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Abstract capabilities that users require. Additionally, storingil
in both the file system and a search application introduces
Hierarchical file systems do not effectively meet the neegsace, performance, and usability overheads that can limit
of users at the petabyte-scale. Users need dynartigir effectiveness at the petabyte-scale.
search-based file access in order to properly manage anfhis approach is far from ideal and suggest that file
use their growing sea of data. This paper presents #jgtems themselves be re-designed to provide the func-
design of Copernicus, a new scalable, semantic file sygnality required by users at the petabyte-scale. This pa-
tem that provides a searchable namespace for billionsyef makes the following contributions: (1) it argues that
files. Instead of augmenting a traditional file system Wigbarch and a semantic namespace should be primary goa|s
a search index, Copernicus uses a dynamic, graph-bas@fle file system; (2) it presents some basic requirements
file SyStem deSign that indexes file attributes and relati%d Cha”enges for bu||d|ng a So|uti0n; (3) and presents
ships to provide scalable search and navigation of filesthe design of Copernicus, a file system that aims to ad-
dress these challenges at large scales. The core of the
. Copernicus file system is a dynamic graph-based index
1 Introduction that clusters semantically related files into vertexes &nd a
] . lows inter-file relationships to form edges between them.
Tod_ay, file systems store petabytes of data across bllllqﬂﬁs graph replaces the traditional directory hierarchy, ¢
of files and can serve thousands of users. Current NigE efficiently queried, and allows the construction of dy-
archical file organizations, which are over 40 years ol nic namespaces. The namespace allows “virtual” di-
and are meant for orders of magnitude fewer files [3], @ tories that correspond to a query and navigation us-
longer match how users access and manage their files [Hé inter-file relationships. Additionally, by integragn

As aresult, users are no longer able to easily kmdere geqrch directly into the file system Copernicus can effec-
to find their data and must use lengthy brute force seawHy scale to billions of files.

when they do not know exactly where it is.

Instead, users need to be able to desanibatthey are
looking for. For example, a scientist's HPC applicatioh.1 Motivating Examples
may generate thousands of files containing data from ex-
periments; finding the few files with interesting results drhe following examples show how Copernicus can im-
those with related or similar results can be difficult. Ugrove file management.
ing and sharing these files requires that files be accesslfelerstanding file dependencies.Consider a scientist
via their resultsi(e., content), the experiment parametersinning an HPC DNA sequencing application. To inter-
(i.e., metadata), and the files and data used to genefatet the results, it is useful to know how the data is being
the resultsi(e., inter-file relationships). Users are hardgenerated. As the experiment runs, Copernicus allows the
pressed to address even common problems, such as logestlts to be searched in real time. If a compelling result
ing the files that consume the most disk space or findiisgfound, a virtual directory can be created containing files
where files for an application have been installed. from past experiments with similar results. By searching

As system capacities have grown, this problem h#ge provenance links of those files, the scientist can find
been addressed by augmenting file systems with sepavetch DNA sequencing libraries or input parameters are
applications that provide search and indexing functionéite common factor for all of the result files.
ity. Search applications, which use additional file met&ystem administration. Imagine a storage administrator
data and content indexes for faster search, have becavhe discovers a serious bug in a script that has affected
popular on both desktop [1] and enterprise [7] file syan unknown number of files. To locate and fix these files,
tems. However, these applications are simply makeshife administrator can search provenance relationships to
solutions to a more fundamental problem: hierarchidahd the contaminated fileg Q. files opened by the script)
file systems do not provide the search and managemamnd build a virtual directory containing these files. A cor-



