
The Impact of Failures on Large Distributed
Storage Systems

Technical Report UCSC-SSRC-07-10
August 2007

Maximiliano Mehech
maxmehec@soe.ucsc.edu

Storage Systems Research Center
Baskin School of Engineering

University of California, Santa Cruz
Santa Cruz, CA 95064

http://www.ssrc.ucsc.edu/

This paper was filed as an M.S. project report in August, 2007.Max’s M.S. advisor was
Prof. Ethan Miller.

1

The Impact of Failures on Large Distributed Storage Systems

CMPS-296 – Master Project
Maximiliano Mehech

University of California, Santa Cruz
maxmehec@soe.ucsc.edu

1 Abstract
Distributed storage systems that can support high

throughput and capacities in the petabytes range, are
being built using standard Off the Shelf Components
disks and networks to lower costs. Both the large
number of components and the quality of these
components contribute to a high probability of failures.
The performance and complexity of storage networks
built using standard topologies with data network
components has been studied before, but the analysis of
the effect of network and disk components failures on the
performance and availability of the system has received
limited attention. We analyze the effects of network
components, links and disk failures on storage data
networks connected with several common network
topologies in the 4,000 nodes range using a simulation
program. We compare both the average numbers and
the peak numbers. Our results indicate that it is possible
to build storage networks with high level of resiliency
using several of these topologies and we analyze the
possible trade-offs among them.

1 Introduction
Storage systems that can have up to thousands of

disk drivers and storage capacity in the order of
petabytes are quickly becoming a common presence in
both research and commercial institutions. Cost is still
an issue, although the use of standard of the shelf
components coupled with the use of ubiquitous Ethernet
networking technology has brought down the cost of
building such systems to very affordable levels. But as
the cost to build the system decreases, the use of
thousands of off-the-shelf components brings the reality
of multiple component failures in the system, whether
they are network or storage related.

While disk capacity has been constantly increasing
and price has fallen, performance and reliability have
not accompanied the same trend of improved efficiency.
Coupled with the use of powerful and ever faster
networking technologies, now it is possible to design
and build storage systems comprised of large clusters of
disks with increasing data capacity and overall data
throughput. On the other side, the time consumed on
regenerating the data lost in case of a disk failure has
also increased.

Recent research suggests that using data networks is
an effective way to create a resilient and robust
architecture for data storage systems that can hold large
amount of data and provide high throughput access. We
propose to analyze the effects of component failures on
this storage networks in terms of performance impact
both on average and on extreme scases. We will use a
simulation program to collect statistics about how
different failure scenarios affect the performance of
different network topologies. We will see that many
topologies can be built in ways to minimize the impact
of failures both on the average performance and on the
extreme cases using a simple load based, locally
determined routing algorithm.

2 Related Work
Lustre [12] was one of the first clustered file system

implemented that uses Object Oriented Storage and can
scale into thousands of nodes. Its networking approach
is a modular one that can be used with TCP/IP, Quadric
Elan and Myrinet in addition to Ethernet. The effects of
network or disk failures on the performance and
reliability of Lustre have not been addressed yet.

Panasas offers a commercial implementation of an
OSD with its ActiveScale Storage Cluster [9]. Panasas
utilizes a standard TCP/IP over Gigabit Ethernet
implementation to connect both clients and servers to the
OSD system. Servers are connected using 4 aggregated
gigabit connections to a single gigabit Ethernet switch
where also the clients are connected. While this paper
presents a real case study of the file system performance,
it is clear that such performance is also limited by both
the network design and the protocol configuration. The
use of TCP/IP allows the use of other standard protocols
such as iSCSI, RPC, DNS and NTP while at the same
time permitting the use of other networking technologies
like Myrinet and Infiniband. Their approach is directed
to the study of the performance of the system and not on
how failures would affect it.

Other industry solutions include arrays using SAN
with Fibre Channel (IBM [23], EMC [21], Network
Appliance [24]), Infiniband [7] (Mellanox) or Gigabit
Ethernet (e.g. EqualLogic [22], Network Appliance
[24]). These approaches rely on the inherent fault
tolerance and failure detection methods from the

2

particular network technology or from the use of
standard TCP/IP protocols [4].

Xin et al. studied the effects of failures on large
interconnection networks for storage [20] but only
analyzed a few topologies. This paper built on a
previous study from Hospodor and Miller [6] that
proposed the use of switched data networks to
interconnect storage components and studied the cost,
throughput and complexity of several network
topologies but did not analyze the effects of component
failures. Xin and Miller studied the effects of failures of
OTSC disks on large storage arrays but did not look at
network failures [19].

The study of resilience of networks includes routing
algorithms and failure detection as the main focus to
provide resilience but most of the studies are limited in
the size of the network being analyzed. Many studies
focus on fault tolerance and failure recovery for generic
systems like Castro et al. in Byzantine fault tolerant
systems [2] or for multiprocessors systems such as
Vaidya et al. that studied how routing algorithms can
deal with failures in an efficient way [14].

