
The BEST s
heduler for integrated pro
essing of best-e�ort

and soft real-time pro
esses

S
ott A. Bana
howski and S
ott A. Brandt

Computer S
ien
e Department, University of California, Santa Cruz

ABSTRACT

Algorithms for allo
ating CPU bandwidth to soft real-time pro
esses exist, yet best-e�ort s
heduling remains

an attra
tive model for both appli
ation developers and users. Best-e�ort s
heduling is easy to use, provides a

reasonable trade-o� between fairness and responsiveness, and imposes no extra overhead for spe
ifying resour
e

demands. However, best-e�ort s
hedulers provide no resour
e guarantees, limiting their ability to support

pro
esses with timeliness 
onstraints. Rea
ting to the need for better support of soft real-time multimedia

appli
ations while re
ognizing that the best-e�ort model permeates desktop 
omputing for very good reasons,

we have developed BEST, an enhan
ed best-e�ort s
heduler that 
ombines desirable aspe
ts of both types of


omputing. BEST provides the well-behaved default 
hara
teristi
s of best-e�ort s
hedulers while signi�
antly

improving support for periodi
 soft real-time pro
esses. BEST s
hedules using estimated deadlines based on

the dynami
ally dete
ted periods of pro
esses exhibiting periodi
 behavior, and assigns pseudo-periods to non-

periodi
 pro
esses to allow for good response time. This paper dis
usses the BEST s
heduling model and

our implementation in Linux and presents results demonstrating that BEST outperforms the Linux s
heduler

in handling soft real-time pro
esses, outperforms real-time s
hedulers in handling best-e�ort pro
esses, and

sometimes outperforms both, espe
ially in situations of pro
essor overload.

Keywords: Soft real-time, s
heduling, Linux

1. INTRODUCTION

Although many people wish to use their desktop workstations as multimedia platforms, 
onventional desk-

top operating systems do not dire
tly support the s
heduling needs of soft real-time multimedia appli
ations.

S
hedulers in 
onventional desktop operating systems use best-e�ort time-sharing poli
ies designed to redu
e

the laten
y of intera
tive pro
esses and provide adequate progress for all pro
esses. Be
ause they provide no

guarantees of pro
essing bandwidth, multimedia appli
ations may or may not re
eive the timely s
heduling they

require in order to play 
ontinuous sound or video.

1

Our previous work examined dynami
 desktop soft real-time using Dynami
 QoS Level Resour
e Manage-

ment (DQM).

2, 3

In that work we showed that it is possible to robustly exe
ute soft real-time appli
ations

on best-e�ort systems. In parti
ular, we developed a middleware framework that allowed appli
ations to dy-

nami
ally adjust their resour
e usage based on the available resour
es. By adjusting resour
e usage su
h that

the set of running appli
ations use less than 100% of the available resour
es, a best-e�ort s
heduler is able to

provide reasonable soft real-time performan
e. In that work we also demonstrated dynami
 estimate re�nement,

a te
hnique that enables the system to dynami
ally adapt to in
orre
t or unspe
i�ed resour
e usage estimates.

Like most soft real-time systems, the DQM system has several issues that limit its ultimate utility in

generi
 desktop environments. First, be
ause it is a middleware solution, the performan
e of soft real-time

appli
ations varies signi�
antly in the presen
e of best-e�ort or other appli
ations that do not 
ooperate with

the middleware resour
e manager. Se
ond, like most soft real-time systems

4{10

it requires appli
ations to

interfa
e with spe
ial-purpose soft real-time interfa
e routines. Third, like other soft real-time systems, the

DQM requires that appli
ations provide a priori estimates of resour
e usage and period. Although the DQM

Further author information:

Email: fsbana
ho,sbrandt�
se.u
s
.edug Address: Computer S
ien
e Department, S
hool of Engineering, Applied S
i-

en
es Bldg., U.C. Santa Cruz, 1156 High Street, Santa Cruz, CA 95064.



system 
an dynami
ally adjust to in
orre
t or unspe
i�ed resour
e usage estimates, it 
annot adapt to in
orre
t

or unspe
i�ed appli
ation periods.

This paper presents a solution that addresses those issues|BEST, a time-sharing s
heduler that dire
tly

supports multimedia appli
ations while providing adequate progress and response time for best-e�ort appli
a-

tions. BEST dynami
ally measures pro
ess behavior and uses the information to aid in s
heduling de
isions.

By dete
ting the rate at whi
h waiting pro
esses enter the run queue, the s
heduler boosts the performan
e

of \well-behaved" periodi
 pro
esses by in
reasing their priority, while preserving the behavior of traditional

time-sharing s
hedulers for non-periodi
 pro
esses; we use a Best-e�ort s
heduler that is Enhan
ed for Soft

real-time Time-sharing, so we 
all it the BEST s
heduler.

Current approa
hes to soft real-time s
heduling require spe
ial interfa
es to the s
heduler|BEST di�ers by

removing software authors' and users' awareness of the s
heduler. Most spe
ialized systems pla
e a burden of

spe
ifying s
heduling needs of an appli
ation either with the developer, who must use system 
alls to 
ommuni-


ate and negotiate with a s
heduler, or the user, who expli
itly 
hooses priorities or exe
utes external software

to 
ontrol s
heduling poli
ies. The BEST s
heduler uses the best-e�ort model, so no pro
ess is refused admission

or provided a servi
e guarantee. This is an attra
tive model be
ause it in
urs no overhead for programmers

or users. Like other best-e�ort systems, if the user overburdens the system, the user will experien
e degraded

system performan
e.

11

However in the presen
e of other appli
ations or heavy (but not overburdened) use,

the BEST s
heduler e�e
tively meets soft real-time deadlines for appli
ations that are well-behaved. And when

overburdened, BEST 
ontinues to provide satisfa
tory progress to all appli
ations.

This paper des
ribes an implementation of the BEST s
heduler in the Linux kernel. Se
tion 2 summarizes

related resear
h that supports s
heduling for multimedia. Se
tion 3 des
ribes the s
heduler implementation,

and Se
tion 4 presents quantitative performan
e data. Finally, Se
tion 5 dis
usses our future plans for this

resear
h and Se
tion 6 provides 
on
luding remarks.

2. RELATED WORK

Continuous real-time appli
ations require enough pro
essor bandwidth to meet their periodi
 deadlines.

12

We


lassify multimedia appli
ations as soft real-time be
ause, like real-time pro
esses, they must meet periodi


deadlines, but missing an o

asional deadline results in diminished performan
e rather than outright failure.

13

2.1. Real-time S
heduling

Real-time systems, su
h as RT-Ma
h,

10

are designed to meet hard deadline 
onstraints. Some versions of UNIX

support real-time s
heduling 
lasses,

14

and many systems adapt the POSIX standard for real-time extensions.

15

In order to ensure predi
table behavior, these system use stri
t s
heduling poli
ies su
h as Rate Monotoni


(RM) or Earliest Deadline First (EDF).

