
Usage Behavior of a Large-Scale Scientific Archive
Ian F. Adams∗, Brian A. Madden∗, Joel C. Frank∗, Mark W. Storer†, Ethan L. Miller∗, Gene Harano‡

*University of California, Santa Cruz †NetApp ‡NCAR

Abstract—Archival storage systems for scientific data have
been growing in both size and relevance over the past two
decades, yet researchers and system designers alike must rely on
limited and obsolete knowledge to guide archival management
and design. To address this issue, we analyzed three years of file-
level activities from the NCAR mass storage system, providing
valuable insight into a large-scale scientific archive with over
1600 users, tens of millions of files, and petabytes of data.
Our examination of system usage showed that, while a subset

of users were responsible for most of the activity, this activity
was widely distributed at the file level. We also show that the
physical grouping of files and directories on media can improve
archival storage system performance. Based on our observations,
we provide suggestions and guidance for both future scientific
archival system designs as well as improved tracing of archival
activity.

I. INTRODUCTION
Over the past two decades, scientific archives have grown

from tens of terabytes to 10–100 petabytes, and are rapidly
approaching exabyte-scale. However, our understanding of
their behavior is woefully out-of-date. Since 1993, there have
been only two studies that have looked explicitly at day-to-day
activities on a large-scale scientific archive, each limited in
their application to modern scientific archive design. Adams
et al. were stymied by the coarse granularity of their data,
preventing them from examining user and file level behav-
iors [1]. Frank et al. focused on evolutionary trends over
time rather than a detailed analysis of a modern system’s
behavior [2]. Because of this lack of knowledge, designers
of modern scientific archives are forced to rely on unverified
assumptions and potentially obsolete workload studies from
decades ago.
To address this issue, we examine the usage behavior of the

National Center for Atmospheric Research’s (NCAR) mass
storage system (MSS). With over 1600 users and petabytes
of data stored across millions of files, access traces from
the NCAR MSS provide an excellent opportunity to under-
stand the characteristics of a large-scale scientific archive.
Using three years of activity logs running from 2008 through
2010 and extensive communication with administrators of the
NCAR MSS, we have completed the first detailed study of a
scientific archive, including user and file-level behaviors, in
nearly 20 years.
At the system-wide level, we note that over 50% of activity

was automated in nature, consisting of migrations of data to

SC12, November 10-16, 2012, Salt Lake City, Utah, USA
978-1-4673-0806-9/12/ $31.00 c©2012 IEEE

and from a disk cache and between tapes. Interestingly, while
migrations are based upon administrative policy and cache
availability, they are ultimately driven by user activities. They
offer the best of both worlds as an easy target for optimization
because they are both predictable and latency insensitive. Our
analysis also shows that the notion of “Write-Once, Read-
Maybe” is misleading in a modern scientific archive: at the
system level hardware migrations inevitably cause data to be
read and written en masse.

At the user level, we find that a subset of users and their
associated sessions were responsible for the vast majority of
activity in the system, and that user activities tend to occur in
groups at the same directory depth. We show that the typical
user-session, however, was rather modest in both the number
of activities and the volume of data accessed, suggesting
two improvements for systems based on offline or powered-
down media. First, physical grouping based upon user and
directory depth may be useful for significantly improving the
performance of an archive based on offline media such as spun
down disk or tape. Second, it may be helpful to have a batch
style interface to aid in grouping and scheduling accesses to
the archive.

At the file level, we discovered that a nontrivial fraction
(5%) of files receive updates or overwrites of their data. We
also found that around 15% of files created during the trace
were deleted, typically within a year of creation. While this
does not completely discount the notion of “Write-Once” in
an archive, this shows that it is not unequivocally true either.
We also show that activities were nearly uniformly distributed
among files, with only a small fraction of files being highly
active within the system. This contrasts strongly with typical
enterprise and personal storage system workloads in which
a small fraction of files are responsible for the majority of
activity. This suggests that naïve read caching would be largely
ineffective. In fact, the MSS architecture is organized to use
the disk cache primarily as a write-buffer rather than a read
cache.

The rest of the paper is structured as follows. In Section II
we discuss prior workload studies and how they relate to our
work. Section III provides an overview of the datasets we use
in our analysis, and the system they came from. We present our
observations and microanalysis in Section IV. In Section V we
draw higher-level conclusions as well as discuss some lessons
learned during our analysis. Section VI covers our future work
and in Section VII we conclude.

II. RELATED WORK

While there have been few long-term studies of modern
scientific archival storage systems, there have been long-term
studies completed on other types of systems. Agrawal, et
al. examined 5 years of snapshots from personal computing
machines [3], and Gibson, et al. looked at long-term patterns
on general-purpose UNIX machines [4]. These traces were
gathered on file systems used for desktop computing; equally
important, they are studies of actively used data, not archival
data. While they provide a good view of how desktop users ac-
cess data over a long period, they are not applicable to archival
scientific data. Cho, et al. observed file system activities over
the course of a year on a large scientific cluster [5]. While this
study was in an HPC environment, it focused on relatively
short-term home directory and scratch file systems with a
total capacity under 100 TB. Again, these findings cannot be
extended to scientific archival storage, with a capacity 2–
3 orders of magnitude larger and much longer-term retention.
In addition to the long-term studies mentioned above, there

have also been a variety of shorter-term workload studies
in the last decade, ranging from a single day to a few
months. Dayal [6] did an analysis of metadata snapshots from
several scientific file systems including archives which, while
providing a good one-time view, was unable to shed light on
access patterns over time. Wang, et al. [7] explored short-
term file system usage behavior of HPC applications, but did
not examine aggregate usage of the file system by all users,
and did not explore long-term behavior. Anderson [8] studied
high-performance clusters used for animation rendering, which
we cannot generalize to archival storage behaviors. As with
Anderson’s work, studies by Leung, et al. [9] and Chen, et
al. [10] were relatively short term and on enterprise storage
systems (in fact, both were based on the same file system
trace), limiting their applicability to scientific archives.
Prior published studies that are both long-term and fo-

