The BEST scheduler for integrated processing of best-effort
and soft real-time processes

Scott A. Banachowski and Scott A. Brandt

Computer Science Department, University of California, Santa Cruz

ABSTRACT

Algorithms for allocating CPU bandwidth to soft real-time processes exist, yet best-effort scheduling remains
an attractive model for both application developers and users. Best-effort scheduling is easy to use, provides a
reasonable trade-off between fairness and responsiveness, and imposes no extra overhead for specifying resource
demands. However, best-effort schedulers provide no resource guarantees, limiting their ability to support
processes with timeliness constraints. Reacting to the need for better support of soft real-time multimedia
applications while recognizing that the best-effort model permeates desktop computing for very good reasons,
we have developed BEST, an enhanced best-effort scheduler that combines desirable aspects of both types of
computing. BEST provides the well-behaved default characteristics of best-effort schedulers while significantly
improving support for periodic soft real-time processes. BEST schedules using estimated deadlines based on
the dynamically detected periods of processes exhibiting periodic behavior, and assigns pseudo-periods to non-
periodic processes to allow for good response time. This paper discusses the BEST scheduling model and
our implementation in Linux and presents results demonstrating that BEST outperforms the Linux scheduler
in handling soft real-time processes, outperforms real-time schedulers in handling best-effort processes, and
sometimes outperforms both, especially in situations of processor overload.

Keywords: Soft real-time, scheduling, Linux

1. INTRODUCTION

Although many people wish to use their desktop workstations as multimedia platforms, conventional desk-
top operating systems do not directly support the scheduling needs of soft real-time multimedia applications.
Schedulers in conventional desktop operating systems use best-effort time-sharing policies designed to reduce
the latency of interactive processes and provide adequate progress for all processes. Because they provide no
guarantees of processing bandwidth, multimedia applications may or may not receive the timely scheduling they
require in order to play continuous sound or video.!

Our previous work examined dynamic desktop soft real-time using Dynamic QoS Level Resource Manage-
ment (DQM).23 In that work we showed that it is possible to robustly execute soft real-time applications
on best-effort systems. In particular, we developed a middleware framework that allowed applications to dy-
namically adjust their resource usage based on the available resources. By adjusting resource usage such that
the set of running applications use less than 100% of the available resources, a best-effort scheduler is able to
provide reasonable soft real-time performance. In that work we also demonstrated dynamic estimate refinement,
a technique that enables the system to dynamically adapt to incorrect or unspecified resource usage estimates.

Like most soft real-time systems, the DQM system has several issues that limit its ultimate utility in
generic desktop environments. First, because it is a middleware solution, the performance of soft real-time
applications varies significantly in the presence of best-effort or other applications that do not cooperate with
the middleware resource manager. Second, like most soft real-time systems*'® it requires applications to
interface with special-purpose soft real-time interface routines. Third, like other soft real-time systems, the
DQM requires that applications provide a priori estimates of resource usage and period. Although the DQM

Further author information:
Email: {sbanacho,sbrandt@cse.ucsc.edu} Address: Computer Science Department, School of Engineering, Applied Sci-
ences Bldg., U.C. Santa Cruz, 1156 High Street, Santa Cruz, CA 95064.

system can dynamically adjust to incorrect or unspecified resource usage estimates, it cannot adapt to incorrect
or unspecified application periods.

This paper presents a solution that addresses those issues—BEST, a time-sharing scheduler that directly
supports multimedia applications while providing adequate progress and response time for best-effort applica-
tions. BEST dynamically measures process behavior and uses the information to aid in scheduling decisions.
By detecting the rate at which waiting processes enter the run queue, the scheduler boosts the performance
of “well-behaved” periodic processes by increasing their priority, while preserving the behavior of traditional
time-sharing schedulers for non-periodic processes; we use a Best-effort scheduler that is Enhanced for Soft
real-time Time-sharing, so we call it the BEST scheduler.

Current approaches to soft real-time scheduling require special interfaces to the scheduler—BEST differs by
removing software authors’ and users’ awareness of the scheduler. Most specialized systems place a burden of
specifying scheduling needs of an application either with the developer, who must use system calls to communi-
cate and negotiate with a scheduler, or the user, who explicitly chooses priorities or executes external software
to control scheduling policies. The BEST scheduler uses the best-effort model, so no process is refused admission
or provided a service guarantee. This is an attractive model because it incurs no overhead for programmers
or users. Like other best-effort systems, if the user overburdens the system, the user will experience degraded
system performance.!! However in the presence of other applications or heavy (but not overburdened) use,
the BEST scheduler effectively meets soft real-time deadlines for applications that are well-behaved. And when
overburdened, BEST continues to provide satisfactory progress to all applications.

This paper describes an implementation of the BEST scheduler in the Linux kernel. Section 2 summarizes
related research that supports scheduling for multimedia. Section 3 describes the scheduler implementation,
and Section 4 presents quantitative performance data. Finally, Section 5 discusses our future plans for this
research and Section 6 provides concluding remarks.

2. RELATED WORK

Continuous real-time applications require enough processor bandwidth to meet their periodic deadlines.'?> We
classify multimedia applications as soft real-time because, like real-time processes, they must meet periodic
deadlines, but missing an occasional deadline results in diminished performance rather than outright failure.'3

2.1. Real-time Scheduling

Real-time systems, such as RT-Mach,'? are designed to meet hard deadline constraints. Some versions of UNIX
support real-time scheduling classes,'* and many systems adapt the POSIX standard for real-time extensions.'®
In order to ensure predictable behavior, these system use strict scheduling policies such as Rate Monotonic
(RM) or Earliest Deadline First (EDF).'® These scheduling algorithms require that the worst-case workload is
known when configuring a system. For industrial applications, where systems are typically dedicated to specific
purposes and deadlines are hard, real-time systems are attractive because they may be tuned to perform
predictably. However real-time operating systems are not well-suited for desktop use because workload cannot
in general be predicted. Most multimedia scheduling research focuses on integrating the desirable features of
hard real-time scheduling into general-purpose systems that have inconsistent workloads; an example is the
Nemesis Atropos scheduler, which uses EDF based on deadlines derived from a process’s specified share of
CPU bandwidth.!” Multics also provides an EDF scheduler, using desired response time to determine virtual
deadlines of non-real-time processes.'® Like these systems, BEST schedules by earliest deadline, but unlike
previous systems it automatically detects the periods of processes and assigns appropriate deadlines based on
this information, and assigns pseudo-deadlines to non-periodic processes and schedules accordingly.