16

These s
heduling algorithms require that the worst-
ase workload is

known when 
on�guring a system. For industrial appli
ations, where systems are typi
ally dedi
ated to spe
i�


purposes and deadlines are hard, real-time systems are attra
tive be
ause they may be tuned to perform

predi
tably. However real-time operating systems are not well-suited for desktop use be
ause workload 
annot

in general be predi
ted. Most multimedia s
heduling resear
h fo
uses on integrating the desirable features of

hard real-time s
heduling into general-purpose systems that have in
onsistent workloads; an example is the

Nemesis Atropos s
heduler, whi
h uses EDF based on deadlines derived from a pro
ess's spe
i�ed share of

CPU bandwidth.

17

Multi
s also provides an EDF s
heduler, using desired response time to determine virtual

deadlines of non-real-time pro
esses.

18

Like these systems, BEST s
hedules by earliest deadline, but unlike

previous systems it automati
ally dete
ts the periods of pro
esses and assigns appropriate deadlines based on

this information, and assigns pseudo-deadlines to non-periodi
 pro
esses and s
hedules a

ordingly.

2.2. Multi-level S
heduling

One approa
h for handling a mix of appli
ations divides pro
esses a

ording to type, and assigns ea
h type to

di�erent s
hedulers; ea
h s
heduler uses the poli
y best suited for its type. In hierar
hi
al s
hemes, a lower-

level s
heduler re
eives bandwidth allo
ated by the higher-level s
heduling poli
y. For example, in Real-Time

Linux,

19

the Linux kernel exe
utes as the lowest priority task in a real-time s
heduler alongside the other higher



priority real-time tasks. POSIX extensions also implement hierar
hi
al s
heduling|the real-time 
lasses defer

to the time-sharing 
lass when no real-time pro
ess is ready to exe
ute.

Resear
hers use several te
hniques of adapting multi-level s
heduling to the needs of soft real-time systems.

Taking advantage of the POSIX multi-level s
heduling 
lasses, user pro
esses may s
hedule soft real-time pro-


esses by dynami
ally altering their priorities,

20, 21

thereby removing soft real-time s
heduling de
isions from

the kernel. Some more sophisti
ated approa
hes to hierar
hi
al s
heduling in
lude the SFQ algorithm, whi
h

proportionally shares bandwidth among the levels so that time-
riti
al appli
ations re
eive adequate resour
es,

22

and CPU Inheritan
e S
heduling,

23

whi
h allows s
heduling threads to donate pro
essing to other s
heduler

threads in 
exible arbitrary arrangements of hierar
hies. The Vassal proje
t

24

adds a system interfa
e for users

to install their own s
hedulers. Another method applied to soft real-time is middleware resour
e management

�

.

Middleware managers monitor a system's resour
es usage, and provide re
ommendations to adaptive soft real-

time pro
esses. DQM

2

uses this approa
h to maximize bene�ts for s
alable soft real-time pro
esses, independent

of the underlying kernel s
heduler.

The ar
hite
tural approa
h of dividing s
heduling into levels 
reates 
exibility for systems running a mix of

appli
ations of di�ering pro
essing needs; with it 
omes the problem of 
hoosing ideal 
on�gurations, whi
h as

resear
h indi
ates is not trivial. System ar
hite
ts, and in some 
ases users, must make informed de
isions for the

layout of s
heduling hierar
hy. For the BEST s
heduler, we do not introdu
e the 
omplexity of multiple levels

of s
heduling, and instead rely on a single algorithm for all pro
esses. The algorithm is designed to minimize

laten
y for periodi
 and intera
tive pro
esses. However, using the s
heduler does not pre
lude integration into

multi-level s
hemes.

2.3. Proportional-share S
heduling

Re
ognizing the low predi
tability of general-purpose system workloads and the relaxed deadline requirements

for multimedia appli
ations, a large body of resear
h fo
uses on 
reating new s
hedulers better suited to a mix

of appli
ation types. Most systems allo
ate ea
h pro
ess a share of pro
essing bandwidth, and use an algorithm

to assign allotted CPU guarantees within minimal error bounds. For periodi
 appli
ations, share is allo
ated

to meet the exe
ution rate required to meet deadlines. Fair-sharing is enfor
ed so no pro
ess inhibits another's

ability to meet deadlines.

Proportional s
heduling systems share similar 
on
epts yet di�er in strategy. Here we brie
y mention some

systems; this list is not 
omprehensive. EEVDF

25


al
ulates a virtual deadline for ea
h pro
ess as a fun
tion

of measured and allotted share, and s
hedules a

ording to EDF; Stride S
heduling

26

uses a similar notion of

virtual time. Systems su
h as BVT

5

and BERT

4

provide enhan
ed fair-sharing algorithms aimed at in
reasing

the throughput of deadline-sensitive pro
esses by dynami
ally reallo
ating shares on a short-term basis. Some

systems utilize admission 
ontrol: pro
esses reserve shares, and the s
heduler denies admission when requested

reservations are not available.

8

The CM

27

and SMART

9

s
hedulers provide feedba
k to appli
ations so they

may adapt to dynami
ally 
hanging loads, allowing the s
heduler to adjust to higher workloads without resorting

to restri
ting admission.

To meet deadlines, the proportional s
heduler must determine the proper share for ea
h pro
ess; a pro
ess

must somehow spe
ify its rate requirement. In many 
ases, this information is built into the pro
ess, and upon

start-up it noti�es the s
heduler through a system API. It may be diÆ
ult to determine a desired rate if the speed

of the target pro
essor is unknown; abstra
tions for spe
ifying rate address this problem

6

(however be
ause the

abstra
ted rates are typi
ally not expressed in units of system 
lo
k ti
ks, 
lo
k skew is inevitably introdu
ed).

For systems that in
lude feedba
k from the s
heduler to the pro
ess, greater 
exibility 
omes at the expense

of even more demand on appli
ation developers. Additionally, some systems provide me
hanisms for users to

spe
ify the quality of servi
e they desire from a pro
ess, and allow run-time modi�
ation of share assignments

through GUIs, pla
ing the burden of s
heduling spe
i�
ation on both the developers and the software users.

The BEST s
heduler does not need to be informed of pro
esses' rates, making the development and use of SRT

appli
ations easier.

�

While not stri
tly hierar
hi
al, middleware 
an be 
onsidered a meta-s
heduler for parti
ipating pro
esses.



2.4. The State of SRT S
heduling

The s
heduling algorithms and systems proposed by resear
hers support servi
e guarantees that are not pos-

sible with best-e�ort s
heduling. However, fully utilizing them involves diÆ
ult de
isions provided by system

builders, appli
ations developers, and users. System builders must set appropriate ar
hite
ture for hierar
hies of

s
hedulers. Developers must 
onform to new system APIs, redu
ing the portability of appli
ations. Users must

hassle with tuning the s
heduling parameters for desired performan
e; the average desktop user may not be

interested in or 
apable of a

omplishing this task. Our experien
e suggests that most multimedia appli
ations

only su�er o

asional glit
hes whi
h may be adequately addressed with better best-e�ort s
heduling. The ease

and simpli
ity of best-e�ort s
heduling makes it the most attra
tive model for many platforms|by enhan
ing

the performan
e of soft real-time pro
esses, the users may never noti
e the absen
e of servi
e guarantees.