cused on scientific archives are either out of date, between
20 and 30 years old, or of limited applicability. In the early
1980s, Smith looked at long-term file reference patterns at the
Stanford Linear Accelerator [11]. Miller and Katz examined
file migration within the NCAR MSS in 1993 [12] and Jensen
and Reed did a similar study of a system at the National Center
for Supercomputing Applications [13], also in 1993. While
these older studies are useful for comparison and evolutionary
analyses [2], the small scale of these systems limits their
relevance to modern archive design. For example, the 1993
NCAR system contained less than 30 TB of data, while the
disk cache alone in the 2010 system can store nearly 100 TB.
More recently, there have been two studies that have ex-

amined scientific archive behavior. Adams, et al. looked at
the modification behavior of an archive at LANL, but, due to
the coarse granularity of the data they could not analyze per-
user or file behaviors [1]. Frank, et al. looked at high-level
behaviors and some file-level activities using the same dataset
as this work, but focused on repeating Miller and Katz’s 1993
analysis of the NCAR MSS to examine evolutionary trends [2,

12]. Our work differs from Frank, et al. in that it focuses
solely on the 2010 NCAR data, and explores the impact of
automated behaviors such as file migration as well providing
detailed analyses of user and file level behaviors.

III. BACKGROUND
We first define a consistent set of terminology and defini-

tions that we use throughout this paper, adapted from Adams
et al. [1]. Our dataset is comprised of daily logs of actions,
each of which is an operation from a single user on exactly one
file, e.g. the creation of a file. Users may be humans or purely
automated processes. All the files and data stored are referred
to as the corpus. The combination of hardware and software
that store the corpus is the archive. We refer to the aggregate
knowledge about the archive as a sketch. A sketch includes
the logs as well as out-of-band information obtained through
communication with system architects and administrators.

A. NCAR MSS Overview
The National Center for Atmospheric Research (NCAR)

is dedicated to meteorological and climate research and its
associated impacts. Our analysis is focused on the mass
storage system (MSS), a tape-based storage archive used for
storing a variety of datasets for months to years.
The MSS consists of tape libraries with a disk cache “in

front” to serve as a write and read cache for files under 10GB
and is illustrated in Figure 1. For files under 10GB, clients
write directly to the disk cache; the files are later migrated to
tape via an automated migration process. Files over 10GB are
written directly to tape. For reads, the first read of a file goes
directly from tape to the user. If another read of the same file
occurs within 24 hours, it is then cached on disk, assuming
its size is under 10GB. Because of these policies, the cache
is primarily utilized as a write-buffer, which in turn generates
large amounts of automated migration traffic as data is moved
to tape.
Users interact with the MSS through a simple queue that

addresses user requests in a FIFO manner. Files are written to
any currently mounted media that has sufficient space. Reads
are queued to a specific tape or disk volume, allowing for
multiple reads from a single tape mount. Given the FIFO
nature of request handling we see a relatively “pure” ordering
of user-requests. Thus, our analysis reflects user behaviors with
less noise than an analysis of a system that aggressively re-
orders and groups requests.
As an example of MSS operation, consider a user wanting

to archive a 1GB file myData.dat. Initially, myData.dat
is created on the disk cache. As space is needed on the disk
cache, the myData.dat file will be copied to the first tape
that has sufficient space and subsequently removed from the
disk cache. If myData.dat is later read, the initial read will
go directly from tape to the user, bypassing the cache. If the
file is read a second time within 24 hours, myData.dat will
be cached on disk.
Purges (permanent deletions) of files from the system are

based upon a file’s retention policy, or done by explicit request

Date Hardware
Jan 2008 5 StorageTex Powderhorn Silos

40 TB Disk Cache
70 STK 9940B Drives

Jun 2008 5 StorageTex Powderhorn Silos
100 TB Disk Cache
70 STK 9940B Drives

Jan 2009 5 StorageTex Powderhorn Silos †
2 SL8500 Tape Libraries
100 TB Disk Cache
70 STK 9940B Drives †
70 STK T10000B drives

Mar 2010 2 SL8500 Tape Libraries
100 TB Disk Cache
70 STK T10000B drives

TABLE I: Evolution of MSS hardware. January 2008 is the start
state of the system. With the addition of the SL8500 libraries, the
corpus was migrated from the Powderhorn libraries in preparation
for their decommissioning. † denotes hardware in the process of
decommissioning.

Users

Tape
Libraries

Disk Cache

Tape-to-Tape
Migrations

Tape Migrations To and From Cache

Reads

Creates/Updates >= 10GB

Cached Reads
Creates/Updates

<10GB

Fig. 1: This figure provides an overview of the NCAR MSS. Note
that all files under 10GB that are created or written to are cached
first on the disk cache, while reads are only cached if a file is read
twice within 24 hours. Files greater than 10GB in size are written
directly to tape, and all reads initially come from tape if they are not
already present on the disk cache.

from a user. Each file has a retention policy describing the
number of days it should be retained in the archive, e. g.,
360 days. If a file passes its retention period without extension,
it is considered to be in the trash. After 30 days in the trash, the
file is permanently deleted from the system and its removal is
logged as an action. Note that the default retention period and
trash time are system parameters set by NCAR staff, though
actual retention periods can be modified by users.
The hardware evolved significantly during the logged pe-

riod, as summarized in Table I. As we discuss further in Sec-
tion IV-A, the data migrations associated with this technology
change are not noted in our logs. No further hardware changes
occurred from March 2010 until the end of our dataset.
The data corpus stored on the MSS is comprised of approx-

imately 80% simulation output, 15% observational data for
validation and seeding of simulations, and 5% system backups.
At the beginning of our dataset in January 2008, the corpus
was known to hold approximately 4 PB (petabytes) of data;
at the end of our dataset, it held approximately 11.7 PB of
data in 69 million files. However, approximately 3.3 PB were
duplicate bytes: extra copies of files for reliability purposes.
A typical long-term use case of data stored in the archive is

storing simulation output and retrieving it 2–5 years later for
re-analysis and validation.