2.2. Multi-level Scheduling

One approach for handling a mix of applications divides processes according to type, and assigns each type to
different schedulers; each scheduler uses the policy best suited for its type. In hierarchical schemes, a lower-
level scheduler receives bandwidth allocated by the higher-level scheduling policy. For example, in Real-Time
Linux,'® the Linux kernel executes as the lowest priority task in a real-time scheduler alongside the other higher

priority real-time tasks. POSIX extensions also implement hierarchical scheduling—the real-time classes defer
to the time-sharing class when no real-time process is ready to execute.

Researchers use several techniques of adapting multi-level scheduling to the needs of soft real-time systems.
Taking advantage of the POSIX multi-level scheduling classes, user processes may schedule soft real-time pro-
cesses by dynamically altering their priorities,?% 2! thereby removing soft real-time scheduling decisions from
the kernel. Some more sophisticated approaches to hierarchical scheduling include the SFQ algorithm, which
proportionally shares bandwidth among the levels so that time-critical applications receive adequate resources,??
and CPU Inheritance Scheduling,?® which allows scheduling threads to donate processing to other scheduler
threads in flexible arbitrary arrangements of hierarchies. The Vassal project?* adds a system interface for users
to install their own schedulers. Another method applied to soft real-time is middleware resource management*.
Middleware managers monitor a system’s resources usage, and provide recommendations to adaptive soft real-
time processes. DQM? uses this approach to maximize benefits for scalable soft real-time processes, independent
of the underlying kernel scheduler.

The architectural approach of dividing scheduling into levels creates flexibility for systems running a mix of
applications of differing processing needs; with it comes the problem of choosing ideal configurations, which as
research indicates is not trivial. System architects, and in some cases users, must make informed decisions for the
layout of scheduling hierarchy. For the BEST scheduler, we do not introduce the complexity of multiple levels
of scheduling, and instead rely on a single algorithm for all processes. The algorithm is designed to minimize
latency for periodic and interactive processes. However, using the scheduler does not preclude integration into
multi-level schemes.

2.3. Proportional-share Scheduling

Recognizing the low predictability of general-purpose system workloads and the relaxed deadline requirements
for multimedia applications, a large body of research focuses on creating new schedulers better suited to a mix
of application types. Most systems allocate each process a share of processing bandwidth, and use an algorithm
to assign allotted CPU guarantees within minimal error bounds. For periodic applications, share is allocated
to meet the execution rate required to meet deadlines. Fair-sharing is enforced so no process inhibits another’s
ability to meet deadlines.

Proportional scheduling systems share similar concepts yet differ in strategy. Here we briefly mention some
systems; this list is not comprehensive. EEVDF?® calculates a virtual deadline for each process as a function
of measured and allotted share, and schedules according to EDF; Stride Scheduling?® uses a similar notion of
virtual time. Systems such as BVT® and BERT* provide enhanced fair-sharing algorithms aimed at increasing
the throughput of deadline-sensitive processes by dynamically reallocating shares on a short-term basis. Some
systems utilize admission control: processes reserve shares, and the scheduler denies admission when requested
reservations are not available.® The CM?7 and SMART? schedulers provide feedback to applications so they
may adapt to dynamically changing loads, allowing the scheduler to adjust to higher workloads without resorting
to restricting admission.

To meet deadlines, the proportional scheduler must determine the proper share for each process; a process
must somehow specify its rate requirement. In many cases, this information is built into the process, and upon
start-up it notifies the scheduler through a system API. It may be difficult to determine a desired rate if the speed
of the target processor is unknown; abstractions for specifying rate address this problem® (however because the
abstracted rates are typically not expressed in units of system clock ticks, clock skew is inevitably introduced).
For systems that include feedback from the scheduler to the process, greater flexibility comes at the expense
of even more demand on application developers. Additionally, some systems provide mechanisms for users to
specify the quality of service they desire from a process, and allow run-time modification of share assignments
through GUIs, placing the burden of scheduling specification on both the developers and the software users.
The BEST scheduler does not need to be informed of processes’ rates, making the development and use of SRT
applications easier.

*While not strictly hierarchical, middleware can be considered a meta-scheduler for participating processes.

2.4. The State of SRT Scheduling

The scheduling algorithms and systems proposed by researchers support service guarantees that are not pos-
sible with best-effort scheduling. However, fully utilizing them involves difficult decisions provided by system
builders, applications developers, and users. System builders must set appropriate architecture for hierarchies of
schedulers. Developers must conform to new system APIs, reducing the portability of applications. Users must
hassle with tuning the scheduling parameters for desired performance; the average desktop user may not be
interested in or capable of accomplishing this task. Our experience suggests that most multimedia applications
only suffer occasional glitches which may be adequately addressed with better best-effort scheduling. The ease
and simplicity of best-effort scheduling makes it the most attractive model for many platforms—by enhancing
the performance of soft real-time processes, the users may never notice the absence of service guarantees.

3. IMPLEMENTATION

The goal of BEST is to enhance the performance of soft real-time tasks by detecting periodic processes and
boosting their priorities to improve their chances of meeting their deadlines. Like most UNIX schedulers,?8: 29
it dynamically calculates process priorities. It is aimed at desktop users who desire better performance from
multimedia applications without the complexity of a system with service guarantees.

The scheduler must decide which programs have periodic deadline requirements by making an assumption:
applications with periodic deadlines enter a runnable state when they begin a periodic computation, and upon
completion use synchronization primitives (such as timers) to wait for the beginning of the next period. We
predict that by observing the times that a process enters the queue of runnable processes we can make reasonable
guesses about its period. A periodic process is “well-behaved” if it enters the runnable queue in a predictable
pattern. It is possible that some processes that repeatedly enter the runnable state may be misidentified as
having a periodic deadline even though they do not; in this case, they may benefit from the mistake. This is
not a concern as long as the CPU resource isn’t significantly overburdened, and the scheduler can be tuned to
minimize the likelihood of such occurrences.