The limitations of current hierarchical organization are
well documented, and there are a variety of proposed so-
Queries Lookups, lutions. Early solutions, such #&s nd andgr ep, aimed
1’0 :
to make brute force search less cumbersome. Semantic
file systems [6] provided new namespaces that allowed
search-based access to files and construction of “virtual”
Updates 110 . . . . . .
—_——— ] —————F ————— — —- directories that were associated with queries. Semantic
file systems provided better methods for accessing files,
but were designed as applications above the file system
Figure 1: File search applications. The search application re- Which caused serious performance and consistency prob-
sides on top of the file system and stores file metadata and dgins. Other search applications improved performance by
tent in separate search-optimized indexes. Maintainingis# using new index designs tailored for file systems [10, 12].
large index structures can add significant space and time-ovgoday, tools that provide metadata and content search for
heads. desktop [1] and small-scale (tens of millions of files) en-
terprise [7] file systems are common.
rected version of the script can be run over the files in thisHowever, current solutions are applications that reside
directory to quickly undo the erroneous changes. separatelyfrom the file system. As a result, they can sim-
Finding misplaced files. Consider a user working onply concealcurrent hierarchical limitations, rather than
a paper about file system search and looking for relateslve them. Figure 1 shows how these applications in-
work. The user recalls reading an interesting paper whitgact with the file system. The search application main-
working on “motivation.tex” but does not know the patains search indexes for file metadata and content, such as
per’s title or author. However, using temporal links andatabases or inverted files, which are stored persistently
metadata, a virtual directory can be constructed of all filgs files in the file system.
that were accessed at the same time as “mOtivation.tEX"Separate search applications are not an ideal solution
are PDFs, and contain “file system” and “search”. Thsecause they require a level of indirection that is ineffi-
directory allows the user to easily browse the results. cient. A resource overhead is incurred, which can be sig-
nificant at the petabyte-scale, because each file requires
resources in both the file system’s and application’s in-
2 Petabyte-Scale Challenges dexes. Additionally, the application must track file sys-
tem changes, either by crawling or monitoring activity,
As file systems have grown to store many billions of fileg, slow process that often leaves the application inconsis-
search-based access and navigation have become astit with the file system because each file modification re-
cal requirements. Unfortunately, current file system aqdires updates to the indexes of each. Moreover, querying
search solutions are not well equipped to address thése search application can be highly inefficient. A query
challenges. requires the search indexes to be accessed, which must
then leverage the file system’s index (since they are stored
T in the file system); actually retrieving the file requires an-
2.1 Current Limitations other look up in the file system index. These kinds of inef-

Hierarchical file organization was designed for systerfi§iéncies are well known to the database community [17]
with thousands of files and aimed to provide only basd the reason that many databases manage their own stor-
navigation for persistent storage [3]. As a result, basic 1§9€- Flnally, users must interact with mult!pl_e interfaces
erarchical organization has several limitations that do ri¢#Pending on how they want to access therir files.

match the needs of users who use and manage billions of/e Posit that a scalable, searchable namesisdoac-
files. First, files are only allowed to have a single categéenality that file systems should provide because 1) it is
rization (.e., its pathname). Useful information describbe@coming increasingly important functionality, 2) a sepa-
ing a file cannot be used to access it and is often lost@¢€ application limits scalability and usability and 3gth

is often impossible for users to recall a single categoriZ4€ System already provides existing indexing functional-
tion in large systems. Second, files can only be relatéythat can be leveraged. Other recent work supports the
through parent — child relationships. Other importantidea that “hierarchical file systems are dead” [14].

inter-file relationships, such as provenance, temporal con

text, oruse ina relgted project, are I_ost. '_rhird, hieraafs_hi2_2 Modern File System Requirements

provide no convenient search functionality. When a file’s

location is not known, a brute force search, which can e address the needs of today’s users, modern large-scale
extremely slow, is required. file systems must meet some basic requirements.

File System




Flexible naming. The main drawback with current hi-
erarchies is their inability to allow flexible and semantic
access to files. Files should be able to be accessed using
their attributesand relationships. Thus, the file system
must efficiently extract and infer the necessary attributes
and relationships and index them in real-time.

Dynamic navigation. While search is extremely use-

ful for retrieval, users still need a way to navigate the
namespace. Navigation should be more expressive than
just parent— child hierarchies, should allow dynami-
cally changing (or virtual) directories and need not

i Relati hi hould be all d bet tqf“;gure 2: Copernicus overview. Clusters, shown in different
acyclic. Relationships shou e allowed between VE%Iors, group semantically related files. Files within a<lu

files, rather than only directories and files. ter form a smaller graph based on how the files are related.
Scalability. Large file systems are the most difficult tarhese links, and the links between clusters, create the r€ope
manage, making it critical that both search and I/O peficus namespace. Each cluster is relatively small and idto
formance scale to billions of files. Effective scalabilityn a sequential region on disk for fast access.

requires fine-grained control of file index structures that

allow disk layouts and memory utilization to properlgearched without additional search applications. Finally
match workloads. a new journaling mechanism allows file metadata modifi-
Backwards compatibility. Existing applications rely on cations to be written quickly and safely to disk while still
hierarchical namespaces. It is critical that new file sygroviding real-time index updates.

