
Pilot: A Framework that Understands How to
Do Performance Benchmarks the Right Way

Yan Li, Yash Gupta, Ethan L. Miller, and Darrell D. E. Long
Storage Systems Research Center,

University of California, Santa Cruz, CA 95064, USA
Email:{yanli,ygupta,elm,darrell}@cs.ucsc.edu

Abstract—Carrying out even the simplest performance bench-
mark requires considerable knowledge of statistics and computer
systems, and painstakingly following many error-prone steps,
which are distinct skill sets yet essential for getting statistically
valid results. As a result, many performance measurements in
peer-reviewed publications are flawed. Among many problems,
they fall short in one or more of the following requirements:
accuracy, precision, comparability, repeatability, and control of
overhead. This is a serious problem because poor performance
measurements misguide system design and optimization. We pro-
pose a collection of algorithms and heuristics to automate these
steps. They cover the collection, storing, analysis, and comparison
of performance measurements. We also implement these methods
as a readily-usable open source software framework called Pilot,
which can help to reduce human error and shorten benchmark
time. Evaluation of Pilot with various benchmarks show that it
can reduce the cost and complexity of running benchmarks, and
can produce better measurement results.

Index Terms—computer performance; performance analysis;
software performance; performance evaluation; system perfor-
mance; measurement techniques; heuristic algorithms

I. INTRODUCTION

Performance evaluation is a core task of computer sys-
tems research. In fact, everyone needs to do performance
measurement from time to time: home users need to know
their Internet speed, an engineer may need to figure out the
bottleneck of a system, a researcher may need to calculate the
performance improvement of a new algorithm. Yet not everyone
has received rigorous training in statistics and computer
performance evaluation. That is one of the reasons why we can
find many incomplete or irreplicable benchmark results, even in
peer-reviewed scientific publications. A widely reported study
published in Science [11] found that 60% of the psychology
experiments could not be replicated. Computer science cannot
afford to be complacent. Hoefle and Belli analyzed 95 papers
from HPC-related conferences and discovered that most papers
are flawed in experimental design or analyses [7].

Basically, if any published number is derived from fewer
than 20 samples, or is presented as a mean without variance or
confidence interval (CI), the authors are likely doing it wrong.
The following problems can often be found in published results:
• Imprecise: the result may not be a good approximation of

the “real” value; often caused by failing to consider the
width of CI and not collecting enough samples,

• Inaccurate: the result may not reflect what you need to
measure; often caused by hidden bottleneck in the system,

• Ignoring the overhead: not measuring or documenting the
measurement and instrumentation overhead,

• Presenting improvements or comparisons without provid-
ing the p-value, making it impossible to know how reliable
the improvements are.

Time is another limiting factor. People usually do not allocate
a lot of time to performance evaluation or tuning, yet few
newly designed or deployed systems can meet the expected
performance without a length tuning process. A large part of
the tuning process is spent on running customer’s benchmark
workloads for model construction or testing candidate param-
eters. Designers are usually given only a few days for these
tasks and have to rush the results by cutting corners, which
often leads to unreliable benchmark results and sub-optimal
system tuning decisions.

We want to improve this process by getting statistical valid
results in a short time. We begin with a high level overview
of what analytical methods are necessary to generate results
that meet the statistical requirements, then design heuristic
methods to automate and accelerate them. We cover methods
to measure and correct the autocorrelation of samples, to use
t-distribution to estimate the optimal test duration from existing
samples, to detect the duration of the warm-up and cool-down
phases, to detect shifts of mean in samples, and to use t-test
to estimate the optimal test duration for comparing benchmark
results. In addition to these heuristics, we also propose two new
algorithms: a simple and easy-to-use linear performance model
that makes allowance for warm-up and cool-down phases using
only total work amount and workload duration, and a method
to detect and measure the system’s performance bottleneck
while keeping the overhead within an acceptable range.

To encourage people to use these methods, we implement
them in a software framework called Pilot. It can automate
many performance evaluation tasks based on real-time time
series analytical results, and can help people who have
insufficient statistics knowledge to get good performance results.
Pilot can also free experienced researchers from painstakingly
executing benchmarks so they can get scientifically correct
results using the shortest possible time. Pilot is a light-weight
framework written in C++. We provide many interfaces for
integrating Pilot into existing workload software. We release
Pilot under the 3-clause BSD license and provide tools to foster
a user community. We hope many researchers and engineers
can find Pilot useful in their daily work.



II. BACKGROUND

A. Performance measurement and benchmarking

Performance measurement is concerned with how to measure
the performance of a running program or system, while bench-
marking is more about issuing a certain workload on the system
in order to measure the performance. High quality performance
measurement and benchmarking are very important for almost
everyone who uses an electronic or computer system, from
researchers to consumers. For instance, performance evaluation
is critical for computer science researchers to understand the
performance of newly designed algorithms. System designers
run benchmarks and measure application performance before
design decisions can be made. System administrators need
performance data to find the most suitable products to procure,
to detect hardware and software configuration problems, and to
verify if the performance meets the requirements of applications
or Service-Level Agreement.

Performance measurement and benchmarking are similar but
not identical. We usually can control how to run benchmarks,
but measurement often needs to be done on applications or
systems over which we have little control. Our following
discussion applies to both benchmarking and measurement
in general, and we use these two terms interchangeably unless
otherwise stated.

Benchmarks must meet several requirements to be useful.
The measurement results must reflect the performance property
one plans to measure (accuracy). The measurement must be
a good approximation of the real value with quantified error
(precision). Multiple runs of the same benchmark under the
same condition should generate reasonably similar results
(repeatability). The overhead must be measured and docu-
mented. If the results are meant for publication, they also must
include enough hardware and software information so that other
people can compare the results from a similar environment
(comparability) or replicate the result (replicability).