3 Basic Concepts
The increasing use of storage capacity in current

supercomputer or high performance computing has
created a paradigm shift in how to address and solve the
storage problem. The advent of affordable and cost
competitive storage area networks that are easy to install
and maintain have pushed the industry into the direction
of using specialized networks to achieve larger density
and faster access to data. Technologies such as Fibre
Channel, SCSI and lately IP SCSI (iSCSI) have helped
mature the industry and the solutions available. But
these technologies have limits on how much storage
capacity they can manage efficiently and safely. Even at
the current growth rate of single disk data capacity, the
demand for additional storage can increase even faster.

The deterrents for using common data network
technologies to connect data storage networks
traditionally have been throughput, latency, reliability
and cost, where the first three are the main components.
With Gigabit Ethernet and 10 Gigabit Ethernet, the
performance seems now acceptable. The cost has come
down and will continue to follow the same trend. The
standardization of iSCSI as a protocol to access storage
across any IP network has allowed a more reliable way
to build storage networks. Conversely, the availability of
large of the shelf disks and switches not only allows for
building large networks but also increases the
probability of failures that could affect the overall
availability and performance of the system.

3.1 Networks and topologies
Several topologies have been proposed and analyzed

to implement storage networks. Miller and Hospodor
explored several of them for use in large storage
networks [6] and compared their cost, network
throughput and complexity but not the impact that
failures would have on their performance.

The topologies and designs used to create fault
tolerance networks are very similar to the designs used
to achieve large throughput. The use of redundant
elements for connections, switches, routers, disks and
servers to achieve high throughput are indeed very
similar. The more resources that are available in the
network the greater the performance the system will
achieve. A single component failure (or a limited
number of components) will have less effect on the
overall performance and availability of the whole
system.

Note the use of “overall” as a comparison metric. It
could be argued that even if the average performance
has not been degraded with a certain failure, some
accesses will experience such long delays that could
render the system unusable or the performance
unacceptable. Thus it should be necessary not only to
analyze the overall performance but also the extreme
cases, to see how robust and resilient to failures the
system really is. We analyze both the average values as
well as the distribution over time or over quantity of
components to watch for extreme cases.

3.2 Specific topologies studied
Some of the topologies have already been analyzed

for their performance under failure [20]. We will
analyze both additional topologies and also ones that
were studied to compare the results. There are several
basic network interconnect topologies that can scale into
the thousands of nodes such as meshes, trees,
hypercubes, butterflies and other variations of
hierarchical networks.

The simplest connectivity would be achieved by
connecting all servers directly to the storage but this will
neither scale efficiently nor will it be resilient enough.
The next alternative is a butterfly topology where links
are distributed across an intermediate network in
between routers and disks in order to create a single path
between each router and each disk. In this case we are
showing a butterfly topology with 4096 disks and 256
routers and an intermediate network composed of 1024
8-port switches with the last 256 switches having 12
additional ports to connect the disks. The main
drawback is the lack of redundant routes from routers to
disks. This has to be addressed by adding redundant

3

links in between switches in the same level to be used
only in case of failure.

All the other topologies have redundant links to
create redundant routes. Starting with Mesh 2D where
every node is a switch plus a disk and is connected to its
immediate top, down, left and right neighbors. This
configuration uses 4 port switches plus a disk for each
node and provides additional routes both for load
distribution and for fault tolerance. The nodes are
arranged in a 64x64 2D mesh and there are 8 routers that
will connect to all nodes on two sides of the mesh.
Drawbacks are first, that there are not enough links to
allow great throughput and second, that the average
length of paths are over 30 hops.

We analyze 4 architectures using Torus from 2D,
3D, 4D and 5D. A Torus is similar to a mesh with the
addition of a link that wraps around the connection from
the end of a row in a dimension to the beginning of that
row in the same dimension. This allows for half the
average length as the Mesh. All the Tori topologies that
we analyze are composed of 3968 nodes with disks and
128 routers. The routers are distributed randomly inside
the Torus because this provides better performance [10].
The 2D Torus is again a 64x64 mesh, the 3D is
16x16x16, the 4D is 8x8x8x8 and the 5D is 4x8x4x8x4.
As the number of dimensions of the Tori goes up, the
number of links also increases and the average length of
the routes goes down. See Table-1.

The last two topologies studied are the ones with the
most links. The purely hierarchical Fat Tree requires
large switches and routers but uses only about half the
number of links as the Torus 5D. We analyzed a fat tree
with 4096 disks connected to 128 routers each with 64
ports connecting 32 disks and 32 switches. To create the
Fat Tree we used 96 switches each one with 128 ports.

The topology with the largest number of links is the
12D Hypercube. Again we used a similar arrangement
as the Torus where the routers connected to the servers
are randomly distributed in the hyper cube. There are
3968 nodes each one with 12 ports and one disk and 128
additional routers with 12 ports. Each node in the
hypercube has one connection to another node in each
one of the other dimensions. This gives plenty of
redundant links for load balance and fault tolerance.

3.3 Routing messages in the network
Since almost all the topologies mentioned above

provide multiple physical paths between two given
nodes we need to have a method for determining which
path a message should follow. The first approach would
be to use a deterministic routing algorithm where the
path is determined by the source and destination nodes.

The disadvantage is that this method does not take full
advantage of the redundant links and it can not adapt to
variations in network utilization patterns or component
failures.