3. IMPLEMENTATION

The goal of BEST is to enhan
e the performan
e of soft real-time tasks by dete
ting periodi
 pro
esses and

boosting their priorities to improve their 
han
es of meeting their deadlines. Like most UNIX s
hedulers,

28, 29

it dynami
ally 
al
ulates pro
ess priorities. It is aimed at desktop users who desire better performan
e from

multimedia appli
ations without the 
omplexity of a system with servi
e guarantees.

The s
heduler must de
ide whi
h programs have periodi
 deadline requirements by making an assumption:

appli
ations with periodi
 deadlines enter a runnable state when they begin a periodi
 
omputation, and upon


ompletion use syn
hronization primitives (su
h as timers) to wait for the beginning of the next period. We

predi
t that by observing the times that a pro
ess enters the queue of runnable pro
esses we 
an make reasonable

guesses about its period. A periodi
 pro
ess is \well-behaved" if it enters the runnable queue in a predi
table

pattern. It is possible that some pro
esses that repeatedly enter the runnable state may be misidenti�ed as

having a periodi
 deadline even though they do not; in this 
ase, they may bene�t from the mistake. This is

not a 
on
ern as long as the CPU resour
e isn't signi�
antly overburdened, and the s
heduler 
an be tuned to

minimize the likelihood of su
h o

urren
es.

In order to test the assumption that multimedia pro
esses enter the run queue with predi
table period,

we instrumented the Linux kernel to re
ord the entry time of a pro
ess to the nearest

1

800

of a se
ond, and

then ran some sample single-threaded multimedia pro
esses. We examined mpeg play, a desktop MPEG video

player, and mpg123, a desktop mp3 audio player. We found that these pro
esses did exhibit measurable periodi


behavior. Table 1 shows the average period and standard deviation in mi
rose
onds for the sample runs. These

experiments were exe
uted on a 650 MHz AMD i686 system.

Both multimedia programs enter the run queue with dete
table periods, however their behavior di�ers: the

video player must keep a nominal framerate, whereas the audio player periodi
ally feeds a bu�er so its timing

requirement is not as stri
t; it only needs to keep the bu�er from 
ompletely draining. When mpeg play displays

frames, it enters the run queue twi
e per frame, on
e for frame syn
hronization and on
e waiting for a video

bu�er, then sleeps until it is time to display the next frame. Be
ause it enters the run queue twi
e during

the same ti
k, the dete
ted average period is half the a
tual frame period, and the standard deviation is 
lose

Table 1: Average period, standard deviation, and CPU usage for sample multimedia pro
esses.

Average Standard CPU

Pro
ess period (ms) deviation usage

mpeg play (24 frame/s) 21.7 21.9 19.3%

mpeg play (24 frame/s) (no display) 42.3 9.2 13.0%

mpeg play (30 frame/s) 17.0 17.4 19.5%

mpeg play (30 frame/s) (no display) 34.6 13.1 15.9%

mpg123 (128 kbit/s) 160.2 31.7 2.2%

mpg123 (128 kbit/s) (di�erent mp3) 160.2 31.8 2.2%



to the average period (Se
tion 3.3.2 explains how BEST deals with this anomaly). When display is disabled,

mpeg play pro
esses the �le without rendering it. In this 
ase it does not blo
k waiting for the video frame

bu�er, and its period it equivalent to its frame rate. The audio player is not driven by a framerate or 
lo
k; it

repeatedly �lls a bu�er with audio data, sleeping for a �xed period between ea
h �ll. As expe
ted, it exhibits

periodi
 behavior, but sin
e the period is not s
heduled at a spe
i�
 rate it has higher varian
e than the video

player.

3.1. Design Goals

In developing the BEST s
heduler we had a number of spe
i�
 design 
riteria. The 
riteria and rationale for

the s
heduler design are:

1. The same s
heduling poli
y should apply to every appli
ation, regardless of its s
heduling needs|a uniform

algorithm simpli�es s
heduling de
isions.

2. Neither users or developers should have to provide any a priori information about the pro
ess to be

exe
uted.

3. The s
heduler should enhan
e the performan
e of soft real-time appli
ations.

� Pro
esses that enter the runnable queue in predi
table patterns should re
eive a priority boost; it

should be based on 
lassi
al real-time s
heduling results, i.e. the priority boost should be based on

measured rate or deadline.

� This algorithm should 
reate a positive feedba
k loop for well-behaved soft real-time pro
esses; when

pro
esses do not miss deadlines, they have the opportunity to wait for the next period, in
reasing

the likelihood of 
onsistent patterns.

� The s
heduler should be preemptive. Sin
e periodi
 pro
esses have higher priority, this prevents

missed deadlines.

4. The default behavior of the s
heduler should be reasonable and 
onsistent with general purpose time-

sharing s
hedulers.

� The s
heduler should favor intera
tive pro
esses over CPU-bound pro
esses.

� No pro
ess should starve. The presen
e of 
ompute intensive periodi
 pro
esses 
annot 
ompletely

hinder the progress of other pro
esses. Pro
esses will re
eive time sli
es that prevent them from

monopolizing the CPU and improve overall responsiveness.

� When the system is not fully loaded, 
hanges to workload should not e�e
t the performan
e of already

exe
uting pro
esses. For fully loaded systems, performan
e should degrade gra
efully.

3.2. Linux S
heduler Details

We implemented the BEST s
heduling algorithm in the Linux 2.2.5 kernel. We sele
ted Linux as a development

platform be
ause it is a popular desktop environment and sour
e 
ode is readily available. A brief des
ription

of the unmodi�ed Linux s
heduler is instru
tive for understanding the di�eren
es.

A fun
tion 
alled s
hedule() allo
ates the CPU to a pro
ess. It loops through all pro
esses in the runnable

queue, and sele
ts the one with highest dynami
 priority. The exe
ution of s
hedule() is triggered two ways:

expli
itly when a running pro
ess is put to sleep, or upon return from an interrupt or trap if the running

pro
ess's need res
hed 
ag is set. For example, when a pro
ess's time quantum expires, the timer interrupt

handler sets its need res
hed 
ag.

A fun
tion 
alled goodness() 
al
ulates dynami
 priorities. The dynami
 priority is also interpreted as a

time quantum, and de
reases for every 
lo
k ti
k the pro
ess exe
utes. When all runnable pro
esses 
onsume

their quantum, s
hedule() loops through all pro
esses (in
luding those not in the run queue) and re
omputes



their dynami
 priority using pri = pri=2+ni
e, where ni
e is a positively s
aled user-settable s
heduling priority.