In order to test the assumption that multimedia processes enter the run queue with predictable period,
we instrumented the Linux kernel to record the entry time of a process to the nearest ﬁ of a second, and
then ran some sample single-threaded multimedia processes. We examined mpeg_play, a desktop MPEG video
player, and mpgl123, a desktop mp3 audio player. We found that these processes did exhibit measurable periodic
behavior. Table 1 shows the average period and standard deviation in microseconds for the sample runs. These
experiments were executed on a 650 MHz AMD i686 system.

Both multimedia programs enter the run queue with detectable periods, however their behavior differs: the
video player must keep a nominal framerate, whereas the audio player periodically feeds a buffer so its timing
requirement is not as strict; it only needs to keep the buffer from completely draining. When mpeg_play displays
frames, it enters the run queue twice per frame, once for frame synchronization and once waiting for a video
buffer, then sleeps until it is time to display the next frame. Because it enters the run queue twice during
the same tick, the detected average period is half the actual frame period, and the standard deviation is close

Table 1: Average period, standard deviation, and CPU usage for sample multimedia processes.

Average Standard CPU

Process period (ms) deviation usage
mpeg_play (24 frame/s) 21.7 21.9 19.3%
mpeg_play (24 frame/s) (no display) 42.3 9.2 13.0%
mpeg_play (30 frame/s) 17.0 174 19.5%
mpeg_play (30 frame/s) (no display) 34.6 13.1 15.9%
mpg123 (128 kbit/s) 160.2 31.7 2.2%

mpgl23 (128 kbit/s) (different mp3) 160.2 31.8 2.2%

to the average period (Section 3.3.2 explains how BEST deals with this anomaly). When display is disabled,
mpeg-play processes the file without rendering it. In this case it does not block waiting for the video frame
buffer, and its period it equivalent to its frame rate. The audio player is not driven by a framerate or clock; it
repeatedly fills a buffer with audio data, sleeping for a fixed period between each fill. As expected, it exhibits
periodic behavior, but since the period is not scheduled at a specific rate it has higher variance than the video
player.

3.1. Design Goals

In developing the BEST scheduler we had a number of specific design criteria. The criteria and rationale for
the scheduler design are:

1. The same scheduling policy should apply to every application, regardless of its scheduling needs—a uniform
algorithm simplifies scheduling decisions.

2. Neither users or developers should have to provide any a priori information about the process to be
executed.

3. The scheduler should enhance the performance of soft real-time applications.

e Processes that enter the runnable queue in predictable patterns should receive a priority boost; it
should be based on classical real-time scheduling results, i.e. the priority boost should be based on
measured rate or deadline.

e This algorithm should create a positive feedback loop for well-behaved soft real-time processes; when
processes do not miss deadlines, they have the opportunity to wait for the next period, increasing
the likelihood of consistent patterns.

e The scheduler should be preemptive. Since periodic processes have higher priority, this prevents
missed deadlines.

4. The default behavior of the scheduler should be reasonable and consistent with general purpose time-
sharing schedulers.

e The scheduler should favor interactive processes over CPU-bound processes.

e No process should starve. The presence of compute intensive periodic processes cannot completely
hinder the progress of other processes. Processes will receive time slices that prevent them from
monopolizing the CPU and improve overall responsiveness.

e When the system is not fully loaded, changes to workload should not effect the performance of already
executing processes. For fully loaded systems, performance should degrade gracefully.

3.2. Linux Scheduler Detalils

We implemented the BEST scheduling algorithm in the Linux 2.2.5 kernel. We selected Linux as a development
platform because it is a popular desktop environment and source code is readily available. A brief description
of the unmodified Linux scheduler is instructive for understanding the differences.

A function called schedule () allocates the CPU to a process. It loops through all processes in the runnable
queue, and selects the one with highest dynamic priority. The execution of schedule() is triggered two ways:
explicitly when a running process is put to sleep, or upon return from an interrupt or trap if the running
process’s need resched flag is set. For example, when a process’s time quantum expires, the timer interrupt
handler sets its need_resched flag.

A function called goodness() calculates dynamic priorities. The dynamic priority is also interpreted as a
time quantum, and decreases for every clock tick the process executes. When all runnable processes consume
their quantum, schedule() loops through all processes (including those not in the run queue) and recomputes

their dynamic priority using pri = pri/2-+nice, where nice is a positively scaled user-settable scheduling priority.
When this calculation occurs, a suspended process with a non-zero time quantum receives a priority boost; the
purpose is to increase the responsiveness of interactive processes over CPU-bound processes. For a program that
is always suspended, the priority as a function of the number of calculations n, is pri(n) = [(2"T! —1)/2"] x nice.
Priority quickly increases, but as n — oo, pri = 2 x nice, limiting the priority (and time quantum) from growing
too large.

The Linux scheduler implementation is designed to mimic the behavior of a multi-level feedback queue, and
although dynamic priority calculations differ from 4.4BSD (well-documented by McKusick et al.??), the goal
of the scheduling policy remains the same: favor I/O-bound over CPU-intensive processes while allowing no
process to starve. The 4.4BSD scheduler differs from Linux by including a time-decaying estimate of the CPU
usage in the priority calculation. The Windows NT scheduler employs a similar technique.?*

3.3. BEST Scheduler Details

The BEST scheduler uses an even simpler algorithm than the Linux scheduler. Every process has a deadline
that is computed when the process enters the runnable queue. The schedule () function selects the runnable
process with the earliest deadline. Since we do not know a process’s deadline, a simple heuristic is used to
estimate its period, and the deadline is set to the expiration of its next period.

3.3.1. Period detection

BEST estimates period when a process enters the runnable queue (queue entry is through a single function
called wake_up_process()). The estimated period P, is the time that elapsed since the process previously
entered the runnable queue. The new effective period P, is calculated by taking a weighted average with the
previous period P,_1, stated as P, = (Pest + w X P,—1)/(1 + w). Adjusting the weight factor w controls how
fast the scheduler forgets previous behavior. If the period exceeds a maximum value it is truncated, therefore
periods longer than this maximum are not detected. The wake up_process() function determines a process’s
next deadline by adding its effective period to the current time. The scheduler uses the deadline as a priority
when selecting runnable processes. This function also sets an additional value called the deadline timer. This
timer indicates how much CPU time a process may receive before its deadline is reset. Like the quantum timer,
the deadline timer value is decremented for every tick the process executes. The deadline and deadline timer
values are stored in the process’s state structure.