Adaptive routing uses the network resources more
efficiently to detect congestion patterns or sense faulty
components at every hop in the path. This data is used to
decide where to forward the message next. Minimal
adaptive routing limits the path available for selection to
the ones providing the shortest path. This might not be
possible in all cases, so a non-minimal adaptive routing,
that can use routes that are longer than shortest path, is
used in our case for routing when failures occur in the
path of a message.

More sophisticated routing algorithms such as
wormhole flow control or virtual channels are outside
the scope of this study and can be done as further
refinement.

3.4 Failures
We can divide the failure scenarios in a large storage

network in three types:

- Link Failure: A link is a connection between two
components of the system. When a link fails the
greater problem is that there might not be another
route to reach a certain point and the network might
become partitioned. Good fault tolerance requires
enough redundant links to allow several link failures
without partitioning the network.

- Node failure: A node can be a router, a server, a
switch or a storage concentrator. When a switch or
router fails all of the links connected to it will also
fail. In some topologies, a node failure could also
partition the network. In general, it will cause an
overload on adjacent nodes and on nodes along
alternate routes.

- Disk failure: A disk failure will prevent the disk
from replying to requests and to server data.
Requests sent to that disk will not be replied and
will timeout. Furthermore this will increase the load
on other disks. A good fault tolerance depends not
only on redundancy but also on an intelligent data
distribution and duplication policy. Once a disk
failure has been detected, if there are spare disks in
the network, a recovery mechanism will be
triggered that will re-image one of the spare disks.
The replication process will in turn create additional
load on the system beyond the normal redistribution
of the requests destined to that failed disk.

In case a failure is detected, the requests will need to
be rerouted around the specific component that has
failed (except when it is a disk failure). This requires a
routing algorithm that can discover alternate paths
depending on failures and network status in general. For

4

example, if an alternate path is getting congested or if
this alternate path has been used more than a different
alternate path then the routing algorithm has to be able
to choose which one is better for the overall system
performance. Routing has to be done independently of
other components in the network that have discovered
the failure and based only on local information from the
immediate accessible point to where the failure is.

4 Experimental Setup

4.1 Simulation description
We used a simulation program to test the behavior of

traffic patterns in the different network topologies under
different types of failures. The program was written in
C++ in a modular way to allow the creation of different
topologies with their proper interconnections and routing
algorithms. The main building block is the node object
that is the central part of the simulations. Nodes simulate
switches and are connected to other nodes using link
objects. Nodes can have up to two different types of
objects attached: routers or disks. Nodes without any
object attached are just switches that pass traffic like the
ones used on the Butterfly and Fat Tree topologies.
Routers are responsible for forwarding requests from
servers into the network and to the appropriate disks.
Our simulation does not include the servers, so routers
will generate traffic simulating requests that should have
come from servers. Disks, on the other hand, are
responsible for processing these requests and sending
the results. Some nodes can act as switches with disks
attached like those needed on the Mesh, Torus and
Hyper Cube topologies. Other nodes only act as a
network interface for disks like those needed for Fat
Tree and Butterfly topologies.

The system was programmed to simulate 8 different
types of network topologies although many others could
easily have been added:

- Hypercube up to 13 dimensions,

- Butterfly on 3 levels with configurable number of
ports per switch and number of switches per level

- Fat Tree on 3 levels with configurable number of
switches per level

- Mesh 2D with configurable number of switches

- Torus 2D through Torus 5D. Also the number of
switches per dimension are configurable

The simulator accepts as a parameter which topology
to run. The sizes of each topology are precompiled in
advance. Each topology has its own procedures for
initialization, link creation, requests creation and packet
forwarding (routing).

There is a global queue for events and each link has its
own queue for processing messages. Each disk has two
queues, one to process read requests and another to
process write requests.

4.2 Determining the right network load
Before running the failure simulations we needed to

establish a load base to run on the network. We ran
several iterations of simulations with no failures at
different loads. We were looking for a load that would
utilize the disks around 90% or that would utilize the
links at a point when the collisions in the network did
not exceed 50% of the messages. Some topologies can
accept larger network loads but have to wait for the
disks to respond. Other topologies can not carry enough
load to keep the disks busy without saturating the links.
In these cases increasing the load would not yield larger
overall network throughput.

Another parameter that needed to be determined was
the amount of time that each router would wait for a
request to be completed. The request timeout had to be
long enough as not to generate false lost messages
(messages that would arrive normally but after the
timeout triggering undesired retransmissions) and short
enough as to be smaller than the period of time being
simulated. The router timeout would become more
important for the failure cases but we determined it
using the base case with no failures.

4.3 Network topologies simulated

These are the configurations that were simulated (see
Figures 1 through 6). Table 1 shows the number of
switches, disks, routers and links for each topology.

Table 1 - Number of components per Topology

Topologies # switches # disks # routers #ports #links

Butterfly 1024 4096 256 16384 8192

Fat Tree 4192 4096 128 24576 12288

Hyper Cube 3968 3968 128 49152 24576

Mesh 2D 4096 4096 8 18160 9080

Torus 2D 3968 3968 128 16384 8192

Torus 3D 3968 3968 128 24576 12288

Torus 4D 3968 3968 128 32768 16384

Torus 5D 3968 3968 128 40960 20480

5

Figure 1 - Butterfly Network

Butterfly: 4096 nodes with disk on a switch with a
single gigabit Ethernet link, 1024 switches with 8
gigabit Ethernet links, 256 routers with 4 gigabit
Ethernet and 2 10 gigabit Ethernet links.