People usually use these terms, especially accuracy and
precision, to mean many different things. Here we give our
definition of these terms. It is assumed that the readers have
basic statistics knowledge and understand basic concepts such
as mean, variance, and sample size. Boudec wrote a good
reference book for readers who want to know more about these
statistical concepts [1].

a) Accuracy: reflects whether the results actually measure
what the user wants to measure. A benchmark usually involves
many components of the system. When we need to measure
a certain property of the system, such as I/O bandwidth,
the benchmark needs to be designed in such a way that no
other components, such as CPU or RAM, are limiting the
measured performance. This requires carefully designing the
experiment [5], measuring the usage of related components
while the benchmark is running, and checking which component
is limiting the overall performance.

b) Precision: is related to accuracy but is a different
concept. Precision is the difference between the measured
value and the real value the user needs to measure. In statistical
terms, precision is the difference between a sample parameter

and its corresponding population parameter. Precision can be
described by confidence interval (CI). The CI of a sample
parameter describes the range of possible population parameter
at certain likelihood. For instance, if the CI of a throughput
mean (μ) is C at the 95% confidence level, we know that there
is a 95% chance that the real system’s throughput is within
interval [μ − C

2 , μ +
C
2 ]. In practice, CIs are typically stated at

the 90% or 95% confidence level. We can see that the common
practice of presenting a certain performance parameter using
only one number, such as saying the write performance of a
disk drive is 100 MB/s, is misleading.

c) Repeatability: is critical to a valid performance mea-
surement because the goal of most performance benchmark is
to predict the performance of future workloads, which exactly
means that we want the measurement results to be repeatable.
In addition to the accuracy and precision, errors in the
measurement can have a negative impact on repeatability. There
are two kinds of errors: the systematic error and random error.
Systematic error means that the user is not measuring what he or
she plans to measure. For instance, the method of benchmarking
is wrong or the system has some hidden bottleneck that prevents
the property to be measured from reaching its maximum value.
In these cases, even though the results may look correct, it
may well be not repeatable in another environment. Random
errors are affected by “noise” outside our control, and can
result in non-repeatable measurements if the sample size is not
large enough or samples are not independent and identically
distributed (i.i.d.).

We will discuss how to achieve these properties in the fol-
lowing sections, and one can see that scientifically performing
a benchmark demands significant knowledge of the computer
system and statistics. We cannot expect all administrators,
engineers, and consumers to have received rigorous training in
both computer science and statistics. It is not news that many
vendors publish misleading, if not utterly wrong, benchmark
results to promote their products. Many peer-reviewed research
publications also suffer from poor understanding or execution
of performance measurement [7].

B. Getting results fast

The old wisdom for running benchmark is to run it for as
long as one can tolerate and hope the law of large numbers can
win over all errors. This method is no longer suitable for today’s
fast changing world, where we simply no longer have a lot of
time to run benchmark. We have heard field support engineers
complaining1 that they are usually only given one or two days
after the installation of a new computer cluster or distributed
storage system to prove that the system can deliver whatever
performance promised by the salesperson, very often using
the customer’s own benchmark programs. Modern distributed
systems can have hundreds, if not thousands, of parameters to
tune, and the performance engineer needs to run an unfamiliar
benchmark repeatedly and try different parameters. Apparently
the shorter the benchmark is the more parameters can be tested,
thus resulting in better system tuning results.

1Private conversation with an engineer from a major HPC provider.



Existing analytical software packages, such as R [12], are
either too big or slow for run-time analysis, are hard to integrate
with applications (for instance, R is a large GPL-licensed
software package), or require the user to write complex scripts
to use all its functions.

In all, we realize that we need an easy-to-use software tool
that can guide the user and help to automate most of the
analytical tasks of computer performance evaluation. We are
not introducing new statistical method in this paper. Instead
we focus on two tasks: finding the most suitable and practical
methods for computer performance evaluation, and design
heuristics methods to automate and accelerate them.

III. ALGORITHMS

We define the following terms. Also see a sample in Fig. 1.
Performance index (PI) is one property we want to measure.

For instance, the throughput of a storage device is a PI,
and its latency is another PI.

Session is the context for doing one measurement. We can
measure multiple PIs in one session. One session can
include multiple rounds of benchmarks, and each round
can have a different length.

Work amount is the amount of work involved in one round
of benchmark. The work amount is related to the length
of the workload. For instance, in a sequential write I/O
workload round, we write 500 MB data using 1 MB writes,
the work amount of this round is 500.

Work unit is a smallest unit of work amount that we can
get a measurement from. Using the above sample, if the
I/O size is 1 MB, we can measure the time of each I/O
syscall and calculate the throughput of each I/O operation.
Here the work unit is 1 MB, and we have 500 work
units in that workload round. Not all workloads should
be divided into units. Pilot expects the work unit to be
reasonably homogeneous. So, for instance, reading one
1 MB from different locations of a device can be thought
as homogeneous because the difference in performance is
small and mostly normally distributed. But shifting from
sequential I/O to random is not homogeneous because that
would result in huge difference in I/O performance. In
general, the user should only divide the workload into units
when one expects them to have similar performance. If not
the user should not use the work unit-related analytical

��������	
����������	
�����
�

���������	

�
���
������������

��	
���


����

��������������	
�����
���

�

������

������������� �����
���!�
���

��	
���


��������
����
�����"��
������������#����

Fig. 1. A sample write workload to illustrate the terms. This workload consists
of two rounds. Each round has a work amount of 500 MB.

methods of Pilot and should stick with readings (see next
term) only. We leave heterogeneous work units as a future
work.