tems be able to support legacy applications to facilitate

migration to a new paradigm. 3.1 Graph Construction

In-memory
structures

On disk
layout

) ] Copernicus uses a graph-based index to provide a meta-
3 Copernicus Architecture data and attribute layout that can be efficiently searched.
The graph is managed by the MDS. Each file is repre-
Copernicus is designed as an object-based parallel §inted with an inode and is uniquely identified by its inode
system so that it can achieve high scalability by decomiamber. Inodes and associated attributes—content key-
pling the metadata and data paths and allowing parallerds and relationships—are grouped into physical clus-
access to storage devices [18]. However, Copernicugss based on their semantic similarity. Clusters are like
techniques are applicable to a wide range of architecturéisectories in that they represent a physical grouping of
Object-based file systems consist of three main compelated files likely to be accessed together, in the same
nents: clients, a metadata server cluster (MDS), andvay that file systems try to keep files adjacent to their con-
cluster of object-based storage devices (OSD). Cliemdsning directory on disk. This grouping provides a flex-
perform file I/O directly with OSDs, but submit metaible, fine-grained way to access and control files. How-
data and search requests to the MDS, which manageséber, unlike directories, cluster groupings are semantic
namespace; thus, most of the Copernicus design is father than hierarchical and are transparent to users: clus
cused on the MDS. ters only provide physical organization for inodes. Given
Copernicus achieves a scalable, semantic namespadiée’s inode number, a pseudo-random placement algo-
using several new techniques. A dynamic graph-basedrithm, CRUSH [19], identifies the locations of the file’s
dex provides file metadata and attribute layouts that aetata on the OSDs, meaning data pointers are not stored
able scalable search, as shown in Figure 2. Files that within the inode.
semantically similar and likely to be accessed together ardnodes are grouped into clusters usiigstering poli-
grouped intoclusters which are similar to traditional di- cies which define their semantic similarity. Clustering
rectories, and form the vertices of the graph. Inter-file rpelicies may be set by users, administrators, or Coperni-
lationships, such as provenance [13, 15] and temporal egs, and can change over time, allowing layouts to ad-
cess patterns [16], create edges between files that enaldeto the current access patterns. Inodes may move be-
semantic navigation. Directories are “virtual,” and are itween clusters as their attributes change. Example cluster
stantiated by queries. Backwards naming compatibilityg policies include clustering files for a common project
can be enabled by creating a hierarchical tree from tfeeg.,files related to an HPC experiment), grouping files
graph. Clusters store metadata and attributes in seamlth shared attributes(g.,files owned by Andrew or all
optimized index structures. The use of search indexes ¥intual machine images), or clustering files with common
native storage mechanisms allows Copernicus to be eaaitgess patterng @g.,files often accessed in sequence or in



parallel). Previous work has used Latent Semantic Inddseep posting lists small so that they can be kept sequen-

ing (LSI) as a policy to group related files [8]. In Copernitial on disk. A global indirectindex [11] is used to identify

cus, files are allowed to reside in only one cluster becawsleich clusters contain posting lists for a keyword. An in-

maintaining multiple active replicas makes synchronizdiect index consists of a keyword dictionary with each

tion difficult. Clusters are kept relatively small, aroundeyword entry pointing to a list ofcluster,weight pairs,

10° files, to ensure fast access to any one cluster; thusillawing the MDS to quickly identify the clusters most

large file system may have 46r more clusters. likely to contain an answer to a query and rule out those
Copernicus creates a namespace using the semanticlssters thatannotsatisfy the query.

lationships that exist between files. Relationship links

are created implicitly by Copernicus depending on hg; .

files are used a?nd cén Z\Iso Ee created gxplicitlg/ by usérl‘g Query Execution

and applications. Unlike a traditional file system, linka| file accessesd.g.,open() andst at () ) translate to
only exist between two files; directories in Copernicus afRieries over the Copernicus graph index. While naviga-
“virtual” and simply represent the set of files matching §on can be done using graph traversal algorithms, queries
search query. Virtual directories allow dynamic namegyst also be able to identify the clusters containing files
paces to be constructed, while links provide an easy, gtevant to the search. Since semantically related files are
mantic way to navigate the namespace. Relationshifjgstered in the namespace, it is very likely that the vast
are directed and are represented as triples of the fafBjority of clusters do not need to be searched. This has
(relationship type source file target file), and can define gjready been shown to be the case in hierarchical file sys-
any kind of relationship. Relationship links may exist bgams [10], despite only modest semantic clustering. Ad-
tween files within the same or different clusters as |”U§1t|0na”y' Copernicus emp'oys an LRU-based Caching al-
trated in Figure 2. The graph need not be acyclic, permfforithm to ensure that queries for hot or popular clusters

ting more flexible relationships. do not go to disk.
For file metadata and relationships, Copernicus identi-
3.2 Cluster Indexing fies relevant clusters usirgignature filed4]—bit arrays