B. Methodology Overview
For the purpose of our analysis we group actions into

three broad categories. The first, which we call user activities,
consist of actions that create, read or update a file’s data. These
actions almost always come from end-users of the archive. The
second is migration activities: automated moves of data to and
from the disk cache, as well as a small number of tape-to-tape
migrations and integrity checks of data stored on tape. The
third category of actions are purges, the permanent deletion of
files within the archive. We first discuss the actions associated
with user and migration activities. We do not go into greater
detail on purges since there is only a single action, also called
a purge, associated with that category.
There are three actions that we group under the category

of user activities with which we are concerned: creates, reads,
and writes. A create is the ingestion of a file and all of its
associated data into the MSS. A write is an update to a file
already in existence in the archive. When we refer to user
activities, we use the terms write and update interchangeably.
A read is simply a read of a file’s data.
There are two types of actions in the category of migration

activities. The first is a migration read, which is simply a
read of a file in preparation for writing the file elsewhere in
the system. The second is a migration write, which is a write
of the file data read from a preceding migration read. With
the exception of a small fraction of aborted or mis-logged
activities, every migration write has a corresponding migration
read. Thus, most user activities (those that are to the disk
cache) have at least two associated migration actions that will
follow it at some point. As we discuss further in Section IV-A,
these migration activities are actually responsible for most of
the data movement in the system.
Throughout our workload study when we calculate the

number of bytes involved in any action or group of actions,
we are summing the file sizes. As we lack data describing how
much data is actually moved or written, we use the file size
to approximate an upper bound.

C. Workload Overview
From January 1, 2008 to December 31, 2010 we identified

approximately 50.5 million unique files in our logs. From our
sketch, we know the total corpus contained approximately
69 million files at the end of 2010; however our logs only
account for files acted upon during the 3 years of observation.
We only know of the total corpus file count from out-of-band
communication with administrators. As we discuss further in
Section V, these communications were invaluable in aiding
our understanding and observations.
Figure 2 provides a high-level overview of what the work-

load looks like over the course of a week. We see strong
diurnal patterns linked to the workday [2], and note that there
is significantly more activity due to file migrations than user
actions, which we discuss further in Section IV.

Activity Type Count % of Total
All Actions 189,364,952 100%
User Acts. Total 65,980,770 34%
User Reads 22,272,374 12%
User Writes (Updates) 5,797,550 3%
User Creates 37,910,846 20%
Migrate Acts. Total 111,895,464 59%
Migrate Read 55,952,916 30%
Migrate Writes 55,942,548 29%
Purges Total 11,488,718 6%

TABLE II: Summary of actions observed during the trace period.
Percentage of total is the fraction of all actions counted. Migrate and
user totals are the total number of actions within those categories.
Subtotal percentages are approximate to ensure a sum of 100%.

Fig. 2: Averaged hourly activity rates for actions, exclusive of purges.
The “all activities” line is the sum of the user and migration activities
for that hour. Hour 0 corresponds to Monday at midnight.

Figure 3 is a cumulative distribution function (CDF) of file
sizes observed over the 3 years of data. Count refers to the
fraction of files of a given size, while volume refers to the
amount of space taken up by files of a given size [2]. We found
that 80% of observed files are smaller than 100MB, but most
space is taken by files larger than 100MB. The typical file size
in the NCAR MSS is larger than that noted in Dayal’s study
of HPC systems at rest [6], though Dayal notes that there is
significant variance in average file size from system to system.

IV. OBSERVATIONS
In this section we provide observations and micro-analyses

of several facets of the NCAR MSS workload. We take a
top-down approach beginning with aggregate observations of
the system as a whole, then proceed to looking at user-session
behaviors, followed by examining activities on a per-file basis.
In Section V, we discuss our observations and provide higher
level conclusions and suggestions for future archive designers,
as well as suggestions for improving future studies.

A. Aggregate Observations
Observation: Automated file migrations make up the

majority of activities.
In our first set of observations, we examine the fraction

of actions devoted to file migration. This is of interest as

Fig. 3: CDF of file sizes by the fraction of files of a given size, and
the file sizes responsible for a given fraction of space.

“maintenance” and other supporting actions are easy candi-
dates for optimization—they are predictable and often latency-
insensitive.
In Table II, we show the number of user activities and

migrate activities by count. Activities due to migration sig-
nificantly outnumber those from user-sourced reads, creates
and writes. This observation is consistent with conclusions
drawn from both other archival and enterprise systems in
which the dominant fraction of activities are automated “sup-
porting” operations such as integrity checking and metadata
manipulations [1, 10, 14]. The reason for this large number of
automated actions in the MSS is the use of the disk cache as
a staging area file for creations and caching file reads. If the
data is not already on tape, it must be copied onto a tape prior
to removal from the cache.
Over the period covered by our sketch, the archive was mi-

grated to a new generation of equipment, ultimately resulting
in the entire corpus being both read and written. However,
our logs did not note activities from this data migration. This
provides us with two key insights. First, the oft-quoted “Write-
Once, Read-Maybe” assumption within archives is false from
a system maintenance perspective. When we account for these
inevitable technology driven data migrations, data is inevitably
both read and written. There is still a grain of truth to “Write-
Once, Read-Maybe” from the user perspective, but as we
discuss later, this assumption is not unequivocally true there
either. Second, the lack of evidence of these migrations in our
logs highlights the importance of communicating with system
administrators and architects to understand the limitations of
any data being provided. Without their input we would have
been ignorant of the migrations from one set of hardware to
the next.
Observation: Most files and data are concentrated

around the same relative directory depth, though there
is wide variation in the number of files and data in any
given directory.
We next examine the distribution of files and data across

the namespace because it can offer hints as to how a system
should physically group and organize its data. Figure 4 shows

(a) Fraction of files and data below each directory depth. The counts
at each depth contain the cumulative sum of all data below the
given depth. We truncate the chart at depth 12 since only a very
small fraction of files reside at greater depth. Root (depth 0) would
automatically contain 100% of data and files.