Figure 2 - Fat Tree network

Fat Tree: 4096 nodes with disk on a switch with a
single gigabit Ethernet link in the first layer; 128 routers
on the second layer with 32 gigabit Ethernet links to 32
node with disk in the first layer, 32 gigabit Ethernet
links to switches in the layer 3 and 2 10 gigabit Ethernet
links to servers; 64 switches with 64 gigabit Ethernet
links to the switches in the layer 2 and 64 gigabit
Ethernet links to switches in the layer 4; and 32 switches
with 128 gigabit Ethernet links to the switches in the
layer 3.

Figure 3 - Hypercube Network

Hypercube 12-dimension: 3968 nodes with disks on
switches with 12 gigabit Ethernet links, and 128 routers
with 12 gigabit Ethernet links to other nodes and 2 10
gigabit Ethernet links to servers. Routers are positioned
randomly in the topology to minimize the impact of
routers too close in the topology as demonstrated in [10].

Figure 4 - Mesh 2D network

Mesh 2-dimensions: 4096 nodes with disks with up to 4
gigabit Ethernet links connected to other nodes and the
border switches with 4 gigabit Ethernet links to routers,
and 8 routers with 128 gigabit Ethernet links to nodes
with disks and 2 10 gigabit Ethernet links to servers.

6

Figure 5 - Torus 2D network

Tori in 4 different dimensions: Each one with 3968
nodes with disk and switches and 128 routers all with
the same level of connectivity depending on the
dimension. The 128 routers always have 2 additional 10
gigabit Ethernet links to servers and are placed randomly
in the topology:

- 2 Dimension: 64x64 with each switch and
router having 4 gigabit Ethernet links

- 3 Dimension: 16x16x16 with each switch and
router having 6 gigabit Ethernet links

- 4 Dimension: 8x8x8x8 with each switch and
router having 8 gigabit Ethernet links

- 5 Dimension: 4x8x4x8x4 with each switch and
router having 10 gigabit Ethernet links

Figure 6 -Torus 3D network

4.4 Simulation assumptions
In order to model systems with these level of

complexity in a manner that allows them to be
programmed in a reasonable amount of time and run on
limited time and computing power, we had to make

several assumptions both to simplify the system and to
limit the number of variables that would need to be
simulated and randomized. This also allowed for a
clearer and sharper vision of the results. Some of the
assumptions are:

The behavior of the links follows the rules of
Ethernet in terms of inter-packet gap and minimum size.
All links are considered full duplex which is the
standard for both gigabit Ethernet over fiber and gigabit
Ethernet over twisted pair [IEEE 802.3]. This will create
in effect two separate logical links for each physical
link. Statistics were compiled separately and combined
at the end of the simulation to calculate averages. For
link failure considerations we assume that the physical
link has failed and declare both logical links as failed.

The behavior of the switches will not simulate the
802.1D standard of bridging [IEEE 802.1D] but instead
will follow a more liberal approach of a routing
algorithm similar to Infiniband [7,15] where messages
are redirected only to the next node that offers the
shortest path to the destination. The shortest path is
determined locally based solely on the topology being
used, the destination address, and sometimes on the
source address. There is no routing protocol, route
discovery or routing information exchange between any
of the nodes. When there are multiple shortest paths
available from a single node to a particular destination,
the path is chosen based on the following tie breakers in
this order: which link will be available first for
transmission, which link has been used the less and
unbiased round robin order.

When the routing algorithm encounters a failure in
the path chosen most of the time it will be taken care by
the algorithm mentioned above. Only when there is no
more than one link to the destination do we need a
different approach to forward the message. In this case
the algorithm will look at alternative routes that are not
the shortest one and will use the same algorithm to
decide which one of those routes to choose.

A node can not forward a message to the node from
which it has received it. This is to avoid a loop when a
message will be trapped back and forth between two
nodes. This algorithm does not prevent a message from
being caught in a loop with more than two nodes but that
is statistically very unlikely and we did not observe this
behavior in our simulations.

The size of the packets is restricted to a few options
and not all of them match the available standards for
Ethernet [IEEE 802.3]. In bytes those sizes are 64, 1024,
1500, 2048, 4096, 8192, 16384, 32768 and 65536. Any
arbitrary sized request data can be subdivided in packets
of these sizes and, although it does not seem as efficient
as when using specific sizes, for sufficiently large
messages usually utilized when reading or writing data
to and from disks, the difference in performance is

7

negligible. But the simplification of the simulation’s
performance and programming are significant.

We calculated the amount of time taken to transmit
each one of these different size packets on a regular
gigabit Ethernet using the standard calculations for
Gigabit Ethernet. The minimum packet size is 64 bytes.
We add the size of the preamble (8 bytes) and the
equivalent size of the minimum inter-gap time (12 bytes)
and that gives us a total size of 84 bytes. The nominal
throughput for gigabit Ethernet is 10,000,000,000 bits
per second. Doing the math we reach 1,488,095 packets
per second. That yields a delay of 67ns for a 64 bytes
packet.