Every time a process is scheduled for the CPU it executes until either its quantum expires, it blocks, or
it is preempted, at which time schedule() is triggered. Before selecting the next process to execute, if the
current process’s deadline timer expired, schedule() sets its next deadline to a time beyond the maximum
detectable period—in effect it lowers the priority of any process that doesn’t leave the runnable queue before
its deadline timer expires. Only wake up_process() resets the deadline timer, so for a process that never
blocks schedule() will postpone its deadline whenever it executes. Postponing a deadline to greater than the
maximum period ensures that processes with detected periods will have earlier deadlines. Because a postponed
deadline is not recomputed until after the process is allocated the CPU, starvation is prevented. Once a deadline
is set, eventually the process will be scheduled as time advances.

3.3.2. Confidence

Not every process that repeatedly wakes up is periodic, so an additional step evaluates the confidence that the
estimated period is indeed due to periodic behavior. Confidence is a measure of the difference between the
current measured period, and the nearest multiple of the average period. (The expression |P,s; mod P,, — P, /2|
calculates a confidence value between 0 and P,, /2, but in practice we use bit shifts and fixed-point math, yielding
a value normalized between 0 and 16). A process is “well-behaved” if its confidence exceeds a threshold. A
process that is not well-behaved will receive a deadline timer of 0, meaning that it is eligible to have its deadline
reset following its next scheduled quantum. Although scheduling priority is set according to its estimated period,
once it uses its current quantum the process will be rescheduled with a CPU-bound pseudo-period unless its
confidence increases above threshold.

By calculating confidence using a multiple of the period (implicit in the modulo operation), we elude the
effect of detecting an average period that is half the actual period (as observed in Table 1, where we saw that
a video player entered the run queue twice per frame). This effect also helps processes that miss an occasional
deadline. When a periodic process misses a deadline, it may not sleep and wake up again until a later period,
when it successfully completes a computation on time. This process will still receive a high confidence rating
when it does, allowing it another opportunity to meet its next deadline. However, the weighting of its time-
decaying average period will impact its next deadline assignment and subsequent confidence rating. The coupled
effect of this weighting factor and the confidence threshold impact the performance of the scheduler.

3.3.3. Other changes

In order to detect periods of processes with high rates, we increased the timer resolution of Linux by a factor of
8. Linux processes 100 clock ticks per second; for a video player showing 33 frames/second the average period
is 3 ticks, so a measurement error of 1 tick is a significant percentage of its period. By increasing the timer
resolution to 800 ticks per second, measurements are more finely grained and provide a better estimate of the
application periods. Interestingly, we found that speeding up the timer increased the throughput of processes
by about 5%, not the intuitive result expected from increasing the frequency of timer interrupt processing. We
do not at present have a satisfactory explanation for this result.

BEST uses a time quantum to limit the time a process may hold the CPU. In Linux, the default processing
time quantum is 0.2 seconds, and may be modified between 0.01 and 0.40 seconds using the UNIX nice facility.
In BEST the default processing quantum is set to 0.1 second, which is historically the quantum used in BSD as
it provides an ideal responsiveness for interactive processes.?? Using the nice facility scales this range between
0.005 and 0.20 seconds. In BEST, a running process may be preempted by one with an earlier deadline; however,
similar to Linux, context switches are reduced by disabling preemption when a current quantum expires in less
than 10 milliseconds. Note that when an executing process still has a positive deadline timer, an expired
quantum will not affect its scheduling priority and it is likely to be selected again. This makes the deadline
timer behave like an interval timer, as used in Nemesis.'” In the future, we plan to replace all quanta with
interval timers to reduce unnecessary scheduling overhead.

3.3.4. Tuning the scheduler

Several parameters affect the behavior of the BEST scheduler: the maximum period, the deadline timer, the
weight used for averaging period measurements, and the confidence threshold. The maximum detectable period
controls the responsiveness of CPU-bound processes in a heavily loaded system, since their pseudo-deadlines
are delayed beyond this period. The deadline timer dictates the maximum amount of time a process receives
before resetting its deadline; if too large, a process may monopolize the CPU, and if too short, it may not
meet its deadline. Finally, the averaging weight and confidence threshold impact the effectiveness of the period
detection algorithm.

For the BEST prototype described in Section 4, we use a maximum period of 5.12 seconds (with an extra
offset of 0.1 second added to the deadline of CPU-bound processes), a weighting average of %, and a generous
threshold that allows any confidence level to pass. The deadline timer is the same as the period, so that a
process’s deadline is not reset until it uses all the processing time of a period. In practice, a process should use
less time than its period, otherwise it will miss deadlines in the presence of any other work and is generally
not schedulable on a shared system. These defaults work well in our experiments where all processes were

“well-behaved,” although we expect them to require tuning for more real workloads.

4. EXPERIMENTAL RESULTS

To examine how well the BEST scheduler meets the design criteria set forth in Section 3.1 we conducted a set
of experiments comparing the performance of the BEST scheduler with that of the Linux scheduler and a Rate
Monotonic (RM) scheduler. We chose RM as a representative real-time scheduler because the POSIX standard
specifies a scheduling class with static priorities capable of supporting RM scheduling. Note, however, that the

calculation of priorities for RM scheduling requires a specification of application periods while the default Linux
scheduler and BEST do not.

Linux Scheduler BEST Scheduler

40 T T T T T T 40 T T T T T T
o loop —— o loop ——

35 | periodic (0.1s 40%) -----—- i 35 L periodic (0.1s 40%) ------—- i
’g 30 — ’g 30 —
c j =
3 3
o 25 — o 25 —
2] (2] -

& 2 / & 2

&0 1 827 , I

8 15 - . 8 15 8

g g 7

5 10 | - 5 10 f -
5 e 5 e
0 el I I I I I I 0 g I I I I I I

0 10 20 30 40 50 60 0 10 20 30 40 50 60
time (seconds) time (seconds)

Figure 1: Linux and BEST schedulers running (1) loop and (2) periodic 0.1s 40%.

While running combinations of greedy (CPU-intensive) and periodic (soft real-time) processes, we measured
the throughput of all processes and the number of missed deadlines for periodic processes. Two synthetic
applications were used in the experiments. Loop endlessly consumes CPU bandwidth by crunching math
operations. Periodic takes two arguments, a period and a percentage; it attempts to consume the desired
percentage of CPU bandwidth during each period. If it completes before a deadline it pauses until the beginning
of the next period, and if not it records a missed deadline and starts the next period’s computation. All
experiments were executed on a 200 MHz Pentium Pro system with 256K cache and 256M RAM.