(b) Number of unique files and directories identified at a given
depth. Note the separate axes for directory and file counts; the
axes are scaled so that the columns for unique files and directories
at depth 5 are the same height.

Fig. 4: Two views of the distribution of files and bytes by direc-
tory depth. For example, /user/foo/ would be at depth 2. The
distribution is across 50.5 million files in 1.4 million directories.

two views of the distribution of files at different depths of the
namespace.
Figure 4(a) shows a breakdown of the number of files and

bytes contained recursively at each directory as a fraction of
all the data and files observed. For example, the root of the
directory tree, depth 0, would contain 100% of the files and
data since it includes everything beneath it. We include files
that were purged when calculating the distribution of files and
bytes because many files were only observed upon deletion.
In contrast, Figure 4(b) shows the amount of files and data

at a particular level; approximately 90% of data and individual
files are contained at depths 3 through 5, inclusive. Although
most files are at depths 3 through 5, there is significant
variation in the typical number of files per directory. The
median at depth 5 is 11 files per directory, but the mean is 70
and the standard deviation is 607. Since the vast majority

Fig. 5: Breakdown of user activities per session.

of directories contain a modest number of files and bytes
physically grouping whole directories on individual physical
media is viable, and as we show in our analysis of user
behaviors, may yield performance and efficiency benefits.

B. User Behaviors
The raw data we obtained from NCAR did not have

user actions grouped into sessions, so to approximate them
we artificially grouped activities from individual users into
temporally-based sessions. To do this, we used a sliding
window of 15 minutes. Any actions (exclusive of purges
since they were only logged once per week) that were within
15 minutes of the previous activity for a user were grouped
into a session. Any actions that occurred after a 15 minute idle
period were put into a new session. The 15 minute idle period
was chosen by examining the number of sessions created
as the window length grew. Selecting too small of an idle
period resulted in many single action sessions, while using
an idle period longer than 15 minutes yielded sessions with
very few additional actions. Using this method we identified
approximately 640,000 unique sessions.
Observation: Most actions come from a relatively small

subset of users and sessions. Further, sessions are com-
prised of only one type of action.
We examine the distribution of activities on a per-user and

per-session basis as it allows us to understand typical user-
behavior, which in turn is often the behavior for which a
system should be optimized.
We find that a relatively small fraction of users are respon-

sible for most actions in the archive, particularly in regards to
writes. 20% of the users were responsible for nearly 90% of
the logged actions and 90% of the data volume accessed. At
the session level, we see a similar distribution of data volume
and activities. 10% of the sessions are responsible for nearly
90% of the logged activities and 90% of the observed data
movement.
In Figure 5 we show a breakdown of the number of user

activities occurring during sessions; the majority of sessions
have fewer than 100 actions. Figure 6 shows the sum of file
sizes seen in a given session, providing an upper bound on

Fig. 6: CDF illustrating the amount of data on which sessions act,
broken down by user activity type.

Fig. 7: CDF showing the number of files, directories, and directory
depth that sessions act at.

the amount of data that could be manipulated or transferred
during the session. Most sessions (over 90%) act on less than
100GB of data.
We find that sessions never mix user action types. Rather,

a given session is comprised of just creates, just reads, or
just writes. This makes sense on an intuitive level as it takes
time after reading a file to analyze the data and then write
results. Moreover, the archive is not a “scratch” space meant
for interactive jobs where mixtures of reads and writes are
common.
The primary implication we draw here is that there is

likely a benefit to having a priority-driven, asynchronous batch
interface for very large accesses. Presumably, larger accesses
are less latency-sensitive than smaller accesses, providing
greater flexibility than hard-coded policies, and allowing large
accesses to be intelligently ordered and arranged around
smaller, potentially latency-sensitive accesses. Working around
latency-sensitive accesses is especially important for systems
that may have limited concurrency or drive spin-up policies.
Observation: Most sessions stay within relatively few

directories.
We next look at how session actions are distributed through

the namespace hierarchy. This can provide hints as to how
archival systems should physically group data to reduce seek
times and media activations.
In Figure 7 we show the typical directory depth, number

of directories, and number of files touched during sessions.
The number of directories accessed is typically nearly an
order of magnitude less than the number of files, meaning
that sessions access multiple files within each directory. The
average directory depth per-session is typically (80% of ses-
sions) less than 5, and the directory depth average almost
always remains a whole number, suggesting that users tend
to access files grouped at the same depth. Taken together with
earlier observations, this finding suggests that it may be useful
to physically group data based on user and directory depth.
This technique could yield improved performance, minimizing
seeks, and providing for easy pre-fetching and streaming
reads and writes for tape and low-power disk-based systems.
Physically grouping data by user was similarly done by the
RASH portion of NASA’s MSS-II in the late 1980s [15, 16]
where data was physically grouped by user. Modern systems,
such as HPSS [17], also provide tools for the automatic
grouping of files to be managed as a single administrative
unit. For tape based systems as well as archives built from
spun-down disks [18, 19], this can be a boon because it would
reduce the need for multiple media activations and mounts.
Observation: Many users did not have any operations

beyond deletes associated with them.
We examine the total activity of users to see how many

were effectively idle during the trace period. Depending on
how the idle users’ data is utilized, it may provide a heuristic
for purging data.
We identified 1400 users that had user and migration activ-

ities associated with them—this is what we focus our session
level analyses on. However, we found an additional 200 unique
users that were only associated with deleted files. That is,
the only activities associated with those users were purge
actions. While we do not examine the temporal distribution of
individual user activities, this suggests some users and their
data—see observations on file lifetimes—may be transient
members of the system.

