. Rowe.
Multimedia storage servers: A tutorial and survey.IEEE
Computer, 28(5):40–49, 1995.

[8] S. Jha and M. Hassan.Engineering Internet QoS. Artech
House, 2002.

[9] G. karche, M. Mamidi, and P. Massiglia.Using Dynamic
Storage Tiering. Symantec Corporation, Cupertino, CA,
2006.

[10] D. D. E. Long and M. N. Thakur. Scheduling real-time disk
transfers for continuous media applications. InProceed-
ings of the 12th IEEE Symposium on Mass Storage Systems
(MSST 1993), April 1993.

[11] C. Lumb, A. Merchant, and G. Alvarez. Facade: Virtual
storage devices with performance guarantees. InUSENIX
Conference on File and Storage Technology, 2003.

[12] M. Mesnier, G. R. Ganger, and E. Riedel. Object-based stor-
age. IEEE Communications Magazine, 41(8):84–900, Au-
gust 2003.

[13] A. L. Reddy and J. Wyllie. Disk scheduling in a multimedia
I/O system. InProceedings of ACM Conference on Multi-
media, pages 225–233. ACM Press, 1993.

[14] L. Reuther and M. Pohlack. Rotational-position-awarereal-
time disk scheduling using a dynamic active subset (DAS).
In Proceedings of the 24th IEEE Real-Time Systems Sympo-
sium (RTSS 2003). IEEE, December 2003.

[15] J. R. Santos, R. R. Muntz, and B. Ribeiro-Neto. Compar-
ing random data allocation and data striping in multimedia
servers. InProceedings of the 2000 SIGMETRICS Confer-
ence on Measurement and Modeling of Computer Systems,
pages 44–55, Santa Clara, CA, June 2000. ACM Press.

[16] S. R. Seelam and P. J. Teller. Virtual i/o scheduler: a sched-
uler of schedulers for performance virtualization. InPro-
ceedings of the 3rd international conference on Virtual exe-
cution environments (VEE ’07), pages 105–115, 2007.

[17] SGI. Guarantee-rate i/o version 2 guide, 2004.
[18] P. Shenoy and H. Vin. Cello: A disk scheduling framework

for next generation operating systems. InProceedings of the
ACM SIGMETRICS, 1998.

[19] M. Szeredi. File System in User Space.
http://fuse.sourceforge.net, 2006.

[20] R. Van Meter. Observing the effects of multi-zone disks. In
Proceedings of the USENIX Annual Technical Conference,
pages 19–30, January 1997.

[21] Y. Wang and A. Merchant. Proportional share schedulingfor
distributed storage systems. In5th USENIX Conference on
File and Storage Technologies (FAST ’07), February 2007.

[22] S. Weil, C. Maltzahn, and S. A. Brandt. Rados: A reliable
autonomic distributed object store. Technical Report SSRC-
07-01, University of California, Santa Cruz, Jan 2007.

[23] S. A. Weil. Leveraging intra-object locality with ebofs.
http://ssrc.cse.ucsc.edu/˜sage, May 2004.

[24] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: A scalable, high-performance dis-
tributed file system. InProceedings of the 7th Symposium
on Operating Systems Design and Implementation (OSDI),
Seattle, WA, Nov. 2006. USENIX.

[25] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn.
CRUSH: Controlled, scalable, decentralized placement of
replicated data. Insc06, Tampa, FL, Nov. 2006.

[26] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller.
Dynamic metadata management for petabyte-scale file sys-
tems. InProceedings of the 2004 ACM/IEEE Conference on
Supercomputing (SC ’04), Pittsburgh, PA, Nov. 2004. ACM.

[27] R. Wijayaratne and A. L. Reddy. Integrated QOS manage-
ment for disk I/O. InProceedings of the IEEE International
Conference on Multimedia Computing and Systems, pages
487–492, June 1999.

[28] T. M. Wong, R. A. Golding, C. Lin, and R. A. Becker-
Szendy. Zygaria: storage performance as a managed re-
source. InIEEE Real Time and Embedded Technology and
Applications Symposium (RTAS 06), April 2006.

[29] B. Worthington, G. Ganger, Y. Patt, and J. Wilkes. On-line
extraction of SCSI disk drive parameters. InProceedings
of the ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 146–156, 1995.

[30] J. Wu, S. Banachowski, and S. A. Brandt. Hierarchical disk
scheduling for multimedia systerms and servers. InPro-
ceedings fo the ACM International Workshop on Network
and Operating System Support for Digital Audio and Video
(NOSSDAV ’05), pages 189–194, June 2005.