Our results show that in general the Linux scheduler performs reasonably well when the total demand of
soft real-time processes is less than 100% of the CPU and each process requires no more than than % of the
CPU, where n is the number of running processes. This is consistent with our previous work in executing soft
real-time processes on best-effort systems. Figure 1 shows the performance of the Linux scheduler and the
BEST scheduler with one best-effort process (loop) and one SRT process (periodic, with % second period and
CPU requirements of 40% of the CPU). Because the Linux scheduler provides approximately equal amounts of
CPU cycles to each application and because the SRT process requires less than 50% of the CPU (it’s nominal
fair share) the Linux scheduler met all application deadlines. Similarly, the BEST scheduler met all deadlines
and provided the same amount of resources to each application as the Linux scheduler: 40% of the CPU was
granted to the SRT process and 60% was granted to the best-effort process. A similar experiment was performed
(Figure 2) replacing loop with a second SRT application (periodic, with the same parameters). The results were
similar except that the idle loop consumed the remaining 20% of unused CPU cycles. With reasonable priorities,
RM would perform the same.

When a soft real-time process requires more than its nominal share of the available CPU cycles, the Linux
scheduler is unable to satisfy it in the presence of CPU-bound best-effort processes. Specifically, when two
processes of equal priority compete, the Linux scheduler gives them each about 50% of the available CPU
cycles (with slightly more given to processes that block occasionally). Figure 3 shows the performance of the
Linux, BEST, and RM schedulers with one best-effort process (loop) and one SRT process (periodic, with 11—0
second period and 70% CPU usage). Here we see that the Linux scheduler provides approximately 50% of the
available CPU cycles to each process, causing the SRT process to miss 29% of its deadlines. By contrast, the RM
scheduler (with appropriate priorities) provides the SRT process with 70% of the available cycles, enabling it to
meet all of its deadlines while still allowing the best-effort process to progress at a reasonable rate. In this case,
the BEST scheduler provided exactly the same performance as the RM scheduler, enabling the SRT process to
meet all of its deadlines while still allowing the best-effort process to progress using the remaining CPU cycles.
Recall, however, that BEST dynamically determines the application periods whereas Rate Monotonic requires
that periods be specified in order to determine appropriate priorities.

Linux Scheduler BEST Scheduler

30 L T T T T T 30 L T T T T T
periodic (0.1s 40%) periodic (0.1s 40%)
periodic (0.1s 40%) ------- periodic (0.1s 40%) -------
25 2~ 25 N
) &)
2 2
S 20 A B S 20 B
) = o)
2} p 7}
z 15 Z 15
%) y %)
g g
5 10 — 5 10 —
I I
a a
5F B 5F B
0 1 1 1 1 1 1 0 1 1 1 1 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
time (seconds) time (seconds)
Figure 2: Linux and BEST schedulers running (1) periodic 0.1s 40% and (2) periodic 0.1s 40%.
Linux Scheduler BEST Scheduler Rate Monotonic Scheduler
45 T T T T 45 T T T T T 45 T T T T T
loop —— loop e o loop —— o
40 periodic (0.1s 70%) ------- 4 40 periodic (0.1s 70%) ------- s 40 periodic (0.1s 70%) ------- i
7 35 B &35 B 35T B
° =} =}
S 30 1 S 30 g S 30) g
] & & 7
5 25 E S5 25 E S5 25 E
o o o
% 20 b 1 oot E oot E
g’, 15 | E g.’, 15 E g.’, 15 E
50l f S0t 1 Sof 1
5 E 5 E 5 E
0 L L L L L L 0 = L L L L L L 0 = L L L L L L
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
time (seconds) time (seconds) time (seconds)

Figure 3: Linux, BEST, and RM schedulers with (1) loop and (2) periodic 0.1s 70%.

Even in cases where the Linux scheduler should theoretically allow SRT processes to meet all of their
deadlines, such as when each requires less than its nominal share of the CPU, it is still possible that each
process will fail to meet its deadline. Because the Linux scheduler is unaware of resource requirements or
deadlines, its well-intentioned scheduling decisions can result in some processes missing deadlines that could
otherwise be met. Figure 4(a) shows the Linux, BEST, and RM schedulers running three processes; one best-
effort process and two SRT processes, each of which require 30% of the CPU, one with a period of 11—0 second
and the other with a period of 1 second. Because each SRT process needs less than its nominal share of the
CPU, all deadlines should theoretically be met. However, due to the details of the Linux scheduler, we see that
in fact the process with the shorter period received less than 30% of the CPU and missed 6% of its deadlines.
By contrast, the same processes running with the BEST scheduler missed no deadlines. As can be seen from
the graph, the two SRT process received about the same amount of CPU time and approximately 30% of the
available cycles. Similarly, these processes made all deadlines under RM scheduling.

Figure 4(b) shows a magnified view of a portion of the data from Figure 4(a), providing greater detail about
when each scheduling decision is made and how much CPU is scheduled at each decision. In particular, it shows
that under the Linux scheduler, the short period SRT process receives less CPU and at greater intervals than
under the BEST scheduler. Under the Linux scheduler, this process experiences a short gap every second where
it is not scheduled. This causes the process to miss some deadlines. Under the BEST scheduler, this does not
occur and the processes miss no deadlines at all.