C. File Behaviors
In this section we go deeper and look at the behavior of

individual files within the system.
Observation: Around 15% of files are deleted within a

year of creation.
We examine file lifetimes for two reasons. First, archives

are often considered to be immutable datastores, and as we
show, this is not the case. Second, identifying how often, and
when, files are deleted can help guide the organization and
policies of a system.
In our analysis of file lifetimes, we only consider files

for which we observed a create during the logged period.
Of the 50 million observed files, we saw 36 million unique
file creations, and 11 million deletes. We then correlated
approximately 5 million deletes to files with observed creates.

Fig. 8: CDF of the distribution of the lifetime of files created during
the trace. “nth year creates” refers only to files created during the
nth year of the trace, while “all creates” refers to all files created
during the trace period. For example, the “all creates” line ends at
around 13.5%, meaning 86.5% of files that were created had not been
deleted by the end of the trace.

We focus our analysis on these files with observed creates
as we can precisely determine their lifetimes, illustrated in
Figure 8.
We make two primary observations in this area. First, it

appears that approximately 80% of the files created in the first
year are in existence at the end of trace, suggesting that the
majority of the files have long lifetimes. Second, of those files
that are deleted, they are most likely to be deleted from the
system within one year of creation. While this strong temporal
spike is due in part to file retention policies—360 days is one
of the most common—it actually makes for a stronger basis
in estimating user intentions as they are forced to explicitly
decide which files will remain in the system. This is further
reinforced by the fact that users are charged for data stored in
the archive.
These file lifetime results are interesting for several reasons.

First, archives are clearly not immutable data stores—a sig-
nificant number of files are deleted. Second, while the notion
of files being deleted relatively quickly, or not at all, is not
new [9, 20, 21], the deletes on the archive occur after months,
as opposed to within seconds of creation on enterprise and
personal storage. Because of these behaviors it may be useful
to add another logical “probationary” level to the storage
hierarchy: a place where files that are likely to be deleted are
stored before entering a more “permanent” state in the system.
Observation: most files receive few actions. Exclusive of

migration activities, 65% are only acted upon once.
We examine the distribution of actions upon files because

it can strongly impact caching policies. When examining file
activities, we do not include files that are only acted on by a
purge. Thus, we study around 43 million files.
Our observation is that, as a whole, actions are evenly

distributed across files, and that most files are the target of
relatively few actions, as shown in Figure 9, which illustrates
the distribution of actions across files. The line is relatively

Fig. 9: CDF showing the fraction of files responsible for a given
fraction of total activities. Note the user and migration plots do not
start at 0 files since not all files had only user activities or only
migration activities.

Fig. 10: CDF of the fraction of files receiving particular activities
from users (reads,writes, creates) and migration processes. We trun-
cate the count at 25 because only a very small fraction of files receive
hundreds or thousands of activities.

flat, indicating that actions are evenly distributed across files; a
vanishingly small fraction (less than 0.1%) receive hundreds or
thousands of activities. This is further illustrated in Figure 10,
where we show the distribution of files by activity count.
Across all user activities, 70% of the files we observed only
received a single action, usually the initial create of the file.
Our suggestion, based on this observation, is one that NCAR

already implements: use the disk cache primarily to absorb
creates/writes. Individual file activities are sufficiently spread
out and rare that read caching in general would be largely
ineffective. The small number of files that are very active,
however, could easily be serviced on a disk cache.
Observation: Approximately 5% of files had updates to

their data with most updates occurring within one day of
another. A small subset of files receive updates over long
periods of time (longer than 100 days).
We examine the mutability of files since a common assump-

tion in archival design is the notion of “Write-Once” files.

Fig. 11: CDF showing the inter-update interval of files that receive
more than a single mutation (more than a single create OR single
write), as well as the time range observed between the first and last
mutation of a file. These files account for approximately 2.5 million
of the observed 50 million files. The x-axis is on a log scale.

This can influence caching policies and how data is organized
within the system.
Before we move on to our observation, we describe what we

consider to be an update, or mutation to a file. If a particular
file has been created multiple times, all creates after the initial
are counted as mutation to file state. A second create to a file
overwrites the original data; it may be identical, or entirely
different. Any write to a file is treated as an update to its data.
In Figure 11, we show the interval of time between succes-

sive updates to the same file. A file is not accounted for if
it does not have at least two creates and or writes. Thus, we
observe inter-references for 2.5 million files, around 5% of the
unique files observed during the trace. Most updates (roughly
65%) occur within one day of another update. After this, we
see a marked increase in the interval of time between updates.
The next 20% occur within ten days of each other, and the
subsequent remainder occur between 10 and 1000 days.
Figure 11 also shows the range of time between a file’s

initial creation (or first observed write) and its last update or
overwrite, which we refer to as the mutability range. 40% of
the files for which we calculate a mutability range have ranges
greater than ten days.
To further explore a file’s mutability we count the number of

potential updates a file could receive, only counting files that
have at least one observed update. This could be either a create
action overwriting an existing file or a write action updating a
file’s data. Over 75% received a single update, and over 95%
of files receive fewer than ten updates. The remaining files
receive anywhere from 10–100 updates or more. Given the
relatively short inter-update time for file data, caching should
be able to absorb most updates before writing back to the
archive.
Observation: When we account for automated file

migrations in a file’s inter-reference interval, file inter-
reference intervals appear superficially shorter. Consider-
ing only user actions causes files to exhibit longer inter-