When this 
al
ulation o

urs, a suspended pro
ess with a non-zero time quantum re
eives a priority boost; the

purpose is to in
rease the responsiveness of intera
tive pro
esses over CPU-bound pro
esses. For a program that

is always suspended, the priority as a fun
tion of the number of 
al
ulations n, is pri(n) = [(2

n+1

�1)=2

n

℄�ni
e.

Priority qui
kly in
reases, but as n!1, pri = 2�ni
e, limiting the priority (and time quantum) from growing

too large.

The Linux s
heduler implementation is designed to mimi
 the behavior of a multi-level feedba
k queue, and

although dynami
 priority 
al
ulations di�er from 4.4BSD (well-do
umented by M
Kusi
k et al.

29

), the goal

of the s
heduling poli
y remains the same: favor I/O-bound over CPU-intensive pro
esses while allowing no

pro
ess to starve. The 4.4BSD s
heduler di�ers from Linux by in
luding a time-de
aying estimate of the CPU

usage in the priority 
al
ulation. The Windows NT s
heduler employs a similar te
hnique.

24

3.3. BEST S
heduler Details

The BEST s
heduler uses an even simpler algorithm than the Linux s
heduler. Every pro
ess has a deadline

that is 
omputed when the pro
ess enters the runnable queue. The s
hedule() fun
tion sele
ts the runnable

pro
ess with the earliest deadline. Sin
e we do not know a pro
ess's deadline, a simple heuristi
 is used to

estimate its period, and the deadline is set to the expiration of its next period.

3.3.1. Period dete
tion

BEST estimates period when a pro
ess enters the runnable queue (queue entry is through a single fun
tion


alled wake up pro
ess()). The estimated period P

est

is the time that elapsed sin
e the pro
ess previously

entered the runnable queue. The new e�e
tive period P

n

is 
al
ulated by taking a weighted average with the

previous period P

n�1

, stated as P

n

= (P

est

+ w � P

n�1

)=(1 + w). Adjusting the weight fa
tor w 
ontrols how

fast the s
heduler forgets previous behavior. If the period ex
eeds a maximum value it is trun
ated, therefore

periods longer than this maximum are not dete
ted. The wake up pro
ess() fun
tion determines a pro
ess's

next deadline by adding its e�e
tive period to the 
urrent time. The s
heduler uses the deadline as a priority

when sele
ting runnable pro
esses. This fun
tion also sets an additional value 
alled the deadline timer. This

timer indi
ates how mu
h CPU time a pro
ess may re
eive before its deadline is reset. Like the quantum timer,

the deadline timer value is de
remented for every ti
k the pro
ess exe
utes. The deadline and deadline timer

values are stored in the pro
ess's state stru
ture.

Every time a pro
ess is s
heduled for the CPU it exe
utes until either its quantum expires, it blo
ks, or

it is preempted, at whi
h time s
hedule() is triggered. Before sele
ting the next pro
ess to exe
ute, if the


urrent pro
ess's deadline timer expired, s
hedule() sets its next deadline to a time beyond the maximum

dete
table period|in e�e
t it lowers the priority of any pro
ess that doesn't leave the runnable queue before

its deadline timer expires. Only wake up pro
ess() resets the deadline timer, so for a pro
ess that never

blo
ks s
hedule() will postpone its deadline whenever it exe
utes. Postponing a deadline to greater than the

maximum period ensures that pro
esses with dete
ted periods will have earlier deadlines. Be
ause a postponed

deadline is not re
omputed until after the pro
ess is allo
ated the CPU, starvation is prevented. On
e a deadline

is set, eventually the pro
ess will be s
heduled as time advan
es.

3.3.2. Con�den
e

Not every pro
ess that repeatedly wakes up is periodi
, so an additional step evaluates the 
on�den
e that the

estimated period is indeed due to periodi
 behavior. Con�den
e is a measure of the di�eren
e between the


urrent measured period, and the nearest multiple of the average period. (The expression jP

est

mod P

n

� P

n

=2j


al
ulates a 
on�den
e value between 0 and P

n

=2, but in pra
ti
e we use bit shifts and �xed-point math, yielding

a value normalized between 0 and 16). A pro
ess is \well-behaved" if its 
on�den
e ex
eeds a threshold. A

pro
ess that is not well-behaved will re
eive a deadline timer of 0, meaning that it is eligible to have its deadline

reset following its next s
heduled quantum. Although s
heduling priority is set a

ording to its estimated period,

on
e it uses its 
urrent quantum the pro
ess will be res
heduled with a CPU-bound pseudo-period unless its


on�den
e in
reases above threshold.



By 
al
ulating 
on�den
e using a multiple of the period (impli
it in the modulo operation), we elude the

e�e
t of dete
ting an average period that is half the a
tual period (as observed in Table 1, where we saw that

a video player entered the run queue twi
e per frame). This e�e
t also helps pro
esses that miss an o

asional

deadline. When a periodi
 pro
ess misses a deadline, it may not sleep and wake up again until a later period,

when it su

essfully 
ompletes a 
omputation on time. This pro
ess will still re
eive a high 
on�den
e rating

when it does, allowing it another opportunity to meet its next deadline. However, the weighting of its time-

de
aying average period will impa
t its next deadline assignment and subsequent 
on�den
e rating. The 
oupled

e�e
t of this weighting fa
tor and the 
on�den
e threshold impa
t the performan
e of the s
heduler.

3.3.3. Other 
hanges

In order to dete
t periods of pro
esses with high rates, we in
reased the timer resolution of Linux by a fa
tor of

8. Linux pro
esses 100 
lo
k ti
ks per se
ond; for a video player showing 33 frames/se
ond the average period

is 3 ti
ks, so a measurement error of 1 ti
k is a signi�
ant per
entage of its period. By in
reasing the timer

resolution to 800 ti
ks per se
ond, measurements are more �nely grained and provide a better estimate of the

appli
ation periods. Interestingly, we found that speeding up the timer in
reased the throughput of pro
esses

by about 5%, not the intuitive result expe
ted from in
reasing the frequen
y of timer interrupt pro
essing. We

do not at present have a satisfa
tory explanation for this result.

BEST uses a time quantum to limit the time a pro
ess may hold the CPU. In Linux, the default pro
essing

time quantum is 0.2 se
onds, and may be modi�ed between 0.01 and 0.40 se
onds using the UNIX ni
e fa
ility.

In BEST the default pro
essing quantum is set to 0.1 se
ond, whi
h is histori
ally the quantum used in BSD as

it provides an ideal responsiveness for intera
tive pro
esses.

29

Using the ni
e fa
ility s
ales this range between

0.005 and 0.20 se
onds. In BEST, a running pro
ess may be preempted by one with an earlier deadline; however,

similar to Linux, 
ontext swit
hes are redu
ed by disabling preemption when a 
urrent quantum expires in less

than 10 millise
onds. Note that when an exe
uting pro
ess still has a positive deadline timer, an expired

quantum will not a�e
t its s
heduling priority and it is likely to be sele
ted again. This makes the deadline

timer behave like an interval timer, as used in Nemesis.