Reading is a measurement of a PI of a round. Each benchmark
round generates one reading for each PI at the end of the
round. In the sample above, when PI is the throughput of
the device, we can get one throughput reading for each
round.

Unit reading (UR) is a measurement of a PI of a work unit.
In the sample above, we would have 500 throughput Unit
readings for Round 1 because it contains 500 work units,
and these 500 unit readings would be the throughput of
each 1 MB I/O operation.

Work-per-second (WPS) is the calculated speed at which the
workload consumes work. This is usually the desired PI
for many simple workloads.

Some workload cannot be meaningfully separated into
homogeneous work units, such as booting up a system and
randomly reading files of different sizes. We get only readings
from this kind of workloads.

A. Warm-up and Cool-down Phase Detection

Performance results are often used to predict the run time
of future workloads, and it is a common practice to use one
number to express the performance of a PI. For example, people
usually say “the write throughput of this device is X”. Using
only one number assumes that the device’s performance follows
a linear model. Linear models (work amount = duration ×
speed) are simple, but using only one number can only state
the device’s stable performance and is not adequate when the
performance of the PI can be significantly affected by a long
warm-up or cool-down phase.

Most computer devices require a setup or warm-up phase
before its performance can reach a stable level, like shown in
Fig. 2. If not properly accounted for, these warm-up phases can
have a negative impact on the precision of the measurement.
A common practice is to run the workload for a long time
and hope the effect of the warm-up phase can be amortized.
However, when the duration of the warm-up phase is not known,
there is no way to know the actual impact on the precision
(see the samples in § V). We describe two methods to address
different kinds of workloads.

We consider the following phases of a workload:
1) The setup phase, including the steps that do not consume

work amount, such as allocating memory, initializing
variables, and opening files, etc.

2) The warm-up phase when the system starts to perform
work but has not yet reached stable performance;

3) The stable phase where the work amount is being
consumed at a stable rate;

4) The cool-down phase when the system’s performance
starts to drop before finishing all the work (this is usually
observed in multi-threaded workloads when some but not
all threads finish the allocated work and the number of
active threads starts to drop at the end of the workload).



0 5 10 15 20 25
Time (second)

0

10

20

30

40

50

60

70

80
T

hr
ou

gh
pu

t(
M

B
/s

)
Client Nodes Throughput

Node 1

Node 2

Node 3

Node 4

Node 5

Warm-up
phase

Cool-down
phaseStable phase

Setup phase

Fig. 2. Throughput of a multi-node random read write workload. It shows the
setup phase, the warm-up phase caused by caching effect, and the cool-down
phase caused by shutting down of I/O threads.

We call them collectively the non-stable phases. When the
workload has multiple rounds, each round may or may not have
its own non-stable phases, and when they have, the duration
can be different. We consider two cases, the first is when
the benchmark can provide unit readings, the second is for
workloads that cannot provide unit readings.

a) Workloads that can provide unit reading: If the
benchmark workload can provide unit readings, which is
the measurement of each work unit, we can calculate the
shift in UR mean and use these change-points to separate
the URs into phases. Multiple change-point detection is a
challenging research question, especially when we cannot
make any assumption about the distribution of the error or the
underlying process. The method we use also has to be fast to
calculate and should support online update.

After evaluating many change-point detection methods, we
found that the E-Divisive with Medians (EDM) [10], which is
a new method published by Matteson and James in 2014, best
fits our requirements. EDM is non-parametric (works on mean
and variance) and robust (performs well for data drawn from a
wide range of distributions, especially non-normal distributions).
EDM’s initial calculation is O(n log n) and can do update in
O(log n) time.

EDM outputs a list of all the change-points in the time series.
It is common to see many change-points at the start and end
of the workload. These change-points divide the test data into
multiple segments. Pilot uses a heuristic method to determine
which segment is the stable segment: it has to be the longest
segment and also dominate the test data (containing more than
50% of the samples). This method can effectively remove any
number of non-stable phases at the beginning and the end.

b) Workloads that cannot provide unit reading: Some
workload cannot be meaningfully separated into units. In these
cases, we designed the following Work-per-second (WPS)

Linear Regression Method to detect and remove the non-stable
phases from the results of these workloads. A linear regression
model works best when:

1) The work amount of the workload is adjustable,
2) There is a linear relationship between the work amount

and the duration of the workload,
3) The duration of the setup, warm-up, and cool-down phases

are relatively stable across rounds.
It is not necessary to check these conditions beforehand. We
will know that one or more of them are false if the result
of the WPS method has a very wide CI or a high prediction
error. The WPS method also applies autocorrelation detection
and subsession analysis, which make it more tolerant of the
inconsistency in measurements.

Let w be the work amount, t be the total duration of the
workload, tsu be the duration of the setup phase, twu be the
duration of the warm-up phase, ts be the duration of the stable
phase, tcd be the duration of the cool-down phase, wwu be the
work amount consumed by the warm-up phase, ws be the work
amount consumed by the stable phase, and wcd be the work
amount consumed by the cool-down phase. We have (note that
the setup phase of a workload does not consume work amount)

t = tsu + twu + ts + tcd (1)
w = wwu + ws + wcd (2)

vs is the stable system performance we need to measure. By
definition, it can be calculated from the work amount of the
stable phase divided by the duration of the stable phase:

vs =
ws

ts
(3)

Combining equation (1), (2), and (3), we can have

t = tsu + twu +
w − wwu − wcd

vs
+ tcd

=
(
tsu + twu + tcd − wwu + wcd

vs

)
+

1
vs
w

t = α +
1
vs
w (4)

Equation (4) is the model we use in Pilot. Given enough
number of (w, t) pairs, we can use regression to estimate the
value of α and vs. The current implementation of Pilot uses
the Ordinary Least Square estimator [6] for its simplicity, and
other estimators can be added when necessary. We need the
samples to be i.i.d. in order to calculate the CI of vs using
the t-distribution. We use subsession analysis, which calculates
the autocorrelation coefficient of input samples and merges
adjacent correlated samples to create fewer but less correlated
samples, before running the regression estimator (see § III-D).