Fig. 12: CDF of the inter-reference interval files under several
different filters. “user and migration act’̇’ includes all user and
migration activities, while “user acts.” includes reads, writes and
creates, and “user reads” includes just reads. Note that 100% only
accounts for files touched by the respective activities, and files only
referenced once are not counted because we are unable to calculate
an interval for them.

reference intervals, albeit with fewer files accounted for.
We examine inter-reference intervals for two reasons: to

explore the impact that file migration has on a file’s inter-
reference period, and to measure the frequency of accesses to a
file. Both factors may impact caching and data placement poli-
cies. When calculating the inter-reference interval including
migration activities, we treated each migration (read and write,
possibly to multiple copies of the same logical file) as a single
reference, preventing a misleadingly high inter-reference count
for files, particularly those with multiple copies.
Figure 12 shows the inter-reference intervals for files under

a variety of filters. Note that in order to be counted a file must
have had at least two actions under the relevant filter. When we
include migration activities, the general inter-reference interval
appears superficially shorter, due to daily migrations of files
off of the disk cache. However, when migration activities are
filtered out, we see a larger fraction of files under consideration
with longer intervals, though this includes fewer total files.
In essence, automated migration processes can skew how the
workload is perceived. Consider, for example, how much the
full migration due to the tape library upgrade would have
skewed the overall inter-reference period.
The second observation we make is that when we are

only concerned with reads, the files that do see repeat reads
(approximately 2.2 million) can see very extended periods of
time between them. This lines up with the anecdotes we were
given about a typical use-case: retrieving stored data at long
intervals to validate old experiments and seed new ones.

V. DISCUSSION

While the observations in Section IV are useful on their
own, they can provide much-needed implications and guide-
lines for archive designers when coalesced. Our experiences
in analyzing the NCAR MSS traces also lead to suggestions

for long-term storage system designers and analysts that may
avoid pitfalls we encountered in our own analysis.

A. Implications Summary and Discussions
Bring back the batch interface. We found that most

accesses occur from a subset of users and sessions, and are
often very predictable, e.g. data migration processes and large
user-sourced scripted jobs. Because of these behaviors, there
could be significant benefit gained from an asynchronous batch
interface that allows a scheduler to intelligently group and
place writes while scheduling around more latency sensitive
processes. Because end-users are often less tolerant of latency
than something like an integrity checking process, the integrity
checking can easily be given a lower-priority and run in batch
mode in the background, improving user quality-of-service
while still providing for administrative and maintenance tasks.
User and namespace grouping may aid archives with

offline media. We believe that physically grouping data based
on user and namespace heuristics may prove fruitful. We
noticed that files and bytes tended to be concentrated around
the same levels and that user sessions tended to act within the
same directory level. In addition, few files were shared across
many users, so grouping by user, like that done in the MSS-
II System [15, 16] may be a simple but effective approach to
physically grouping data on media, and modern tertiary stores
such as HPSS provide tools to largely automate such group-
ing [17]. This grouping is of prime importance for archives
with offline media, such as spun-down disks or unmounted
tapes, since they incur high seek penalties and startup costs.
This suggestion ties in with the previous suggestion for a batch
interface: by delaying groups of writes and batching them, we
can better group them based on their user and relationship to
the directory hierarchy. If rich metadata are available, more
intelligent file grouping and placement techniques can yield
significant improvements in access times as demonstrated by
Chen et al. [22] and their work on multi-dimensional grid data
on tertiary storage systems.
Write-Once, Read-Maybe doesn’t always hold. An in-

teresting conclusion we have come to is that from a user
perspective, the old assumption of “Write-Once, Read-Maybe”
is not unequivocally true. As far as “Write-Once” is concerned,
while files were generally immutable, a non-trivial fraction
were eventually deleted from the archive. A smaller, but also
non-trivial fraction received one or more updates to their data.
These updates came either through explicit updates to the data,
or complete overwrites.
The assumption of “Read-Maybe” appears to at least su-

perficially hold. However, while three years is an enormous
length of time compared to most prior studies, we have only
seen a fraction of the potential behaviors if the data is intended
to survive in perpetuity. We hypothesize that continual data
growth rates may superficially mask the real fraction of an
archive likely to be read. Consider that we know via communi-
cation with administrators that data is often revisited up to five
years later, yet our logs only covered three years of activity.
However, when we consider the silent migration of data to new

technologies, “Read-Maybe” conclusively becomes “Read-
Eventually”. As long as the file otherwise survives, it will
inevitably be read as it moves to new media.
All told, it is dangerous to rely on any rigid assumptions

about the expected read behavior or mutability of files in a
system, especially in light of potentially unpredictable impacts
of hard policies on user behavior. For example, Holloway
found users often attempted to subvert file retention and
migration policies through the use of scripts to update file
metadata [23].