17

In the future, we plan to repla
e all quanta with

interval timers to redu
e unne
essary s
heduling overhead.

3.3.4. Tuning the s
heduler

Several parameters a�e
t the behavior of the BEST s
heduler: the maximum period, the deadline timer, the

weight used for averaging period measurements, and the 
on�den
e threshold. The maximum dete
table period


ontrols the responsiveness of CPU-bound pro
esses in a heavily loaded system, sin
e their pseudo-deadlines

are delayed beyond this period. The deadline timer di
tates the maximum amount of time a pro
ess re
eives

before resetting its deadline; if too large, a pro
ess may monopolize the CPU, and if too short, it may not

meet its deadline. Finally, the averaging weight and 
on�den
e threshold impa
t the e�e
tiveness of the period

dete
tion algorithm.

For the BEST prototype des
ribed in Se
tion 4, we use a maximum period of 5.12 se
onds (with an extra

o�set of 0.1 se
ond added to the deadline of CPU-bound pro
esses), a weighting average of

1

3

, and a generous

threshold that allows any 
on�den
e level to pass. The deadline timer is the same as the period, so that a

pro
ess's deadline is not reset until it uses all the pro
essing time of a period. In pra
ti
e, a pro
ess should use

less time than its period, otherwise it will miss deadlines in the presen
e of any other work and is generally

not s
hedulable on a shared system. These defaults work well in our experiments where all pro
esses were

\well-behaved," although we expe
t them to require tuning for more real workloads.

4. EXPERIMENTAL RESULTS

To examine how well the BEST s
heduler meets the design 
riteria set forth in Se
tion 3.1 we 
ondu
ted a set

of experiments 
omparing the performan
e of the BEST s
heduler with that of the Linux s
heduler and a Rate

Monotoni
 (RM) s
heduler. We 
hose RM as a representative real-time s
heduler be
ause the POSIX standard

spe
i�es a s
heduling 
lass with stati
 priorities 
apable of supporting RM s
heduling. Note, however, that the


al
ulation of priorities for RM s
heduling requires a spe
i�
ation of appli
ation periods while the default Linux

s
heduler and BEST do not.



0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler

loop
periodic (0.1s 40%)

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BEST Scheduler

loop
periodic (0.1s 40%)

Figure 1: Linux and BEST s
hedulers running (1) loop and (2) periodi
 0.1s 40%.

While running 
ombinations of greedy (CPU-intensive) and periodi
 (soft real-time) pro
esses, we measured

the throughput of all pro
esses and the number of missed deadlines for periodi
 pro
esses. Two syntheti


appli
ations were used in the experiments. Loop endlessly 
onsumes CPU bandwidth by 
run
hing math

operations. Periodi
 takes two arguments, a period and a per
entage; it attempts to 
onsume the desired

per
entage of CPU bandwidth during ea
h period. If it 
ompletes before a deadline it pauses until the beginning

of the next period, and if not it re
ords a missed deadline and starts the next period's 
omputation. All

experiments were exe
uted on a 200 MHz Pentium Pro system with 256K 
a
he and 256M RAM.

Our results show that in general the Linux s
heduler performs reasonably well when the total demand of

soft real-time pro
esses is less than 100% of the CPU and ea
h pro
ess requires no more than than

1

n

of the

CPU, where n is the number of running pro
esses. This is 
onsistent with our previous work in exe
uting soft

real-time pro
esses on best-e�ort systems. Figure 1 shows the performan
e of the Linux s
heduler and the

BEST s
heduler with one best-e�ort pro
ess (loop) and one SRT pro
ess (periodi
, with

1

10

se
ond period and

CPU requirements of 40% of the CPU). Be
ause the Linux s
heduler provides approximately equal amounts of

CPU 
y
les to ea
h appli
ation and be
ause the SRT pro
ess requires less than 50% of the CPU (it's nominal

fair share) the Linux s
heduler met all appli
ation deadlines. Similarly, the BEST s
heduler met all deadlines

and provided the same amount of resour
es to ea
h appli
ation as the Linux s
heduler: 40% of the CPU was

granted to the SRT pro
ess and 60% was granted to the best-e�ort pro
ess. A similar experiment was performed

(Figure 2) repla
ing loop with a se
ond SRT appli
ation (periodi
, with the same parameters). The results were

similar ex
ept that the idle loop 
onsumed the remaining 20% of unused CPU 
y
les. With reasonable priorities,

RM would perform the same.

When a soft real-time pro
ess requires more than its nominal share of the available CPU 
y
les, the Linux

s
heduler is unable to satisfy it in the presen
e of CPU-bound best-e�ort pro
esses. Spe
i�
ally, when two

pro
esses of equal priority 
ompete, the Linux s
heduler gives them ea
h about 50% of the available CPU


y
les (with slightly more given to pro
esses that blo
k o

asionally). Figure 3 shows the performan
e of the

Linux, BEST, and RM s
hedulers with one best-e�ort pro
ess (loop) and one SRT pro
ess (periodi
, with

1

10

se
ond period and 70% CPU usage). Here we see that the Linux s
heduler provides approximately 50% of the

available CPU 
y
les to ea
h pro
ess, 
ausing the SRT pro
ess to miss 29% of its deadlines. By 
ontrast, the RM

s
heduler (with appropriate priorities) provides the SRT pro
ess with 70% of the available 
y
les, enabling it to

meet all of its deadlines while still allowing the best-e�ort pro
ess to progress at a reasonable rate. In this 
ase,

the BEST s
heduler provided exa
tly the same performan
e as the RM s
heduler, enabling the SRT pro
ess to

meet all of its deadlines while still allowing the best-e�ort pro
ess to progress using the remaining CPU 
y
les.

Re
all, however, that BEST dynami
ally determines the appli
ation periods whereas Rate Monotoni
 requires

that periods be spe
i�ed in order to determine appropriate priorities.



0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler

periodic (0.1s 40%)
periodic (0.1s 40%)

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BEST Scheduler

periodic (0.1s 40%)
periodic (0.1s 40%)

Figure 2: Linux and BEST s
hedulers running (1) periodi
 0.1s 40% and (2) periodi
 0.1s 40%.

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler

loop
periodic (0.1s 70%)

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BEST Scheduler

loop
periodic (0.1s 70%)

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Rate Monotonic Scheduler

loop
periodic (0.1s 70%)

Figure 3: Linux, BEST, and RM s
hedulers with (1) loop and (2) periodi
 0.1s 70%.