In addition to the requirements we talked about earlier, linear
regression requires that the following conditions be met:

1) The differences between the work amounts of rounds are
sufficiently large,

2) The sample size is sufficiently large.
We designed Pilot to keep running the workload at various

length and for many rounds until the desired width of the CI is
reached. Because we cannot know the total number of rounds



that are needed at the beginning, we designed the following
algorithm to generate different work amount for each round:
let (a, b) be the valid range for the work amount, we pick the
midpoint of the interval as the work amount for the first round
(a + b−a

2 ). This midpoint divides the interval into two smaller
intervals of equal length. We then use the midpoints of these
intervals for future rounds. Repeating this process can give us
a sequence of unequal numbers that can be used as the work
amounts. Fig. 3 gives a the first few numbers in this sequence
as a sample.

a b

Rd.1
Rd.2 Rd.3

Rd.4 Rd.5 Rd.6 Rd.7

Fig. 3. Sample sequence of work amounts for the first 7 rounds. Rd.1 is
the midpoint of a and b; Rd.2 is the midpoint of a and Rd.1; Rd.3 is the
midpoint of Rd.1 and b; Rd.8 would be at the midpoint of a and Rd.4.

Pilot takes a and b from user input. In practice the user
usually will likely set a to 0. This could cause the problem
that some rounds are too short. Very short rounds are usually
meaningless because they could be dominated by the non-stable
phases. Pilot checks the duration after running each round, and
if it finds that the previous round is shorter than a preset lower
bound, the result will be stored but not used in analysis. Pilot
doubles the work amount of the previous round until the round
duration is longer than the lower bound, and will update a to
that work amount.

In practice, the algorithm as described above has another
drawback that the work amount of the first few rounds may
be very large if b is a large number. For instance, if the user
wants to understand the throughput of a device and uses (0,
device size) for the valid parameter range, the first few rounds
can be very long, and it would take a long time before the user
can see the benchmark result. It is important for Pilot to give
the user a quick (albeit rough) estimation of the result before
spending a long time refining it. We use the following heuristic
method in Pilot to solve this problem. Say that we know in
round 1 that the time needed for finishing work amount a is
t1 = s seconds, and for each new round we want it to be k
seconds longer than the previous round. This means that the
nth round would be tn = s + (n − 1)k seconds long. Therefore,
the total duration (t) of the n rounds would be:

t =
n∑
i=1

tn =
1
2

k (n − 1)n + ns.

Now if we want to get the initial result in t seconds, we can
calculate k:

k =
2t − 2sn
n2 − n

(5)

Pilot uses equation (5) to calculate the initial slice size where
t is a tunable parameter with a preset value 60 seconds. The
number of rounds, n, should be greater than 50 in most cases [2]
for the central limit theorem to take effect.

Another problem is that the work amount derived from this
algorithm may be shorter than α (sum of the work amount of
all non-stable phases). The method we use in Pilot to handle

this issue is that we calculate the value of α after each round,
and use the new value of α to update a. We also remove all
results from previous rounds whose work amount is smaller
than the newly calculated α.

B. Bottleneck detection

The accuracy requirement states that the benchmark should
be stressing only the component that you want to measure,
not anything else. This requires that the performance of other
potential bottlenecks be monitored during the benchmark and
that they are not limiting the performance of the benchmark.
Many factors [5] can affect a benchmark in practice, and it is
very hard to take all of them into account even for experienced
people. The following automated approach cannot replace
rigorous experimental design for scientific research and should
be used to assist regular users and help to reduce the workload
of scientists.

We use a systematic approach to bottleneck detection. First
we identify the devices and data path between the devices.
They are represented using a multi-source, multi-sink directed
network. Each block is a device, which can have multiple inputs
and one output. The data links describe how the pressure of
the workload is generated. Fig. 4 is a sample that represents a
workload that generates writes into multiple network attached
storage systems from multiple clients, the data links start from
the disk drives of the client machines (or memory if the data
are generated on-the-fly) and end at the remote server’s storage
devices. It is possible to have more than one disjoint data path
in a workload.

Fig. 4. Devices and data flows as represented by using a directed network

This device-level graph network provided a basis for un-
derstanding the related devices at a higher level, but is not
detailed enough for actually carrying out the analysis. The
second step is to discover components along the data paths.
This is done by expanding a device into components. Using the
sample above, we can expand the device link graph into a more
detailed component link graph as shown in Fig. 5. We always
measure the bi-directional data flow between components
even when the workload only generates data in one direction
because a congestion in any direction can negatively affect the
performance of both directions.

The third step is to measure and monitor the utilization rate
of each of these components while the workload is running. The
results are invalid if any component’s utilization rate passes
a certain threshold. The monitoring is done throughout the
workload because the utilization rates can change over time.