Our simulation time unit is fixed as 1 µs (1 micro
second). The amount of time required to send a 64 bytes
packet on gigabit Ethernet was approximated to 1 µs.
The amount of time for a 64K bytes packet, if sent
continuously as a single packet, would be 525 µs. If sent
in segments with size 8K bytes, allowed under
commonly accepted Jumbo Frame standards, the
transmission would take 527 µs.

We introduced a further simplification of the model
for the simulation of large networks; we only used
packets of either 64 bytes or 64K bytes. The first were
used to transmit read requests and write replies, and the
second were used to transmit blocks of data for read
replies and for write requests. On a comparison run,
using 64K bytes and 8K bytes packet sizes, the
difference in terms simulated was non perceptible but
the amount of time taken by the simulation using 8K
bytes was 10 times longer than when using 64K bytes.

Lastly the size of a read or write requests from a
server to a single disk were fixed at 512 Kbytes. This is
a reasonable assumption if we consider that the server
will break data requests in smaller chunks to send them
in parallel to different disks.

The disk access delay was consider to be 22ms
which is derived from the seek time and data transfer of
a 15000 rpm SCSI-II disk or of a SAS-1 disk. As a base,
we used the Seagate Cheetah 15Krpm SCSI-II [25]. It
has a seek time of 3.5ms for reads and 4.0ms for writes
and a sustained data transfer of 73MB/s. If we assume
one seek for every 128KB of data, and use the worst
case of 4ms we arrive at a disk delay of 21.41ms.

On read requests, the disk will wait for 22ms before
starting the transmission of the 512KB. The read data
will be divided on packets fitting the maximum packet
size (64KB for this simulation) and sent one after the
other. In the case of write requests, the disk will buffer
all the segments of the write request and will send a
confirmation to the router that sent the request as soon as
it has received all segments. Then it will process the
write and keep the disk busy for 22ms.

If the disk is busy when a request arrives, the request
will be queued. Each disk has two queues to hold
requests: one for reads and one for writes. The disk will
empty the read queue first before checking the write
queue since the write has already been acknowledged
and the read still has to be sent. This could in theory
prevent writes from being committed to disk, but the
random nature of the request generation prevented it
from happening during the simulation.

The switches were considered to be crossbar
switches where traffic from one port to another does not
cause interference with other traffic in the switch. Since
the times for transmissions on the links are measured
from when the first byte is sent on the transmitting end
until the last byte arrives on the receiving end, including
the preamble, postamble and minimum inter-gap packet,
the switch only has to determine the outgoing port and
queue the packet in the link. Most crossbar switches
have latency between 500ns and 20ms. For our
simulation we considered a store and forward switch
with a low latency of 6 ms.

Packets are sent immediately by the switch into the
link after the switch delay unless the link is already
busy. There is a separate queue per port on each switch
and for our simulation we consider the queue size to be
infinite and the time spent on enqueueing and
dequeueing packets to be negligible.

The simulator accepts 3 parameters to determine the
load of the system:

- Number of simultaneous requests per router. This
parameter indicates how many outstanding requests
each router can have at a certain time. When a
request is fulfilled a new request is generated. When
a request’s timeout expires a new request of the
same type (read or write) is generated to a different
disk. Late replies for expired requests are discarded.

- Randomization interval for requests: This parameter
is used to determine the interval when all routers
will generate their first round of requests. At
initialization time each router will generate the
maximum number of simultaneous requests. Each
request will be randomly selected as a read or a
write request and will be scheduled randomly
between 0 and the randomization interval. When a
request is fulfilled and a new request is generated to
a random disk, it will also be randomly sent within
the same random time interval starting from the
current time. This mechanism generates a self
throttling loaded system. When the delay to
complete a request is long, there are fewer requests
generated per time unit in the system. When the
delay to complete a request is short, there are more
requests generated per time in the system because it
is capable of completing them.

8

- Request timeout. This parameter is the amount of
time that a router will wait to receive a reply from a
disk before declaring the request lost and generating
a new request to another disk.

There is a startup time fixed in the simulation to be
double the time of a regular disk access. When the
simulation time reaches the defined startup time, all
statistics are cleared. This procedure is used to avoid
distortion in the measurements during the “warm up” of
the system when it is empty, response time is much
faster and collisions are rare.

The simulator also needs the amount of time being
simulated. This parameter has to be larger than the
request timeout and the startup time described above.

We simulated three types of failures with a different
number of components failing simultaneously. All
failures were generated randomly but could easily also
have been generated deterministically.

- Disk failures. We only simulate failure of 4 disks
simultaneously. When disks fail, all requests sent to
them are going to be lost since there is no disk to
respond. The switch to where the disk is connected
is still working so will not affect the network
performance and the network will not be able to
detect this failure.

- Link failure: We simulate failure of 8 links, 16
links, and 24 links. There is the possibility of
network segmentation in some cases but that was
not observed. A failed link will return -1 as the time
when it will be free and also as the network
utilization effectively removing it from the routing
algorithm used in the nodes.