While any set of soft-real time processes with a CPU requirement less than 100% is theoretically schedulable

30

Linux Scheduler

BEST Scheduler

Rate Monotonic Scheduler

T T T T 30 T T T T 30 T T T
loop —— loop —— loop ——
periodic (1.0s 30%) ------- periodic (1.0s 30%) ------- periodic (1.0s 30%) -------
25 L periodic (0.1s 30%) -------- J 25 L periodic (0.1s 30%) -------- i 25 L periodic (0.1s 30%) --------
o)))
S 20 1 S 20 g S 20
3 & &
2 2 2
S 15 - B S 15 | S 15 |
2 2 2
g0 - gl £
S = =
5 g 5+ s E 5+ E
0 ’4,4‘: Il Il Il Il Il Il 0 i Il Il Il Il Il Il 0 - Il Il Il Il Il Il
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
time (seconds) time (seconds) time (seconds)
(a) Linux, BEST, and RM schedulers.
Linux Scheduler Detail BEST Scheduler Detail
9 T T T T 9 T T T T
loop loop
periodic (1.0s 30%) ------- periodic (1.0s 30%) -------
8 periodic (0.1s 30%) -------- R 8 periodic (0.1s 30%) -------- b
’%‘ o«
27 7 27
) o
(5] o
) _ o}
26 B “ 6
> | T =)
o o o
s.l —~—/ S
> °r e i » o
o L 7]
s o
g4t e S 4
a o S P
3 F N 3 F N
2 1 1 1 1 2 1 1 1 1
10 12 14 16 18 20 10 12 14 16 18 20

time (seconds) time (seconds)

(b) Detail view of application progress in Linux and BEST.
Figure 4: Linux, BEST, and RM schedulers with (1) loop (2) periodic 1s 30% and (3) periodic 0.1s 30%.

without missed deadlines, in many cases the Linux scheduler cannot allocate enough share to SRT processes in
competition with a greedy process. Figure 5 shows the Linux, BEST and RM schedulers with four processes,
one best-effort and three SRT, one with a period of 1 second requiring 30% of the CPU, one with a period
of § second requiring 30% of the CPU, and one with a period of {5 second requiring 30% of the CPU. The
Linux scheduler cannot meet all deadlines because it allocates roughly i of the resources to each process, and
it performs very poorly, missing 83%, 80%, and 10% of the deadlines of the periodic processes, respectively.
Again, like the RM scheduler, the BEST scheduler met all deadlines while still allowing the best effort process
to make progress.

One shortcoming of rate-monotonic scheduling is its inability to find a feasible schedule that fully utilizes
the CPU when running periodic applications that exhibit non-harmonic periods.!? By using EDF to make
the actual scheduling decisions, BEST does not exhibit this property. Figure 6 shows the performance of the
three schedulers with four processes, one best-effort and three SRT, one with a period of 0.61 seconds requiring
31% of the CPU, one with a period of 0.43 seconds requiring 30% of the CPU and one with a period of 0.13
seconds requiring 31% of the CPU. In this case, the SRT processes need 92% of the CPU and have non-harmonic
periods. The Linux scheduler provides approximately equal CPU to each process with the result that the best-

Figure 5. Linux, BEST and RM schedulers with (1) loop (2) periodic 1s 30%

time (seconds)

Linux Scheduler BEST Scheduler Rate Monotonic Scheduler
20 T T T T 20 T T T 20 T T T T
loop —— loop —— loop —— .
18 periodic (1.0s 30%) ------- B 18 periodic (1.0s 30%) ------- B 18 periodic (1.0s 30%) ------- P
periodic (0.5s 30%) -------- periodic (0.5s 30%) -------- periodic (0.5s 30%) -------- s
__ 16 periodic (0.1s 30%) e _ 16 periodic (0.1s 30%) B _ 16 periodic (0.1s 30%) s B
() %) M) A
2 14 g B 14 e 2 14 P h
I=} o o e
o o o p ot
2 12 g 2 12 E 2 12 L E
2 10 4 2 10 i Z 10 5 i
) S S A
2 8 1 2 8 1 2 8 e 1
[g g A~
S 6 > 1 S 6 g S 6 o g
= 4 2 = 4 = 4 T
4 4 P . 4
2 g 2 e 2 d e
0 L L L L L L 0 | L L L L L 0 | L L L L L
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60

time (seconds)

time (seconds)

(3) periodic 0.5s 30% and (4) periodic

0.1s 30%
Linux Scheduler BEST Scheduler Rate Monotonic Scheduler
20 T T T T 20 T T T T 20 T T T T
loop —— loop —— loop ——
18 periodic (0.61 31%) ------- B 18 periodic (0.61 31%) ------- 18 periodic (0.61 31%) ------- B
periodic (0.43s 30%) -------- periodic (0.43s 30%) -------- periodic (0.43s 30%) --------
__ 16 periodic (0.13s 31%) B _ 16 periodic (0.13s 31%) B _ 16 periodic (0.13s 31%) B
(%) (%) (%)
2 14 e 2 14 B 2 14 i
o o o P
2 2 8 &
2 12 g 2 12 B 2 12 p 4
2 10 2 10 2 10 r;
S 1 ¢ 1 < o i
5 8 1 38 1 g e o 1
[o o
g 6 1 8 s 1 & s e 1
s = = e
4+ g 4t e 4t - g
2 b — 2F 1 2k 1
0 L L L L L L 0 < L L L L L L 0 // 1 L L L L L
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60

time (seconds) time (seconds) time (seconds)

Figure 6. Linux, BEST, and RM schedulers with (1) loop (2) periodic 0.61s 31% (3) periodic 0.43s 30% and (4) periodic
0.13 31%.

effort process makes too much progress and prevents the SRT processes from meeting enough deadlines—they
miss 77%, 66%, and 16% respectively. In theory, RM scheduling may not meet all deadlines and that is exactly
what we observe. RM causes the process with the longest period (and thus the lowest Rate Monotonic priority)
to miss 27% of its deadlines. Outperforming both other schedulers, BEST executes the processes and meets all
SRT deadlines.

An important question about any SRT scheduler is how it performs in situations of system overload. Best-
effort schedulers will in general allocate a proportional share of the CPU to each process, Rate Monotonic will
meet the deadlines of processes with highest priority (generally those with the lowest period),!? and EDF
will miss all deadlines by roughly the same amount.?® While the overload of either RT scheduler might be
considered optimal in some strictly SRT environments, they suffer from the fact that they will starve best-
effort processes entirely. Figure 7 shows the performance of the Linux, BEST, and RM schedulers with four
processes, one best-effort, one SRT with period 1 second requiring 40% of the CPU, one SRT with period %
seconds requiring 40% of the CPU, and one SRT with period % seconds requiring 40% of the CPU. Because
the resource requirements of the SRT process sum to greater than 100% of the CPU, no scheduler can meet
all of the deadlines. The Linux scheduler gives each process roughly % of the CPU, causing the SRT processes
to miss 98%, 93%, and 19% of their deadlines, respectively, and allows the best-effort process to make very
good progress, getting a full i of the available CPU cycles. The RM scheduler meets all of the deadlines for
the two SRT processes with shorter deadlines, but misses 98% of the deadlines for the SRT process with the
longest deadline and doesn’t allow the best-effort process to run at all. The BEST scheduler embodies the best
characteristics of both schedulers, distributing (somewhat) and minimizing the missed deadlines (71%, 5%, and
2% respectively) while still allowing the best-effort process to make reasonable progress.