These steps are finicky and error-prone when manually
executed. To minimize the effort and the possibility of missing
important components, we combine several heuristics to
automatically generate the data path and suggest components



Fig. 5. Component data link graph expanded from one data link (Fig. 4).
The dashed red line shows the expected bottleneck. No other link or node
should have a more than 80% utilization rate. Even for cases when the data
mainly flows in one direction, we still measure bi-directional flows because a
congestion in any direction would slow down both data flows. We use two
links between components in the graph to represent the send and receive data
flows, enabling us to measure and visualize them respectively.

for the analysis. Pilot scans the list of parameters to identify
file system path and check them one-by-one to see if they are
locally or remotely mounted. For locally mounted file systems
the related storage devices are added to the device list; for
remotely mounted file systems the network subsystem and
the remote machines are added. Pilot needs access to remote
machines to scan for hardware and utilization information.
This information is then used to generate the device and
component data link graph. This scanning process is done
by using customizable plug-ins. Pilot also supports importing
a user designated component graph. There are two types of
plug-ins that are used in the bottleneck detection. The first are

static plug-ins that detect the hardware property and return a
theoretical bandwidth limit. The second are dynamic plug-ins
that can monitor the utilization rate for one or more PIs.

Finding the optimal sampling rate remains challenging
because measuring the utilization rates of many components
inevitably incurs overhead on the system. If the rate is too slow,
we may miss spikes in component usage; if the rate is too
high the overhead may shift the bottleneck of the system. In
the fourth step we run the workload again with the bottleneck
detection disabled to measure the results of the benchmark, and
compare the results with and without the bottleneck detection.
If there is a big difference between these two results, we can
know that the bottleneck detection function has incurred a
non-trivial impact on the result, and there is no guarantee that
the bottleneck would remain the same when the bottleneck
detection function is disabled. We need to find the highest
sampling rate that generates an overhead no larger than a
threshold. Pilot uses the Newton’s method to find out this
optimal sampling rate.

C. Overhead measurement

Measuring the performance of an application usually incurs
running extra instructions for taking the measurement, doing
some calculation, and storing the data. The overhead can be
high when unit readings are being measured because that could
require storing a large amount of information. Pilot executes a
benchmark with the measurement instructions enabled and later
disabled, and compare the results to calculate the overhead of
the measurement. Since with the measurement instructions
disabled Pilot could no longer acquire unit readings, the
measurement of overhead will be done on the readings only.

D. Auto-correlation Detection and Mitigation

A benchmark session needs to be long enough so that
we can collect enough samples to calculate the CI at the
desired confidence level. The more samples we have, the
narrower the CI can be made. However, a crucial issue that
is often overlooked in many published benchmark results is
the autocorrelation among samples. Autocorrelation is the
cross-correlation of a sequence of measurements with itself at
different points in time. Conceptually, a high autocorrelation
means that previous data points can be used to predict future
data points, and that would invalid the calculation of CI no
matter how large the sample size is. Most measurements in
computer systems are autocorrelated because of the stateful
nature of computer systems. For instance, most computer
systems have one or more schedulers, which allocate time
slice to jobs. The measured performance of such jobs would
be highly correlated when they are taken within a single time
slice, and would change significantly between time slices if the
duration of a measurement unit is not significantly longer than
the size of a time slice. The autocorrelation in the samples
must be properly handled before we can go on to the next step
to calculate the sample’s CI.



Autocorrelation is measured by the autocorrelation coeffi-
cient of a sequence, which is calculated as the covariance
between measurements from the same sequence as

R(τ) =
E[(Xt − μ)(Xt+τ − μ)]

σ2 ,

where τ is the time-lag. The autocorrelation coefficient is a
number in range [−1, 1], where −1 means the sample data are
reversely correlated and 1 means the data is autocorrelated. In
statistics, [−0.1, 0.1] is deemed to be a valid range for declaring
the sample data has negligible autocorrelation [3].

Subsession analysis [3] is a statistical method for handling
autocorrelation in sample data. n-subsession analysis models
the test data and combines every n samples into a new sample.
Pilot calculates the autocorrelation coefficient of measurement
data after performing data sanitizing, such as non-stable phases
removal, and gradually increases n until the autocorrelation
coefficient is reduced to within the desired range.

E. Deciding Optimal Session Length

On a high level, a benchmark session comprises many rounds.
We calculate the CI after collecting new data from each round.
The session ends when the CIs of all PIs reach the target.
Because each round can have non-stable phases that are not
contributing samples, we should maximize the length of each
round and minimize the number of rounds. This also has the
extra benefit of including those work units that are far from
the beginning of the initial work amount.

But we cannot begin the first round using the maximum work
amount, because in many cases the maximum work amount can
be very large. This is typical in storage benchmarks where the
limit can be the total size of a storage device, and it would take
several dozens of hours to finish one round that fully writes a
device. In network benchmarks, we can even set the maximum
work amount to unlimited because these workloads can keep
running forever. If we start the first round of workload with
the full work amount, we risk letting the user wait too long a
time before showing the first result. Therefore, we begin the
benchmark session with a few short trial rounds to learn the
duration to work unit ratio.

a) Workloads that provide unit readings: We treat each
unit reading as one measurement. One workload round can
usually provide hundreds or thousands of measurements,
making it faster to reach the required sample size. For instance,
if a sequential write workload writes 500 MB data using 1 MB
I/O, we can get 500 throughput measurements if the workload
saves the duration of each write. Pilot sends the unit reading
results through the non-stable phases removal, performs auto-
correlation reduction, and uses the rest of the unit readings
to calculate the CI. Pilot keeps running new rounds of the
workload until the desired width of the CI is reached.

b) Workloads that cannot provide unit reading: These
workloads are handled using the WPS method (§ III-A),
which also performs non-stable phases detection and removal,
subsession analysis, and decides the optimal number of rounds
to achieve the desired width of CI.

App 1 App 2

App 1 App 1App 2 App 2 App 2App 1 App 1

Sequential execution of workloads:

Interleaved execution of workloads for lowering temporal correlation:

Fig. 6. Interleaved execution of benchmarks can help to lower temporal
correlation between rounds.