- Switch failure: We fail one switch and two
switches. A switch failure assumes that all the links
in the switch will fail. In turn all the links
connecting to this switch will fail (this is necessary
because we consider all the links to be full duplex).
We did not fail switches with only one link since
that would be equivalent to failing the disk attached
to that switch. But in the case where the switch with
the disk has more than one connection, the switch
can be failed and the disk also can not be accessed.
This will cause lost messages for the hyper cube,
Mesh and Tori topologies.

5 Results and analysis

5.1 Determination of the simulation load
We run the simulation using different loads. All the

loads used the same interval randomization value equal
to the disk delay access. This was done in order to bring
the system faster to a steady state. Since different
topologies have different number of routers, we
parameterized on a total number of simultaneous

outstanding requests for the whole system and divided
that number by the number of routers to achieve the
requests per routers.

We simulated 6 different loads expressed by total
number of requests: 1280, 2560, 3840, 5120, 6400 and
7680. We then divided the number of requests by the
number of routers and arrived to the following loads: for
topologies with 128 routers, it was 10, 20, 30, 40, 50 and
60 respectively. For topologies with 256 routers it was 5,
10, 15, 20, 25 and 30 and for topologies with 8 routers it
was 160, 320, 480, 640, 800 and 960.

From the results we can see that above 6400 requests
the disks are almost over saturated in the topologies with
more links such as Hypercube, Fat Tree, Torus 4D and
5D (Figure 7). On the topologies with less links such as
Butterfly, Mesh and Torus 2D, we see that most links
are saturated without being able to keep the disks busy
(Figure 8).

Avg Disk usage time by load

0%

20%

40%

60%

80%

100%

10 20 30 40 50 60
Load (requests per interval)

Butterfly

Fat Tree

Hyper cube

Mesh 2D

Torus 2D

Torus 3D

Torus 4D

Torus 5D

Figure 7 - Average disk usage time by number of
requests per interval

Avg Link usage time by load

0%

20%

40%

60%

80%

100%

10 20 30 40 50 60
Load (requests per interval)

Butterfly

Fat Tree

Hyper cube

Mesh 2D

Torus 2D

Torus 3D

Torus 4D

Torus 5D

 Figure 8 - Average link usage time by number of
requests per interval

On Figures 9, 10 and 11 we can see the network
throughput, request delay and link collision percentages
for each run. The network throughput is the aggregated
sum of all the bytes received by routers and disks. The

9

request delay is the average time taken by a request
since it is sent from the router until it finishes receiving
the replies from the disk. The link collision is the
percentage of all packets that when arriving at a link,
found that the link was busy transmitting another
message and had to wait in queue. We can see that in
the topologies where the links have over 50% utilization,
the number of collisions also has climbed to over 50%
and the I/O delay has increased significantly at the same
time that the network throughput has decreased.

Based on these results we decided to conduct our
simulations at a steady 5120 requests per interval which
would allow most of the topologies to top 100GB/s of
aggregated throughput and still have some room to
increase the disk utilization and keep adequate I/O
requests delay.

Network Throughput (GB/s)

0

25

50

75

100

125

150

175

10 20 30 40 50 60
Lo ad (requests per interval)

Torus 5D

Torus 4D

Torus 3D

Torus 2D

M esh 2D

Hyper cube

Fat Tree
Butterfly

 Figure 9 - Network throughput by system load

Average I/O delay (ms)

0

10

20

30

40

50

60

70

80

10 20 30 40 50 60
Load (requests per interval)

Torus 5D

Torus 4D

Torus 3D

Torus 2D

Mesh 2D

Hyper cube

Fat Tree

Butterfly

 Figure 10 - Average I/O delay by system load

Percentage of network collisions

0%

10%

20%

30%

40%

50%

60%

10 20 30 40 50 60
Load (requests per interval)

Torus 5D

Torus 4D

Torus 3D
Torus 2D

Mesh 2D

Hyper cube

Fat Tree
Butterfly

Figure 11 - Percentage of messages in links that were
queued because of collisions

5.2 Effects of failures on number of hops
per message

The number of hops that a message has to traverse to
arrive at its destination is a measure of the connectivity
of the topology and also an indication of the delay that it
will face. We counted the hops for all messages and
divided them by the total of messages in the links. When
failures occur some messages will need to deviate and
take longer paths in order to avoid failed devices. This is
not necessary for disks. Figure 12 the average hops
count for each topology in the base case and Figure 13
shows the maximum variation due to failures.

Average hop count by topology

0 5 10 15 20 25 30 35

Butterfly

Fat Tree

Hyper Cube

Mesh 2D

Torus 2D

Torus 3D

Torus 4D

Torus 5D

 Figure 12 - Average hop count by topology

We can see that for topologies with many links per
node there is almost no variation on the number of hops.
The less links per nodes, the greater the variation on the
number of hops, but even in the cases like Torus 2D and
Mesh 2D the actual percentage variation over the
absolute total is very small (0.38% for Torus 2D and
0.39% for Mesh 2D). In general hop count on all
topologies behave well under failures.