with associated hashing functions that compactly describe

Files in Copernicus may be retrieved using their metadati@e contents of a cluster. When a cluster stores a metadata
content, or relationship attributes. Each cluster storesrelationship attribute, it hashes its value to a bit posit
these attributes in separate search-optimized index-strimca signature file, which is then set to one. To determine
tures, improving efficiency by allowing files to easily bé& a cluster contains any files related to a query, the values
searched without a separate application. File metadataishe query are also hashed to bit positions, which are
represented a&ttribute value pairs and includes sim-then tested. If, and only if, all tested bits are set to one is
ple POSIX metadata and extended attributes. Metadatthis cluster read from disk and searched.
indexed in a in-memory, multi-dimensional binary search Signature files are one-dimensional; thus, one is main-
tree called a K-D tree [2]. K-D trees, which have beeanined for each type of attribute indexed. To ensure fast
used previously to index metadata [10], provide fast, logecess, signature files are kept in memory. To do this,
arithmic point, range, and nearest neighbor queries. eich is kept small: foto 1 bit positions per signature
key advantage of multi-dimensional search trees is thatfi#. While false positives can occur when two values hash
metadata attributes can be indexed in a single structueethe same bit position, the only effect is that a cluster
as opposed to a B-tree, which would require one per at-searched when it does not contain files relevant to the
tribute. Since clusters are relatively small, each K-D tregiery, degrading search performance but not impacting
can often be stored in a sequential region on disk. Thiscuracy.
layout, which is similar to embedded inodes [5], provides The sheer number of possible keywords occurring in
fast read access and prefetching of related metadata. file content make signature files ineffective for keyword

Relationship attributes are also stored in a K-D tree. Kearch. However, the indirect index allows fast identifica-
D trees allow any combination of the relationship triple ttion of the clusters containing posting lists for the query
be queried. If a relationship exists between files in dikeywords. For each keyword in the query, the list of
ferent clusters, the cluster storing the source file’s inodeisters containing the keyword is retrieved. Assuming
indexes the relationship, to prevent duplication. This K-Boolean search, the lists are then intersected, producing
tree can also usually be stored sequentially on disk.  the set of clusters that appeared in all lists. Only the

Each cluster stores full-text keywords, which are eposting lists from the clusters appearing in this set are re-
tracted from its files’ contents using application-speciftdeved and searched. The weights can be used to further
transducersin its own inverted index. This design allowsptimize query processing, first searching in clusters that
keyword search at the granularity of clusters and helpase most likely to contain the desired results.



3.4 Managing Updates open. First, how effectively does a generic graph index

c . ¢ effectively bal h and ds<t:ale and how effective are search trees at handling file
opernicus must eflectively balance search and up tem workloads? Second, what are the challenges with

performance, provide real-time index updates, and p 5
vide the data safety that users expect. Copernicus u e
a journal-based approach for managing metadata andsr
lationship updates, and a client-based approach for m
aging content keywords. When file metadata or relation-
ships are created, removed or modified, the update is first

viding needed functionality such as security? Third,
c&R the Copernicus graph be leveraged for better file
€arch result ranking or interface? We intend to explore
fi{Ese and other issues as we continue our design.

written safely to a journal on disk. By first journaling upReferences

dates safely to disk, Copernicus is able to provide needrfgtil
. UL
data safety in case of a crash. The K-D tree containi
the file’s inode or relationship information is then mod-
ified and marked as dirty in the cache, thereby reflect2]
ing changes in the index in real-time. When a clust
is evicted from the cache, the entire K-D tree is Writtej[g
sequentially to disk and its entries are removed from the
journal. Copernicus allows the journal to grow up to hunil
dreds of megabytes before it is trimmed, which helps to
amortize multiple updates into a single disk write. 5]
Unfortunately, K-D trees do not efficiently handle fre-
qguent inserts and modifications. Inserting new inodes
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ing search performance. As a result, K-D trees are rgp
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Clients write file data directly to OSDs. When a file ig
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ensuring that they remain sequential on disk. [15]

2]

4 Conclusions and Open Questions ™
17
Hierarchical file organization was designed for the sy[s—]
tems of yesterday. At the petabyte-scale, file systems midi&t
break away from this paradigm and provide a semantic,
searchable namespace where users can asifatthey [19]
want, rather than sayinghereto find it. Existing search
applications, which are separate from the file system, will
not effectively scale. To address this problem we designed
Copernicus, which uses a novel graph-based index to pro-
vide a semantic namespace and scalable performance.
Because Copernicus changes many common file sys-
tem concepts, a number of practical questions remain
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