B. Lessons in Logging and Tracing
In this work, as well as in our prior studies, we have run into

many challenges in interpreting and understanding the data we
have obtained. We offer suggestions to aid in future tracing
and analysis.
Communication is key. If there is a single lesson we have

learned in our experiences, it is the importance of communica-
tion with system administrators and architects. Time and again
we relied on them to understand the system architecture and
artifacts of the workload as well as clarify what we did and
did not observe in the logs. For example, without their input
we would have been ignorant of file migration due to hardware
upgrades. Without their shared knowledge we would have had
a significantly degraded and even potentially even inaccurate
understanding of the archive.
A system start state is invaluable. A good “complete”

analysis of a system depends on having both snapshots and
an activity trace; just one or the other is often insufficient to
answer many questions. For example, in this study we lacked a
view of the start state of the system that a snapshot could have
provided. Because of this we were unable to answer questions
such as what fraction of files were left entirely untouched
or what fraction of the namespace does a given user occupy.
However, having access to only snapshots without a dynamic
trace can be equally difficult because it limits the ability to
understand the source, timespan, and magnitude of activities
occurring in a system.
Don’t add semantic meaning to field values. One specific

issue we ran into with the NCAR sketch was understanding
semantic meanings encoded in field values. For example,
we observed situations where the base directory of a path
was subtly and silently renamed, e.g. /USER/Foo/bar to
/uSER/Foo/Bar/ to denote file being in the “trash”. This
caused our unique file counts to be off by 10% and our
directory counts to be off by nearly 20%. Luckily we were
able to communicate with an administrator to identify and
understand the nature of these silent renames, but this cannot
be relied upon for all datasets. As such, we stress to any group
that may provide data to others to avoid using field values
to encode non-intuitive information unless they are carefully
documented.
Be consistent, or be visible. We encountered several subtle

format changes in logged activities, including changes as
trivial as a field moving one character over or swapping field
locations. At best, they cause annoying parser errors and force

data reprocessing with a band-aid fix. At worst, they can
silently corrupt results and be extremely difficult to detect.
Our suggestion is to ensure that format changes will break a
parser, provide an external method for keeping the logs in a
consistent format, or document the changes.
Tag or explain activity drop-offs. Sudden reductions in

activity rates are difficult to deal with in an analysis since it is
often difficult, if not impossible, to determine the true cause
of the reduction, e.g. it could be due to an actual reduction in
the number of activities, a crash, or even a holiday. Without
understanding what caused a dip in activity, we have to treat
it as null data and discard it, lest we misconstrue what is
occurring. Our proposed approach is to have the logger take a
more proactive approach and explicitly note when the process
that generates the log entries fails or otherwise times out.
Another simple fix is to have the logger note any time it starts
in the logs it keeps. This can help identify times when the
logger is simply inactive, versus ones that are a legitimate
reduction in activity rates.
Identify the coverage of a dataset. A question we are

always asking about any trace or log we have obtained from
outside sources is “what aren’t we seeing in this trace?”. Put
another way, we don’t know what the coverage of a dataset is.
For example, we only knew about the data migration from one
set of hardware to another via out-of-band communications
with system administrators. Our proposed solution is to take
a snapshot of a system’s state immediately prior to the start
of logging/tracing, then after completion of the trace take an
additional snapshot. At this point, use the first snapshot and
the trace as a delta to create a third expected snapshot. We
can then compare this expected snapshot with the one taken
after the trace and identify where they differ, and help verify
what the trace is and is not covering.

VI. FUTURE WORK

While we have found several useful results within this
study, it is important to note that in this work we are only
examining a single relatively specialized archival system. We
provide the first such study in nearly 20 years of scientific
archive development and use. While we have worked to keep
our results and implications as general as possible, further
large-scale behavior studies, preferably on different scientific
archival storage systems, are necessary. Additional studies
will help identify the common and divergent characteristics of
scientific archival storage to ensure that results from a single
system are not over-generalized to the field as a whole.
Within the NCAR trace, as with any workload study, there

are always more tests to run. We intend to further examine the
kind of locality users show when accessing files to find more
heuristics for physically grouping data. For example, we plan
to determine whether data written by a user during a single
session is likely to be later accessed as a group. We are also
interested in further examining how the active lifetime of a
user influences the activity rates of the files they have created.
We also have interest in doing a micro-analysis of the raw
sensor data NCAR maintains as it may exhibit different usage

patterns, however this may prove difficult as it is not always
possible to distinctly identify these files.
Based on our experiences in this work as well as other

long-term workload analyses, we are in the planning phases
of a prototype set of logging framework. The intent of this
framework is to aid in the gathering of long-term storage
system data with minimal user input, and improve the quality
of the logged data. Our proposed framework will use a
combination of of metadata snapshots and dynamic storage
system traces to identify the coverage of a trace and help users
and programmers tune the granularity of long-term activity
traces.
Finally, we plan to release anonymized versions of these

traces upon publication of our analysis; we have already
received permission to do so.

VII. CONCLUSION
We have conducted the first extensive analysis in nearly 20

years of the long-term behavior of an archival storage system
at an HPC data center. Over that 20 year period, archives have
grown to encompass tens of petabytes of data across tens of
millions of files.
Our analysis found that most users and their associated

sessions tend to generate relatively modest amounts of activity,
though most actions overall come from large sessions. We
also noted that most user sessions stay within a relatively
small number of directories at the same depth. Based on these
observations, we propose the use of a priority-driven batch
interface that physically groups data using heuristics such as
by user or by directory depth/subtree to improve data locality.
Such a batch interface would improve physical data locality,
reducing the number of needed media seeks and mounts, while
also allowing large latency insensitive operations, such as
file migration tasks, to be scheduled around latency-sensitive
accesses. We also found that the notion of “Write-Once,
Read-Maybe” scientific data archival storage is weakening:
non-trivial numbers of files show mutability and/or deletions.
Further, when we include technology migrations, files are no
longer “read-maybe” but rather “read-eventually”. We also
found that, in contrast to many other workloads, file usage
is evenly spread, with few files appreciably more popular than
others, limiting the effectiveness of read caching.
By better understanding the usage and behavior of a heavily-

used scientific data archive in an HPC data center, we have
provided valuable suggestions to improve both design and
management of future large-scale scientific archives.