A primary goal of the BEST scheduler is to minimize the number of missed deadlines for soft real-time

Linux Scheduler BEST Scheduler Rate Monotonic Scheduler

30 T T 30 T T T 30 T T T

T
loo

3 loop ——— p ——
periodic (1.0s 40%) ------- periodic (1.0s 40%) ------- periodic (1.0s 40%) -------
25 b periodic (0.5s 40%) -------- J 25 L periodic (0.5s 40%) -------- i 25 L periodic (0.5s 40%) --------]
. periodic (0.1s 40%) R periodic (0.1s 40%) R periodic (0.1s 40%)
2 2 |8
S 20 1 § 20 - R § 20 - R
Q @ @
2 2 2
2 15 g 15 2 15
¢l | el i el i
P g a @ .
3 g 2 2
5 10 7 1 5 10 b 5 10 e B
o - <] <] L e
s = o s -
5 ; g 5+ e 5+ . e
o i ‘ ‘ ‘ ‘ ‘ I i o Lt
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
time (seconds) time (seconds) time (seconds)

Figure 7. Linux, BEST, and RM schedulers with (1) loop (2) periodic 1s 40% (3) periodic 0.5s 40% and (4) periodic
0.1 40%.

Table 2: Summary of percentage of deadlines missed for all experiments.

Scheduler
Experiment Process Linux BEST RM
1 loop - - -
periodic(0.1s 40%) 0 0 0
2 periodic(0.1s 40%) 0 0 0
periodic(0.1s 40%) 0 0 0
3 loop - - -
periodic(0.1s 70%) 29 0 0
4 loop - - -
periodic(1.0s 30%) 0 0 0
periodic(0.1s 30%) 6 0 0
) loop - - -
periodic(1.0s 30%) 83 0 0
periodic(0.5s 30%) 80 0 0
periodic(0.1s 30%) 10 0 0
6 loop - - -
periodic(0.61s 31%) 7 0 27
periodic(0.43s 30%) 66 0 0
periodic(0.13s 31%) 16 0 0
7 loop - - -
periodic(1.0s 40%) 98 71 98
periodic(0.5s 40%) 93 5 0
periodic(0.1s 40%) 19 2 0

processes while providing good best-effort performance. The previous figures show that BEST approximates
the performance of both Linux and RM as appropriate. Table 2 summarizes the percentage of deadlines missed
by each scheduler in all of the experiments. It shows that BEST meets or exceeds the performance of both the
Linux and Rate Monotonic schedulers in each of the experiments shown.

A final question that is difficult to answer with data is the qualitative one—how does the scheduler perform
in general use? To attempt to answer this question, we have been running the BEST scheduler (in Linux) on
a desktop machine for the past few months. We have experienced no anomalous behavior, response time has
been satisfactory and “normal,” SRT processes definitely appear to run better, and BE processes do not starve
while SRT processes are running. While this is not conclusive, it is quite encouraging.

5. FUTURE WORK

Experiments show that the BEST prototype meets its intended purpose: enhancing the performance of periodic
processes while capturing the benefits of a best-effort model. It also preserves the design goals of general-
purpose operating systems by favoring I/O-intensive over CPU-bound jobs; as users we successfully employ the
scheduler on a development and general purpose platform with no adverse effect on responsiveness. However,
many of the scheduler parameters are not tuned for executing real multimedia applications and workloads. For
example, processes entering the system are currently initialized with scheduling parameters that make them
appear periodic. Running a batch process (such as a compile) will generate several jobs that might interfere with
already running processes; by determining proper initial values for process structures we can limit this effect. In
the future we will tune BEST scheduler using the behavior of popular multimedia packages as examples (such
as MpegTV and xmms). Many multimedia applications are multi-threaded and depend on the responsiveness
of other processes such as the X server. In light of the dependencies of these applications, we must reexamine
the naive assumptions of our test processes. For example, a more sophisticated version of the scheduler may
detect dependencies and allow a process to inherit the deadline of related processes.

In addition, we believe that BEST has better jitter performance than the default Linux scheduler. We
intend to characterize the jitter performance of BEST and compare it with the other schedulers examined in
this paper. Another aspect of BEST that we have yet to examine is the effect of changing priorities. We believe
that by automatically adjusting the priorities of the SRT processes we can adapt the system to provide any
missed-deadline behavior desired. In particular, we should be able to spread out the missed deadlines across
the SRT processes or minimize the missed deadlines of more important processes.

6. CONCLUSION

Standard best-effort schedulers make no resource guarantees, but soft real-time applications require some as-
surance of resource allocation in order to meet deadlines. Best-effort scheduling is thought to perform poorly
for multimedia; but because it is simple to use, the best-effort model continues to be attractive for both appli-
cation developers and users of general purpose systems. BEST is a CPU scheduler that adheres to a best-effort
scheduling policy while automatically detecting and boosting the performance of periodic soft real-time pro-
cesses. BEST dynamically determines application periods and schedules processes according to earliest deadline
first, a well-known scheduler for real-time systems. However, unlike real-time schedulers, it uses simple heuristics
to determine deadlines for both periodic and non-periodic processes.

This paper presents the design and implementation of the prototype BEST scheduler in the Linux kernel. It
includes the results of a set of experiments demonstrating the scheduler’s effectiveness at boosting the perfor-
mance of processes with soft deadlines, while preserving desired characteristics of general purpose time-sharing
schedulers. In particular, our results show that BEST performs as well as or better than the Linux scheduler
and RM scheduling in handling best-effort, soft real-time, and a combination of the two types of processes.
This holds true in situations of both processor underload and processor overload and is done with no a priori
knowledge of the applications, their resource usage, or their periods. By continuing these experiments with
more realistic workloads and by fine-tuning the scheduler parameters, we expect to develop the prototype into
a full-fledged and robust system appropriate for widespread and general use.