Even in 
ases where the Linux s
heduler should theoreti
ally allow SRT pro
esses to meet all of their

deadlines, su
h as when ea
h requires less than its nominal share of the CPU, it is still possible that ea
h

pro
ess will fail to meet its deadline. Be
ause the Linux s
heduler is unaware of resour
e requirements or

deadlines, its well-intentioned s
heduling de
isions 
an result in some pro
esses missing deadlines that 
ould

otherwise be met. Figure 4(a) shows the Linux, BEST, and RM s
hedulers running three pro
esses; one best-

e�ort pro
ess and two SRT pro
esses, ea
h of whi
h require 30% of the CPU, one with a period of

1

10

se
ond

and the other with a period of 1 se
ond. Be
ause ea
h SRT pro
ess needs less than its nominal share of the

CPU, all deadlines should theoreti
ally be met. However, due to the details of the Linux s
heduler, we see that

in fa
t the pro
ess with the shorter period re
eived less than 30% of the CPU and missed 6% of its deadlines.

By 
ontrast, the same pro
esses running with the BEST s
heduler missed no deadlines. As 
an be seen from

the graph, the two SRT pro
ess re
eived about the same amount of CPU time and approximately 30% of the

available 
y
les. Similarly, these pro
esses made all deadlines under RM s
heduling.

Figure 4(b) shows a magni�ed view of a portion of the data from Figure 4(a), providing greater detail about

when ea
h s
heduling de
ision is made and how mu
h CPU is s
heduled at ea
h de
ision. In parti
ular, it shows

that under the Linux s
heduler, the short period SRT pro
ess re
eives less CPU and at greater intervals than

under the BEST s
heduler. Under the Linux s
heduler, this pro
ess experien
es a short gap every se
ond where

it is not s
heduled. This 
auses the pro
ess to miss some deadlines. Under the BEST s
heduler, this does not

o

ur and the pro
esses miss no deadlines at all.

While any set of soft-real time pro
esses with a CPU requirement less than 100% is theoreti
ally s
hedulable



0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler

loop
periodic (1.0s 30%)
periodic (0.1s 30%)

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BEST Scheduler

loop
periodic (1.0s 30%)
periodic (0.1s 30%)

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Rate Monotonic Scheduler

loop
periodic (1.0s 30%)
periodic (0.1s 30%)

(a) Linux, BEST, and RM s
hedulers.

2

3

4

5

6

7

8

9

10 12 14 16 18 20

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler Detail

loop
periodic (1.0s 30%)
periodic (0.1s 30%)

2

3

4

5

6

7

8

9

10 12 14 16 18 20

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BEST Scheduler Detail

loop
periodic (1.0s 30%)
periodic (0.1s 30%)

(b) Detail view of appli
ation progress in Linux and BEST.

Figure 4: Linux, BEST, and RM s
hedulers with (1) loop (2) periodi
 1s 30% and (3) periodi
 0.1s 30%.

without missed deadlines, in many 
ases the Linux s
heduler 
annot allo
ate enough share to SRT pro
esses in


ompetition with a greedy pro
ess. Figure 5 shows the Linux, BEST and RM s
hedulers with four pro
esses,

one best-e�ort and three SRT, one with a period of 1 se
ond requiring 30% of the CPU, one with a period

of

1

2

se
ond requiring 30% of the CPU, and one with a period of

1

10

se
ond requiring 30% of the CPU. The

Linux s
heduler 
annot meet all deadlines be
ause it allo
ates roughly

1

4

of the resour
es to ea
h pro
ess, and

it performs very poorly, missing 83%, 80%, and 10% of the deadlines of the periodi
 pro
esses, respe
tively.

Again, like the RM s
heduler, the BEST s
heduler met all deadlines while still allowing the best e�ort pro
ess

to make progress.

One short
oming of rate-monotoni
 s
heduling is its inability to �nd a feasible s
hedule that fully utilizes

the CPU when running periodi
 appli
ations that exhibit non-harmoni
 periods.

12

By using EDF to make

the a
tual s
heduling de
isions, BEST does not exhibit this property. Figure 6 shows the performan
e of the

three s
hedulers with four pro
esses, one best-e�ort and three SRT, one with a period of 0.61 se
onds requiring

31% of the CPU, one with a period of 0.43 se
onds requiring 30% of the CPU and one with a period of 0.13

se
onds requiring 31% of the CPU. In this 
ase, the SRT pro
esses need 92% of the CPU and have non-harmoni


periods. The Linux s
heduler provides approximately equal CPU to ea
h pro
ess with the result that the best-



0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler

loop
periodic (1.0s 30%)
periodic (0.5s 30%)
periodic (0.1s 30%)

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BEST Scheduler

loop
periodic (1.0s 30%)
periodic (0.5s 30%)
periodic (0.1s 30%)

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Rate Monotonic Scheduler

loop
periodic (1.0s 30%)
periodic (0.5s 30%)
periodic (0.1s 30%)

Figure 5. Linux, BEST and RM s
hedulers with (1) loop (2) periodi
 1s 30% (3) periodi
 0.5s 30% and (4) periodi


0.1s 30%

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler

loop
periodic (0.61 31%)

periodic (0.43s 30%)
periodic (0.13s 31%)

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BEST Scheduler

loop
periodic (0.61 31%)

periodic (0.43s 30%)
periodic (0.13s 31%)

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Rate Monotonic Scheduler

loop
periodic (0.61 31%)

periodic (0.43s 30%)
periodic (0.13s 31%)

Figure 6. Linux, BEST, and RM s
hedulers with (1) loop (2) periodi
 0.61s 31% (3) periodi
 0.43s 30% and (4) periodi


0.13 31%.

e�ort pro
ess makes too mu
h progress and prevents the SRT pro
esses from meeting enough deadlines|they

miss 77%, 66%, and 16% respe
tively. In theory, RM s
heduling may not meet all deadlines and that is exa
tly

what we observe. RM 
auses the pro
ess with the longest period (and thus the lowest Rate Monotoni
 priority)

to miss 27% of its deadlines. Outperforming both other s
hedulers, BEST exe
utes the pro
esses and meets all

SRT deadlines.

An important question about any SRT s
heduler is how it performs in situations of system overload. Best-

e�ort s
hedulers will in general allo
ate a proportional share of the CPU to ea
h pro
ess, Rate Monotoni
 will

meet the deadlines of pro
esses with highest priority (generally those with the lowest period),

12

and EDF

will miss all deadlines by roughly the same amount.

30

While the overload of either RT s
heduler might be


onsidered optimal in some stri
tly SRT environments, they su�er from the fa
t that they will starve best-

e�ort pro
esses entirely. Figure 7 shows the performan
e of the Linux, BEST, and RM s
hedulers with four

pro
esses, one best-e�ort, one SRT with period 1 se
ond requiring 40% of the CPU, one SRT with period

1

2

se
onds requiring 40% of the CPU, and one SRT with period

1

10

se
onds requiring 40% of the CPU. Be
ause

the resour
e requirements of the SRT pro
ess sum to greater than 100% of the CPU, no s
heduler 
an meet

all of the deadlines. The Linux s
heduler gives ea
h pro
ess roughly

1

4

of the CPU, 
ausing the SRT pro
esses

to miss 98%, 93%, and 19% of their deadlines, respe
tively, and allows the best-e�ort pro
ess to make very

good progress, getting a full

1

4

of the available CPU 
y
les. The RM s
heduler meets all of the deadlines for

the two SRT pro
esses with shorter deadlines, but misses 98% of the deadlines for the SRT pro
ess with the

longest deadline and doesn't allow the best-e�ort pro
ess to run at all. The BEST s
heduler embodies the best


hara
teristi
s of both s
hedulers, distributing (somewhat) and minimizing the missed deadlines (71%, 5%, and

2% respe
tively) while still allowing the best-e�ort pro
ess to make reasonable progress.