10

Max variation of hop count due to faults

0.00% 0.20% 0.40% 0.60% 0.80% 1.00%

Butterfly

Fat Tree

Hyper Cube

Mesh 2D

Torus 2D

Torus 3D

Torus 4D

Torus 5D

 Figure 13 - Maximum variation of hop count due to
failures

5.3 Effect of failures on I/O requests delay
The delay for each request will directly affect the

overall performance of the system and it is an important
parameter when designing a network and evaluating its
final throughput. In our case we examine both the
average I/O request delay in ms as shown on Figure 14
and 15 and the distribution over time for number of
requests per millisecond as shown in Figure 16. In the
first metric we are looking for a trend that would
indicate that the network is slowing down in average. In
the second metric we are looking for indications of hot
spots that could be masked in the average. Additionally,
this information should be correlated with the number of
lost messages as seen in the next item. The loss of a
message indicates that the I/O request it was carrying
will timeout and will need to be retransmitted therefore
increasing the delay.

Average I/O delay in ms by topology

- 10 20 30 40 50 60 70

Butterfly

Fat Tree

Hyper Cube

M esh 2D

Torus 2D

Torus 3D

Torus 4D

Torus 5D

 Figure 14 - Average I/O delay by topology

I/O delay increase (%)

-2.00% 0.00% 2.00% 4.00% 6.00% 8.00% 10.00%

Butterfly

Fat Tree

Hyper Cube

M esh 2D

Torus 2D

Torus 3D

Torus 4D

Torus 5D Fail 2 switch

Fail 1 switch

Fail 24 links

Fail 16 links

Fail 8 links

Fail 4 disks

 Figure 15 - I/O delay increase by failure and
topology

I/O requests delay distribution

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%

0 20 40 60 80 100
Delay (ms)

P
er

ce
nt

ag
e

of
 re

qu
es

ts Butterfly

Fat Tree

Hypercube

Mesh 2D

Torus 2D

Torus 3D

Torus 4D

Torus 5D

 Figure 16 - I/O requests delay (in ms) distribution
for base case for each topology

The I/O request delay increases in all cases when we
fail disks because requests directed to those disks will
timeout and will need to be retransmitted, greatly
increasing the I/O delay. Fat Tree is insensitive to other
failures, especially since we are not failing links or
switches connected to disks and there are many
redundant connections. Hypercube, Mesh 2D and Tori
are sensitive to switch failures since each switch is
connected to a disk but the sensitivity to link failures
varies greatly. Torus 2D and Mesh 2D are the most
sensitive since there are very few links per node. Torus
3D, 4D and 5D are similarly insensitive to link failures,
while Hypercube is not affected. Butterfly is the most
affected due to its lack of redundant paths.

Looking at the distribution of delay per messages,
we can see that Hypercube and Fat Tree have almost all
messages delay in a very narrow interval between 3ms
and 5ms, while the Tori and the Mesh get more
dispersed as the number of links per node decreases.
Only the Torus 2D, Mesh 2D and Butterfly show
different distribution of delays under failures, while the
other 5 topologies are virtually indistinguishable,
reinforcing the conclusion that delay is not affected by
failures.

11

5.4 Effect of failures on messages lost
Loss of messages indicate that the level of

congestion has increased enough to cause the requestor
to timeout the request or to partition the network in a
way that there is no route to reach the destination, or the
routing algorithm is incapable of finding a valid route.
We experimented with different timeout values to
determine the lowest timeout that would separate
network congestion from lack of viable routes. We run
the simulation on a Torus 2D and vary the timeout from
175ms to 275ms. The results are shown on Figure 17.
We then measured the influence of messages lost on the
number of requests completed without timeouts and no
retries, as shown on Figure 18.

-

200

400

600

800

1,000

175ms 225ms 275ms

B
ase

4 D
isks

8 Links

16 Links

24 Links

1 sw
itch

2 sw
itches

1%
 of links

timeout (ms)

Messages lost on Torus 2D by timeout

 Figure 17 - Number of messages lost in a Torus 2D
with different timeout values under failures

The first test showed that Torus 2D would not miss
any messages if the timeout was long enough, showing
that the network was not partitioned. The second test
showed that other than disk failures, which would
certainly cause messages to be lost, all topologies, with
the exception of Butterfly, were able to receive all
messages sent.

Percentage I/O complete

99.85%

99.88%

99.91%

99.94%

99.97%

100.00% Fat Tree

Hyper Cube

M esh 2D

Torus 2D

Torus 3D

Torus 4D

Torus 5D

Figure 18 - Percentage of I/O requests completed
without timeout

5.5 Effect of failures on network
congestion and network throughput

Network congestion and network throughput are
inter-related and are different measurements of
performance of the overall system. Network congestion
measures the percentage of times a packet arrived at a
link in the network and the link was busy transmitting
another message and the packet had to be queued. Since
links are full duplex, a link was receiving behavior had
no effect on the transmission, so congestion is measured
only on the transmission side. We discounted the effects
of limited buffers for queuing and assumed that there
were separate buffers for transmission and reception.
When links or switches fail in the network, adjacent
links get additional traffic and that increases the amount
of collisions that will be seen in the network overall.
Average collision percentage per topology on the base
case are shown on Figure 19, percent variation on the
amount of collision for each type of failure are shown on
Figure 20. Notice that in some cases the variation is
negative, indicating that there are less collisions.
Distributions of percentage of link usage time are shown
on Figure 21 and 22. We show the total accumulated
percentage of links usage in percentage of time for each
type of network and each failure. In most cases the
variation by failures is so small as to be considered null.