ACKNOWLEDGMENTS

The work in this paper was motivated in part by a suggestion from Lonnie Welch that it would be interesting
to see if we could dynamically detect application periods at run-time; the authors gratefully acknowledge
that suggestion. We thank the reviewers for offering additional insight and ideas for future work. We also
thank Zachary Peterson for reviewing drafts of this paper. This research was funded in part by a DOE High-
Performance Computer Science Fellowship and a USENIX Student Research Grant.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

REFERENCES

. J. Nieh, J. G. Hanko, J. D. Northcutt, and G. A. Wall, “SVR4UNIX scheduler unacceptable for multimedia
applications,” in Proceedings of the Fourth International Workshop on Network and Operationg System
Support for Digital Audio and Video, 1993.

. S. Brandt, G. Nutt, T. Berk, and J. Mankovich, “A dynamic quality of service middleware agent for

mediating application resource usage,” in Proceedings of the 19th IEEE Real-Time Systems Symposium,

pp. 307-317, Dec. 1998.

S. Brandt and G. Nutt, “Flexible soft real-time processing in middleware.” Real-Time Systems, 2001. to

appear.

A. Bavier and L. L. Peterson, “BERT: A scheduler for best effort and real-time tasks,” Technical Report

TR-587-98, Princeton University, Aug. 1998.

K. J. Duda and D. R. Cheriton, “Borrowed-virtual-time (BVT) scheduling: Supporting latency-sensitive

threads in a general-purpose scheduler,” in Proceedings of the 17th ACM Symposium on Operating System

Principals, Dec. 1999.

K. Jeffay and D. Bennett, “A rate-based execution abstraction for multimedia computing,” in Proceedings

of the 5th International Workshop on Network and Operating System Support for Digital Audio and Video,

Apr. 1995.

M. Jones, J. B. III, and A. Forin, “An overview of the Rialto real-time architecture,” in Proceedings of the

7th ACM SIGOPS European Workshop, pp. 249-256, Sept. 1996.

C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves: Operating system support for

multimedia applications,” in Proceedings of the IEEE Internation Conference on Multimedia Computing

and Systems, pp. 90-99, May 1994.

J. Nieh and M. Lam, “The design, implementation and evaluation of SMART: A scheduler for multimedia

applications,” in Proceedings of the Sizteenth Symposium on Operating System Principals, Oct. 1997.

H. Tokuda, T. Nakajimi, and P. Rao, “Real-time Mach: Towards a predictable real-time system,” in

Proceedings of USENIX Mach Workshop, Oct. 1990.

J. Regehr, M. B. Jones, and J. A. Stankovic, “Operating system support for multimedia: The programming

model matters,” Technical Report MSR-TR-2000-98, Microsoft Research, Sept. 2000.

A. Burns, “Scheduling hard real-time systems: A review,” Software Engineering Journal 6, pp. 116-128,

May 1991.

E. D. Jensen, C. D. Locke, and H. Tokuda, “A time-driven scheduling model for real-time operating

systems,” in Proceedings of the 6th IEEE Real-Time Systems Symposium, Dec. 1985.

S. Khanna, M. Sebrée, and J. Zolnowsky, “Realtime scheduling in SunOS 5.0,” in USENIX Winter 1992

Technical Conference, pp. 375-390, Jan. 1992.

IEEE, IEEE Standard for Information Technology-Portable Operating System Interface (POSIX)-Part

1: System Application Programming Interface (API)-Amendment 1: Realtime Extension [C' Language],

Std1003.1b-1993 ed., 1994.

C.L. Liuand J. W. Layland, “Scheduling algorithms for multiprograming in a hard-real-time environment,”

Journal of the Association for Computing Machinery 20, pp. 46—61, Jan. 1973.

I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fairbairns, and E. Hyden, “The

design and implementation of an operating system to support distributed multimedia applications,” in

IEEE Journal on Selected Areas in Communications, pp. 1280-1297, Sept. 1996.

B. Mullen, “The Multics scheduler.” http://www.multicians.org/mult-sched.html, Aug. 1995.

V. Yodaiken and M. Barabanov, “Real-time Linux,” in Proceedings of Linuz Applications Development and

Deployment Conference (USELINUX), Jan. 1997.

H. hua Chu and K. Nahrstedt, “A soft real time scheduling server in UNIX operating system,” in European

Workshop on Interactive Distributed Multimedia Systems and Telecommunication Services, Sept. 1997.

C. han Lin, H. hua Chu, and K. Nahrstedt, “A soft real-time scheduling server on the Windows NT,” in

Proceedings of the 2nd USENIX Windows NT Symposium, Aug. 1998.

22

23.

24.

25.

26.

27.

28.

29.

30.

. P. Goyal, X. Guo, and H. M. Vin, “A hierarchical CPU scheduler for multimeida operating systems,” in
Proceedings of the Second Symposium on Operating Systems Design and Implementation, Oct. 1996.

B. Ford and S. Susarla, “CPU inheritance scheduling,” in Proceedings of the 2nd Symposium on Operating
Systems Design and Implementation, pp. 91-105, Oct. 1996.

G. M. Candea and M. B. Jones, “Vassal: Loadable scheduler support for multi-policy scheduling,” in
Proceedings of the 2nd USENIX Windows NT Symposium, pp. 157-166, Aug. 1998.

I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Buruah, J. E. Gehrke, and C. G. Plaxton, “A proportional
share resource allocation algorithm for real-time, time-shared systems,” in Proceedings of the Real-Time
Systems Symposium, pp. 288299, Dec. 1996.

C. A. Waldspurger, Lottery and Stride Scheduling: Flexible Proportional-Share Resource Management. PhD
thesis, Massachusetts Institute of Technology, Sept. 1995.

D. K. Yau and S. S. Lam, “Adaptive rate-controlled scheduling for multimedia applications,” in ACM
Multimedia Conference, Nov. 1996.

M. Beck, H. Bohme, M. Dziadzka, U. Kunitz, R. Magnus, and D. Verworner, Linuz Kernel Internals,
Addison Wesley Longman, 2nd ed., 1998.

M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman, The Design and Implementation of the
4.4BSD Operating System, Addison-Wesley Publishing, 1996.

J. A. Stankovic, M. Spuri, M. D. Natale, and G. Buttazo, “Implications of classical scheduling results for
real-time systems,” Computer 28, pp. 16-25, June 1995.