A primary goal of the BEST s
heduler is to minimize the number of missed deadlines for soft real-time



0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler

loop
periodic (1.0s 40%)
periodic (0.5s 40%)
periodic (0.1s 40%)

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BEST Scheduler

loop
periodic (1.0s 40%)
periodic (0.5s 40%)
periodic (0.1s 40%)

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Rate Monotonic Scheduler

loop
periodic (1.0s 40%)
periodic (0.5s 40%)
periodic (0.1s 40%)

Figure 7. Linux, BEST, and RM s
hedulers with (1) loop (2) periodi
 1s 40% (3) periodi
 0.5s 40% and (4) periodi


0.1 40%.

Table 2: Summary of per
entage of deadlines missed for all experiments.

S
heduler

Experiment Pro
ess Linux BEST RM

1 loop - - -

periodi
(0.1s 40%) 0 0 0

2 periodi
(0.1s 40%) 0 0 0

periodi
(0.1s 40%) 0 0 0

3 loop - - -

periodi
(0.1s 70%) 29 0 0

4 loop - - -

periodi
(1.0s 30%) 0 0 0

periodi
(0.1s 30%) 6 0 0

5 loop - - -

periodi
(1.0s 30%) 83 0 0

periodi
(0.5s 30%) 80 0 0

periodi
(0.1s 30%) 10 0 0

6 loop - - -

periodi
(0.61s 31%) 77 0 27

periodi
(0.43s 30%) 66 0 0

periodi
(0.13s 31%) 16 0 0

7 loop - - -

periodi
(1.0s 40%) 98 71 98

periodi
(0.5s 40%) 93 5 0

periodi
(0.1s 40%) 19 2 0

pro
esses while providing good best-e�ort performan
e. The previous �gures show that BEST approximates

the performan
e of both Linux and RM as appropriate. Table 2 summarizes the per
entage of deadlines missed

by ea
h s
heduler in all of the experiments. It shows that BEST meets or ex
eeds the performan
e of both the

Linux and Rate Monotoni
 s
hedulers in ea
h of the experiments shown.

A �nal question that is diÆ
ult to answer with data is the qualitative one|how does the s
heduler perform

in general use? To attempt to answer this question, we have been running the BEST s
heduler (in Linux) on

a desktop ma
hine for the past few months. We have experien
ed no anomalous behavior, response time has

been satisfa
tory and \normal," SRT pro
esses de�nitely appear to run better, and BE pro
esses do not starve

while SRT pro
esses are running. While this is not 
on
lusive, it is quite en
ouraging.



5. FUTURE WORK

Experiments show that the BEST prototype meets its intended purpose: enhan
ing the performan
e of periodi


pro
esses while 
apturing the bene�ts of a best-e�ort model. It also preserves the design goals of general-

purpose operating systems by favoring I/O-intensive over CPU-bound jobs; as users we su

essfully employ the

s
heduler on a development and general purpose platform with no adverse e�e
t on responsiveness. However,

many of the s
heduler parameters are not tuned for exe
uting real multimedia appli
ations and workloads. For

example, pro
esses entering the system are 
urrently initialized with s
heduling parameters that make them

appear periodi
. Running a bat
h pro
ess (su
h as a 
ompile) will generate several jobs that might interfere with

already running pro
esses; by determining proper initial values for pro
ess stru
tures we 
an limit this e�e
t. In

the future we will tune BEST s
heduler using the behavior of popular multimedia pa
kages as examples (su
h

as MpegTV and xmms). Many multimedia appli
ations are multi-threaded and depend on the responsiveness

of other pro
esses su
h as the X server. In light of the dependen
ies of these appli
ations, we must reexamine

the naive assumptions of our test pro
esses. For example, a more sophisti
ated version of the s
heduler may

dete
t dependen
ies and allow a pro
ess to inherit the deadline of related pro
esses.

In addition, we believe that BEST has better jitter performan
e than the default Linux s
heduler. We

intend to 
hara
terize the jitter performan
e of BEST and 
ompare it with the other s
hedulers examined in

this paper. Another aspe
t of BEST that we have yet to examine is the e�e
t of 
hanging priorities. We believe

that by automati
ally adjusting the priorities of the SRT pro
esses we 
an adapt the system to provide any

missed-deadline behavior desired. In parti
ular, we should be able to spread out the missed deadlines a
ross

the SRT pro
esses or minimize the missed deadlines of more important pro
esses.

6. CONCLUSION

Standard best-e�ort s
hedulers make no resour
e guarantees, but soft real-time appli
ations require some as-

suran
e of resour
e allo
ation in order to meet deadlines. Best-e�ort s
heduling is thought to perform poorly

for multimedia; but be
ause it is simple to use, the best-e�ort model 
ontinues to be attra
tive for both appli-


ation developers and users of general purpose systems. BEST is a CPU s
heduler that adheres to a best-e�ort

s
heduling poli
y while automati
ally dete
ting and boosting the performan
e of periodi
 soft real-time pro-


esses. BEST dynami
ally determines appli
ation periods and s
hedules pro
esses a

ording to earliest deadline

�rst, a well-known s
heduler for real-time systems. However, unlike real-time s
hedulers, it uses simple heuristi
s

to determine deadlines for both periodi
 and non-periodi
 pro
esses.

This paper presents the design and implementation of the prototype BEST s
heduler in the Linux kernel. It

in
ludes the results of a set of experiments demonstrating the s
heduler's e�e
tiveness at boosting the perfor-

man
e of pro
esses with soft deadlines, while preserving desired 
hara
teristi
s of general purpose time-sharing

s
hedulers. In parti
ular, our results show that BEST performs as well as or better than the Linux s
heduler

and RM s
heduling in handling best-e�ort, soft real-time, and a 
ombination of the two types of pro
esses.

This holds true in situations of both pro
essor underload and pro
essor overload and is done with no a priori

knowledge of the appli
ations, their resour
e usage, or their periods. By 
ontinuing these experiments with

more realisti
 workloads and by �ne-tuning the s
heduler parameters, we expe
t to develop the prototype into

a full-
edged and robust system appropriate for widespread and general use.

ACKNOWLEDGMENTS

The work in this paper was motivated in part by a suggestion from Lonnie Wel
h that it would be interesting

to see if we 
ould dynami
ally dete
t appli
ation periods at run-time; the authors gratefully a
knowledge

that suggestion. We thank the reviewers for o�ering additional insight and ideas for future work. We also

thank Za
hary Peterson for reviewing drafts of this paper. This resear
h was funded in part by a DOE High-

Performan
e Computer S
ien
e Fellowship and a USENIX Student Resear
h Grant.