F. Comparing Results

The need to compare benchmark results using the shortest
possible time is our very first motivation for designing Pilot.
Not only useful for system design and tuning, a handy tool
for comparing benchmark results can help many tasks in
systems research, such as choosing the fastest data structure
for storing certain data, finding performance regressions in
software development, and deciding the best parameters for
storage or network communication. Without using the correct
statistics method at runtime, most of these decisions were done
in an ad hoc manner, either prematurely with too little data,
or blindly wasting time to gather more than necessary data.

Suppose we have n workloads and the results of them are
comparable, which means that they are using the same unit of
measurement and are of the same scale. Now we need to rank
(order) these workloads according to their results. In some
cases we need to run these workloads to get new results, in
other cases the comparison involves old benchmark results. For
old results we need three values: the mean, subsession sample
size, and subsession variance (we need to use the subsession
analysis, as shown in § III-D, to reduce autocorrelation between
samples because i.i.d. is a hard requirement for all the analyses
we use in this section). For the rest of this section all samples
are subsession samples that have low autocorrelation.

Unlike the algorithm in § III-E, which executes multiple
rounds of a workload guided by heuristics until a desired
width of CI is reached, the algorithm for comparing results
interleaves the execution of workload rounds to reduce temporal
correlation between workload rounds, as shown in Fig. 6. For
instance, Pilot executes the workloads in the following order:
Workload 1 Round 1, Workload 2 Round 1, Workload 3 Round
1, . . ., Workload n Round 1; then go back to run Workload 1
Round 2, Workload 2 Round 2, etc.

There are two cases when we consider comparing two
benchmark results. The first case is when their CIs are not
overlapped. In this case we can be sure that one is greater
than the other at the confidence level used to calculate the
CIs. The second is when the CIs overlap. In this case we
use the Welch’s unequal variance t-test [15] (an adaptation
of Student’s t-test [13]) to compare the benchmark results, A
and B. Welch’s t-test is more reliable when the two samples
have unequal variance and unequal sample sizes, which are
true for most system benchmarks. This test can effectively tell
us the probability of rejecting a hypothesis and the required



sample size. Here the null hypothesis (the hypothesis we want
to reject) is that there is no statistical significant difference
between result A and B (A = B). We compute the probability
(p-value) of getting results A and B if the null hypothesis is
true. Let x be the mean of the result, σ2 be the variance, and
n be the sample size. We can calculate the p-value:

t =
xA − xB√
σ2

A

nA
+

σ2
B

nB

(6)

ν =

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
σ2

A

nA
+

σ2
B

nB

)2
σ4

A

n2
A

(nA−1)
+

σ4
B

n2
B (nB−1)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7)

p = 2 cdf(t, ν) (8)

Equation (7) is the Welch-Satterthwaite equation for calcu-
lating the degree of freedom (ν), and cdf(t, n) is the Student’s
t-distribution with ν degrees of freedom. We multiply it by 2
to calculate the two-tailed distribution.

The comparing result algorithm runs until:
1) There are enough data for calculating the CIs,
2) Each adjacent CI pair is either non-overlap or their p-value

of the null hypothesis (A = B) is less than the predefined
threshold (usually 0.01),

3) Every CI is tighter than the required width (this step is
optional but recommended because a narrower CI makes
it easier to compare with new results in the future).

Pilot needs to decide the work amount for running each round
of the workload. The value has to be chosen in such a way
that we can minimize the number of rounds needed to reduce
the impact of the overhead of starting a round. Mathematically
the optimal subsession sample size can be calculated using a
variation of equation (6).

IV. THE PILOT FRAMEWORK

Our analysis of recent publications in the systems research
field shows three common types of benchmarking. The first
is to evaluate the performance of a piece of source code,
which is usually relatively short, requires little to no setup, and
does not have a dedicated supporting benchmark framework
involved. Samples of such cases are comparing the performance
of two hash algorithms and comparing the performance of
two ways of iterating over a large matrix. The second kind
of benchmarks includes most workloads that are specifically
designed for performance measurement. They are usually
complex, requires a relatively long setup process, needs a
pre-configured benchmark framework, and can have a long
duration (hours to days). The third kind of benchmark includes
those that are done quickly and on spot, often when the user
needs to have a quick estimate of the performance of a certain
piece of hardware or software, such as doing a short benchmark
to decide which external hard drive is faster or downloading a
file from the Internet to test the speed of the Wi-Fi. In these
cases, the precision requirement of the measurement is not
paramount, but they have to be done quickly and usually involve
using a command line program (like dd [4] or cURL [14]).

Pilot is designed to work with all three kinds of benchmarks.
Pilot takes the requirements of the benchmark as the input,
applies the algorithms as described in the previous section
to execute the benchmark, and generates a detailed report
of the benchmark results. The default workload benchmark
declaration includes the following tasks:

1) The number of PIs, and for each PI:
a) name and unit,
b) desired width of CI (default to 10% of mean),
c) confidence level (default to 95%),
d) desired autocorrelation coefficient (default to

[−0.1, 0.1]).
2) The valid range of the work amount,
3) Non-stable phases removal (default: EDM and WPS),
4) Bottleneck detection (default: enabled),
5) Overhead detection (default: enabled),
For the first kind of benchmark, Pilot can be easily linked into

an existing code base by adding a few lines of code, very much
like the way how a unit test framework is used. We support
C/C++ first because they are the language in which most
performance critical code is written. For the second kind of
benchmark, Pilot provides an extensive list of library functions
for integrating with the existing benchmark framework. The
developer of the benchmark can choose to either let Pilot decide
the number of rounds and the work amount for each round
(the simplest way) or to manually control the executing of the
workload and use Pilot’s analytical functions as a guide to the
execution (more flexible). For the third kind of benchmark,
Pilot can run quick and short benchmark jobs by controlling a
workload program through a command-line interface.