ACKNOWLEDGMENTS
This work was supported in part by the NSF under awards

CNS-0917396 (part of the American Recovery and Reinvest-
ment Act of 2009 [Public Law 111-5]), IIP-0934401 and CCF-
0937938, the Department of Energy under Award Number DE-
FC02-10ER26017/DE-SC0005417, and the industrial mem-
bers of the Storage Systems Research Center (SSRC) and the
Center for Research in Intelligent Storage (CRIS). Additional
thanks to our colleagues in the SSRC for their valuable help
and feedback.

REFERENCES
[1] I. F. Adams, E. L. Miller, and M. W. Storer, “Analysis of workload

behavior in scientific and historical long-term data repositories,” ACM
Transactions on Storage, vol. 8, no. 2, 2012.

[2] J. C. Frank, E. L. Miller, I. F. Adams, and D. C. Rosenthal, “Evolutionary
trends in a supercomputing tertiary storage environment,” in Proceedings
of the 20th IEEE International Symposium on Modelling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS),
2012.

[3] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch, “A five-
year study of file-system metadata,” in Proceedings of the 5th USENIX
Conference on File and Storage Technologies (FAST), Feb. 2007, pp.
31–45.

[4] T. Gibson, E. L. Miller, and D. D. E. Long, “Long-term file activity
and inter-reference patterns,” in Proceedings of the 24th International
Conference for the Resource Management and Performance and Perfor-
mance Evaluation of Enterprise Computing Systems (CMG98). Ana-
heim, CA: CMG, Dec. 1998, pp. 976–987.

[5] H. Cho, S. Kim, and S. Lee, “Analysis of long-term file system
activities on cluster systems,” World Academy of Science, Engineering
and Technology, vol. 60, 2009.

[6] S. Dayal, “Characterizing HEC Storage Systems at Rest,” Carnegie
Mellon University, Tech. Rep. CMU-PDL-08-109, 2008.

[7] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller, D. D. E.
Long, and T. T. McLarty, “File system workload analysis for large
scale scientific computing applications,” in Proceedings of the 21st
IEEE / 12th NASA Goddard Conference on Mass Storage Systems and
Technologies, College Park, MD, Apr. 2004, pp. 139–152.

[8] E. Anderson, “Capture, conversion, and analysis of an intense NFS
workload,” in Proceedings 7th USENIX Conference on File and Storage
Technologies (FAST’09), 2009, pp. 139–152.

[9] A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller, “Measurement
and analysis of large-scale network file system workloads,” in Proceed-
ings of the 2008 USENIX Annual Technical Conference, Jun. 2008.

[10] Y. Chen, K. Srinivasan, G. Goodson, and R. Katz, “Design implications
for enterprise storage systems via multi-dimensional trace analysis,” in
Proceedings of the 23rd Symposium on Operating Systems Principles
(SOSP’11), Cascais, Portugal, 2011, pp. 43–56.

[11] A. J. Smith, “Analysis of long term file reference patterns for application
to file migration algorithms,” IEEE Transactions on Software Engineer-
ing, vol. 7, no. 4, pp. 403–417, Jul. 1981.

[12] E. Miller and R. Katz, “An analysis of file migration in a Unix
supercomputing environment,” in Proceedings of the Winter 1993
USENIX Technical Conference, Jan. 1993, pp. 421–433. [Online].
Available: http://www.ssrc.ucsc.edu/~elm/Papers/usenix93.pdf

[13] D. W. Jensen and D. A. Reed, “File archive activity in a supercom-
puting environment,” in Proceedings of the International Conference on
Supercomputing (ICS 1993), Tokyo, Japan, Jul. 1993, pp. 387–396.

[14] W. Vogels, “File system usage in Windows NT 4.0,” in Proceedings of
the 17th ACM Symposium on Operating Systems Principles (SOSP ’99),
Dec. 1999, pp. 93–109.

[15] R. L. Henderson and A. Poston, “MSS-II and RASH: A mainframe
UNIX based mass storage system with a rapid access storage hierarchy
file management system,” in Proceedings of the Winter 1989 USENIX
Technical Conference, 1989, pp. 65–84.

[16] D. Twenten, “Hiding Mass Storage Under Unix: NASA’s MSS-II Ar-
chitecture,” in Proceedings of Mass Storage Systems, Crisis in Mass
Storage, 1990.

[17] “HPSS installation guide, release 7.3 (revision 1),”
www.hpss-collaboration.org/documents/hpss731/install_guide.pdf,
May 2010.

[18] M. W. Storer, K. M. Greenan, E. L. Miller, and K. Voruganti, “Perga-
mum: Replacing tape with energy efficient, reliable, disk-based archival
storage,” in Proceedings of the 6th USENIX Conference on File and
Storage Technologies (FAST), Feb. 2008.

[19] D. Colarelli and D. Grunwald, “Massive arrays of idle disks for
storage archives,” in Proceedings of the 2002 ACM/IEEE Conference
on Supercomputing (SC ’02), Nov. 2002.

[20] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and J. K.
Ousterhout, “Measurements of a distributed file system,” in Proceedings
of the 13th ACM Symposium on Operating Systems Principles (SOSP
’91), Oct. 1991, pp. 198–212.

[21] D. Roselli, J. Lorch, and T. Anderson, “A comparison of file system
workloads,” in Proceedings of the 2000 USENIX Annual Technical
Conference. San Diego, CA: USENIX Association, Jun. 2000, pp.
41–54.

[22] L. Chen, R. Drach, M. Keating, S. Louis, D. Rotem, and A. Shoshani,
“Efficient organization and access of multi-dimensional datasets on
tertiary storage systems,” in Information Systems. Elsevier, 1995,
vol. 20, no. 2, pp. 155–183.

[23] A. Holloway, “The purge threat: Scientists’ thoughts on usability in
peta-scale,” in Proceedings of the 6th Petascale Data Storage Workshop
(PDSW ’11), November 2011.