REFERENCES

1. J. Nieh, J. G. Hanko, J. D. North
utt, and G. A. Wall, \SVR4UNIX s
heduler una

eptable for multimedia

appli
ations," in Pro
eedings of the Fourth International Workshop on Network and Operationg System

Support for Digital Audio and Video, 1993.

2. S. Brandt, G. Nutt, T. Berk, and J. Mankovi
h, \A dynami
 quality of servi
e middleware agent for

mediating appli
ation resour
e usage," in Pro
eedings of the 19th IEEE Real-Time Systems Symposium,

pp. 307{317, De
. 1998.

3. S. Brandt and G. Nutt, \Flexible soft real-time pro
essing in middleware." Real-Time Systems, 2001. to

appear.

4. A. Bavier and L. L. Peterson, \BERT: A s
heduler for best e�ort and real-time tasks," Te
hni
al Report

TR-587-98, Prin
eton University, Aug. 1998.

5. K. J. Duda and D. R. Cheriton, \Borrowed-virtual-time (BVT) s
heduling: Supporting laten
y-sensitive

threads in a general-purpose s
heduler," in Pro
eedings of the 17th ACM Symposium on Operating System

Prin
ipals, De
. 1999.

6. K. Je�ay and D. Bennett, \A rate-based exe
ution abstra
tion for multimedia 
omputing," in Pro
eedings

of the 5th International Workshop on Network and Operating System Support for Digital Audio and Video,

Apr. 1995.

7. M. Jones, J. B. III, and A. Forin, \An overview of the Rialto real-time ar
hite
ture," in Pro
eedings of the

7th ACM SIGOPS European Workshop, pp. 249{256, Sept. 1996.

8. C. W. Mer
er, S. Savage, and H. Tokuda, \Pro
essor 
apa
ity reserves: Operating system support for

multimedia appli
ations," in Pro
eedings of the IEEE Internation Conferen
e on Multimedia Computing

and Systems, pp. 90{99, May 1994.

9. J. Nieh and M. Lam, \The design, implementation and evaluation of SMART: A s
heduler for multimedia

appli
ations," in Pro
eedings of the Sixteenth Symposium on Operating System Prin
ipals, O
t. 1997.

10. H. Tokuda, T. Nakajimi, and P. Rao, \Real-time Ma
h: Towards a predi
table real-time system," in

Pro
eedings of USENIX Ma
h Workshop, O
t. 1990.

11. J. Regehr, M. B. Jones, and J. A. Stankovi
, \Operating system support for multimedia: The programming

model matters," Te
hni
al Report MSR-TR-2000-98, Mi
rosoft Resear
h, Sept. 2000.

12. A. Burns, \S
heduling hard real-time systems: A review," Software Engineering Journal 6, pp. 116{128,

May 1991.

13. E. D. Jensen, C. D. Lo
ke, and H. Tokuda, \A time-driven s
heduling model for real-time operating

systems," in Pro
eedings of the 6th IEEE Real-Time Systems Symposium, De
. 1985.

14. S. Khanna, M. Sebr�ee, and J. Zolnowsky, \Realtime s
heduling in SunOS 5.0," in USENIX Winter 1992

Te
hni
al Conferen
e, pp. 375{390, Jan. 1992.

15. IEEE, IEEE Standard for Information Te
hnology-Portable Operating System Interfa
e (POSIX)-Part

1: System Appli
ation Programming Interfa
e (API)-Amendment 1: Realtime Extension [C Language℄,

Std1003.1b-1993 ed., 1994.

16. C. L. Liu and J. W. Layland, \S
heduling algorithms for multiprograming in a hard-real-time environment,"

Journal of the Asso
iation for Computing Ma
hinery 20, pp. 46{61, Jan. 1973.

17. I. M. Leslie, D. M
Auley, R. Bla
k, T. Ros
oe, P. Barham, D. Evers, R. Fairbairns, and E. Hyden, \The

design and implementation of an operating system to support distributed multimedia appli
ations," in

IEEE Journal on Sele
ted Areas in Communi
ations, pp. 1280{1297, Sept. 1996.

18. B. Mullen, \The Multi
s s
heduler." http://www.multi
ians.org/mult-s
hed.html, Aug. 1995.

19. V. Yodaiken and M. Barabanov, \Real-time Linux," in Pro
eedings of Linux Appli
ations Development and

Deployment Conferen
e (USELINUX), Jan. 1997.

20. H. hua Chu and K. Nahrstedt, \A soft real time s
heduling server in UNIX operating system," in European

Workshop on Intera
tive Distributed Multimedia Systems and Tele
ommuni
ation Servi
es, Sept. 1997.

21. C. han Lin, H. hua Chu, and K. Nahrstedt, \A soft real-time s
heduling server on the Windows NT," in

Pro
eedings of the 2nd USENIX Windows NT Symposium, Aug. 1998.



22. P. Goyal, X. Guo, and H. M. Vin, \A hierar
hi
al CPU s
heduler for multimeida operating systems," in

Pro
eedings of the Se
ond Symposium on Operating Systems Design and Implementation, O
t. 1996.

23. B. Ford and S. Susarla, \CPU inheritan
e s
heduling," in Pro
eedings of the 2nd Symposium on Operating

Systems Design and Implementation, pp. 91{105, O
t. 1996.

24. G. M. Candea and M. B. Jones, \Vassal: Loadable s
heduler support for multi-poli
y s
heduling," in

Pro
eedings of the 2nd USENIX Windows NT Symposium, pp. 157{166, Aug. 1998.

25. I. Stoi
a, H. Abdel-Wahab, K. Je�ay, S. K. Buruah, J. E. Gehrke, and C. G. Plaxton, \A proportional

share resour
e allo
ation algorithm for real-time, time-shared systems," in Pro
eedings of the Real-Time

Systems Symposium, pp. 288{299, De
. 1996.

26. C. A. Waldspurger, Lottery and Stride S
heduling: Flexible Proportional-Share Resour
e Management. PhD

thesis, Massa
husetts Institute of Te
hnology, Sept. 1995.

27. D. K. Yau and S. S. Lam, \Adaptive rate-
ontrolled s
heduling for multimedia appli
ations," in ACM

Multimedia Conferen
e, Nov. 1996.

28. M. Be
k, H. B�ohme, M. Dziadzka, U. Kunitz, R. Magnus, and D. Verworner, Linux Kernel Internals,

Addison Wesley Longman, 2nd ed., 1998.

29. M. K. M
Kusi
k, K. Bosti
, M. J. Karels, and J. S. Quarterman, The Design and Implementation of the

4.4BSD Operating System, Addison-Wesley Publishing, 1996.

30. J. A. Stankovi
, M. Spuri, M. D. Natale, and G. Buttazo, \Impli
ations of 
lassi
al s
heduling results for

real-time systems," Computer 28, pp. 16{25, June 1995.