V. EVALUATION

Pilot is designed to make running benchmarks easier. That
cannot be measured unless we do a user study. Unfortunately,
we do not have the resource for that, nor could we measure
how much time can be saved by using Pilot, because that
depends on how people run benchmarks before using Pilot.
Instead, we evaluate the characteristics of the algorithms in
order to understand them better. We present two evaluations:
time to reach the desired width of CI and prediction error of
the results.

A. Time to reach desired CI

Reaching the desired width of CI means that the precision
requirement is achieved and is often the major goal of a
measurement. Understanding the time to reach (TTR) desired
CI can help us plan and design benchmark tasks, and identify
problems in current benchmarking practices. We compare the
TTR of three methods: UR data without non-stable phase
removal, UR with EDM non-stable phase removal, and WPS
method. The desired width of CI is set to 10% of mean. All
methods include data sanitization, such as short-round detection
and using subsession analysis to mitigate autocorrelation.

The result is shown in Table I. We can see that the TTR
varies greatly in different workloads. TTR is not only affected
by the required sample size but also the autocorrelation in the
samples (high autocorrelation requires merging more samples),



TABLE I
THE TIME NEEDED TO REACH (TIME-TO-REACH, TTR) DESIRED WIDTH OF CI (10% OF RESULT MEAN) USING VARIOUS METHODS.

Workload
UR w/o non-stable removal UR with EDM non-stable removal WPS method

Result CI, σa TTR CIb, σ SS CIc, σ Result CI, σ TTR CI, σ SS CI, σ Result CI, σ TTR CI, σ

Seq. write (hard disk) 116–116, 3 1687–3738, 829 605–1000, 342 106–108, 0.3 127–229, 300 1–2, 1 99–108, – 730–8950, 1655
Seq. write (flash) 707–741, 6 12–15, 10 6–9, 14 719–719, 6 13–15, 5 12–16, 14 664–681, – 267–389, 58
Send data over Wi–Fi 26–27, 0.3 33.79–45.47, 20 1–2, 1 20–22, 0.4 50–106, 289 1–1, 1 21–26, – 8120–14345, 3012
a Result CI is the average measured CI of the results from respective method. σ is the average measured standard deviation. The unit for Result CI and σ is

MB/s. All CIs are calculated at 95% confidence level.
b TTR CI shows the CI of time-to-reach. The unit for TTR is a second.
c SS is the subsession size (how many adjacent samples are merged to reduce autocorrelation). All methods include autocorrelation removal.

�
����

����
����

����
�����

�����
�����

�����
�����

�����

�

��

��

��

��

���

���

���

���

���

�	
��
����������	
�������
��������
���

�	
��
�����
��� ������������
��
����!�"�

���#�$ ��%

%�&�����

���'$*+

�
��

�

��

��
'�

+

Fig. 7. The actual and predicted time for writing certain amount of data
sequentially. Three methods are used to predict the run time: UR without
non-stable phases removal, UR with EDM non-stable phase removal, and the
WPS method. Closer to the actual duration is better. The slope of the actual
duration line changes at around 2000 MB, after which the effect of write cache
starts to become less significant. The CI for each data point is very tight so
we omit them in the figure for clarity.

which in turn can be affected by different non-stable phases
removal methods. TTR varies greatly even when using the
same method. This highlights the importance of using runtime
analysis to decide the optimal sample size on-the-fly and the
inadequacy of using a fixed benchmark duration. Using a fixed
duration of benchmark leads to imprecise results for workloads
that require a long duration and a waste of time for workloads
that only require a short duration.

We can also see that the EDM method converges to
the desired CI using the shortest time. Without non-stable
phases removal, the URs from the hard disk have very high
autocorrelation, and Pilot needs to merge almost a thousand
adjacent samples to reduce the autocorrelation to below 0.1. If
we remove the non-stable phases first as in the EDM method,
the autocorrelation becomes much lower and also the time
needed to reach the desired sample size is shorter; EDM can
be seen as a way to sanitize the samples. The WPS method
does not require UR data and can only get one sample per
round, thus it requires a longer time to reach the required
sample size. We can see that sometimes the WPS method

needs more than 8000 seconds. Therefore, it should only be
used when UR data is not available. The results of all three
methods also demonstrate the importance of detecting and
handling autocorrelation. The high numbers of SS mean that
many workloads have inherently very high autocorrelation
between samples and it is wrong to apply almost any statistical
method if the results are not i.i.d.

The result matches our expectation. The UR with EDM
method should be the first choice for workloads that can provide
UR data, and the WPS method can be used for other workloads.
Whenever possible, benchmark workloads should be divide
into measurable small units to increase the sample size and
reduce the TTR.

B. Predicting future workloads

One major purpose for measuring performance is to use
it to predict the time needed for running future workloads.
It can be seen from Table I that different methods generate
slightly different results. This evaluation is designed to see
which results can best predict future durations. We measure
the actual durations of sequentially writing different amounts
of data and compare them with the predicted durations that
are calculated using the values from Table I. We use the center
of the CIs in the calculation. The result is shown in Fig. 7.

The slope of the actual duration line becomes steeper after
around 2000 MB. Our test machine’s Linux OS caches most of
the writes before 2000 MB in memory so the time needed is
short. After that the writes become slower because the system
has to actually write the data to the disk. Therefore, the write
performance after the first 2000 MB better reflects the real
disk’s write performance. It can be seen that the EDM line’s
slope best matches the slope of the post-2000 MB segment
of the actual duration line. This means that UR with EDM
non-stable phases removal is best for calculating the stable
performance. Without non-stable phases removal, the slope of
the green line is negatively affected by the huge write cache
of the system. The WPS method also gets the correct slope
before and after 2000 MB so it can also find the correct stable
performance when UR is not available.

It should be noted that due to limited space we are only
presenting the results of one HDD, and the prediction errors also
depend on how the workload works. Our current conclusion is
that the EDM method is best for getting the stable performance



and also has the shortest TTR. The WPS method can effectively
detect the non-stable phases even when only readings are
available.

VI. RELATED WORK

Boudec’s book [1] extensively covers the statistics knowledge
that is needed for computer performance evaluation. Hoefle
and Belli analyzed 95 papers from HPC-related conferences
with a focus on experimental design and how to present the
results to make them more interpretable [7]. Jimenez et al.’s
work on using OS-level container can be adopted along with
Pilot to get reproducible performance evaluation results [8].

Auto-pilot [16] provides a script language for controlling
the execution of benchmarks along with other mechanisms for
timing and analyzing results. Auto-pilot offers functions to
calculate CI and stop the execution when the required width
is reached but lacks other functions such as handling unit
readings separately, reducing auto-correlation, detecting non-
stable phases, or generating work amount dynamically. Some
parts of it are written in Perl and cannot be easily integrated
into C programs for doing high performance run-time analysis.
ministat [9] is a tool for comparing benchmark results at a
certain confidence level and drawing the results using ASCII
art.

VII. CONCLUSIONS AND FUTURE WORK

Manually monitoring and performing benchmark analysis are
demanding and error prone. We propose a series of algorithms
and heuristics to automate this process and generate reports
that are scientifically and statistically valid using as short
time as possible. Evaluation shows that these methods are
non-parametric and robust, and can shorten the time needed
for running benchmark. We have implemented the proposed
methods in an easy-to-use open source framework called Pilot,
which actually contains more heuristics methods for running
benchmarks than can be described in this paper. We sincerely
hope it can increase the quality of performance evaluation
in computer systems research and reduce people’s effort. We
are trying our best to make Pilot easy to learn and use. We
provide Pilot’s source code, precompiled packages, tutorials,
API documentation, mailing list, issue tracker, and wiki at
https://ascar.io/pilot.

Pilot is an ongoing project, and we are developing more
functions, such as a distributed mode that can measure and
make decisions based on measurements from many nodes
and analytical functions for detecting slow shift for long term
monitoring. The development will be handled in a community-
friendly manner and we welcome outside contributions.

ACKNOWLEDGMENTS

This research was supported in part by the National Science
Foundation under awards IIP-1266400, CCF-1219163, CNS-
1018928, CNS-1528179, by the Department of Energy under
award DE-FC02-10ER26017/DESC0005417, by a Symantec
Graduate Fellowship, by a grant from Intel Corporation, and
by industrial members of the Center for Research in Storage
Systems.

REFERENCES

[1] Jean-Yves Le Boudec. Performance Evaluation Of
Computer and Communication Systems. EPFL Press,
Lausanne, Switzerland, 2010.

[2] Tianshi Chen, Yunji Chen, Qi Guo, Olivier Temam, Yue
Wu, and Weiwu Hu. Statistical performance comparisons
of computers. In Proceedings of the 18th International
Symposium on High-Performance Computer Architecture
(HPCA-18). IEEE, 2012.

[3] Domenico Ferrari. Computer Systems Performance
Evaluation. Prentice-Hall, 1978. ISBN 9780131651265.

[4] The Open Group. dd, convert and copy a file. The Single
UNIX® Specification, 2013.

[5] Tim Harris. Do not believe everything you read in the
papers. Fourth National Information Communications
Technology Australia (NICTA) Research Centre Software
Systems Summer School, https://ssrg.nicta.com.au/Events/
summer/16/harris.pdf, February 2016.

[6] Fumio Hayashi. Econometrics. Princeton University Press,
2000.

[7] Torsten Hoefle and Roberto Belli. Scientific benchmarking
of parallel computing systems. In Proceedings of the
2015 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC15),
2015.

[8] Ivo Jimenez, Carlos Maltzahn, Jay Lofstead, Adam
Moody, Kathryn Mohror, Remzi Arpaci-Dusseau, and
Andrea Arpaci-Dusseau. Characterizing and reducing
cross-platform performance variability using OS-level
virtualization. In The First IEEE International Workshop
on Variability in Parallel and Distributed Systems (VarSys
2016), Chicago, USA, May 2016.

[9] Poul-Henning Kamp. ministat, a statistics utility. https:
//www.freebsd.org/cgi/man.cgi?ministat, November 2012.

[10] David S. Matteson and Nicholas A. James. A nonpara-
metric approach for multiple change point analysis of
multivariate data. Journal of the American Statistical
Association, 109(505), 2014.

[11] Open Science Collaboration. Estimating the reproducibil-
ity of psychological science. Science, 349(6251), 2015.

[12] R Core Team. R: A Language and Environment for Statis-
tical Computing. R Foundation for Statistical Computing,
Vienna, Austria, 2013. URL http://www.R-project.org/.

[13] Student. The probable error of a mean. Biometrika, 6(1):
1–25, 1908.

[14] Contributors to the cURL project. The cURL command
line tool. https://curl.haxx.se/, May 2016.

[15] B. L. Welch. The generalization of Student’s problem
when several different population variances are involved.
Biometrika, 34(1-2):28–35, 1947.

[16] Charles P. Wright, Nikolai Joukov, Devaki Kulkarni, Yev-
geniy Miretskiy, and Erez Zadok. Auto-pilot: A platform
for system software benchmarking. In Proceedings of
the 2005 USENIX Annual Technical Conference, pages
175–188, Anaheim, CA, April 2005.