Network collisions by topology

0% 10% 20% 30% 40% 50% 60%

Butterfly

Fat Tree

Hyper Cube

Mesh 2D

Torus 2D

Torus 3D

Torus 4D

Torus 5D

 Figure 19 - Percentage of network collisions on links
per topology on base case

12

Network Collision variation (%)

-5.00% -3.00% -1.00% 1.00% 3.00% 5.00%

Butterfly

Fat Tree

Hyper Cube

Mesh 2D

Torus 2D

Torus 3D

Torus 4D

Torus 5D

Fail 2 switch

Fail 1 switch

Fail 24 links

Fail 16 links

Fail 8 links

Fail 4 disks

 Figure 20 - Percentage variation from base on
network collisions by topology and failure

Butterfly links usage cumulative distribution by
failures

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 20% 40% 60% 80% 100%

utilization percentage

pe
rc

en
ta

ge
 o

f l
in

ks

Base

4 Disk

8 Links

16 Links

24 Links

1 Switch

2 switches

 Figure 21 - Link usage cumulative distribution for
Butterfly topology

Links usage cumulative distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%
utilization percentage

pe
rc

en
ta

ge
 o

f l
in

ks

Fat Tree

Hyper Cube

Torus 3D

Torus 4D

Torus 5D

Torus 2D

Mesh 2D

 Figure 22 - Link usage cumulative distribution for
base case for all topologies

Similarly, the aggregate system’s overall network
throughput indicates the capability of the system to
transfer data in and out of the disks. The effect of
failures on data throughput is due both to the increased
congestion of the network and the need to re-request the

data when an undetected disk failure occurs. Also, disk
utilization changes slightly when disks fails due to the
increased number of requests per disk. That can be offset
by fewer requests being generated due to network
congestion. Figure 23 shows the aggregate network
throughput and Figure 24 shows the percentage drop in
network throughput for each different type of failures.
Similarly Figure 25 shows the disk utilization time
average per topology in the base case and Figure 26
shows the disk utilization drop per topology for each
failure case. Again note that in some cases disk
utilization increases under certain failures.

Network throughput by topology (GB/s)

0 20 40 60 80 100 120 140

Butterfly

Fat Tree

Hyper Cube

Mesh 2D

Torus 2D

Torus 3D

Torus 4D

Torus 5D

 Figure 23 - Aggregate network throughput per
topology on base case

Network throughput drop (%)

-2.00% 0.00% 2.00% 4.00% 6.00% 8.00% 10.00%

Butterfly

Fat Tree

Hyper Cube

Mesh 2D

Torus 2D

Torus 3D

Torus 4D

Torus 5D Fail 2 switch

Fail 1 switch

Fail 24 links

Fail 16 links

Fail 8 links

Fail 4 disks

 Figure 24 - Network throughput drop by topology
for different failures

We can see that the number of network collisions
increases only for Mesh 2D and Torus 2D and it actually
decreases for Butterfly networks. The latter is due to the
fact that the network becomes partitioned and there are
many links that will not receive any traffic, much less
collision and that would bring the average down.

The network throughput is extremely high on
Hypercube and Fat Tree due to the large number of
paths between routers and disks that keep the network
congestion low. The fact that our results for Fat Tree
show lower network throughput than the Hypercube

13

when the first has more redundant network connections
is explained by the fact that our Fat Tree design uses
only one network connection from the disk to the
network compared with 12 connections for a disk in our
design for the Hypercube. All segments of a data
message are sent simultaneously in different packets. In
a Fat Tree topology, all these packets will be queued on
the single link to the disks while in the Hypercube they
can be distributed among the many links of the switch.
Torus 5D and Torus 4D see a similar performance
slightly slower than the first two since they have fewer
links on the network and fewer connections per switch.

Disk utilization

0% 20% 40% 60% 80% 100%

Butterfly

Fat Tree

Hyper Cube

Mesh 2D

Torus 2D

Torus 3D

Torus 4D

Torus 5D

 Figure 25 - Disk utilization per topology on base
case. It includes rotation time, seek and access time.

Disk utilization drop (%)

-2.00% 0.00% 2.00% 4.00% 6.00% 8.00%

Butterfly

Fat Tree

Hyper Cube

Mesh 2D

Torus 2D

Torus 3D

Torus 4D

Torus 5D Fail 2
switch
Fail 1
switch
Fail 24 links

Fail 16 links

Fail 8 links

Fail 4 disks

 Figure 26 - Disk utilization drop per topology under
different failures

Torus 3D and Butterfly have about the same middle
of the ground network performance, but Butterfly is
affected more by failures due to the network partition.
On the slow side are Torus 2D and Mesh 2D with not
enough links to maintain the throughput and more
susceptible to failures.

Disk utilization does actually go down when there
are fewer disks. This can be explained by the fact that
requests to failed disks are still being generated but are
not being processed. In turn this leads to fewer requests
in the network leading to less disk utilization. This can

also be observed when there are fewer switches or fewer
links or anything that would lower the network
throughput. For these topologies the disks are not a
performance constrain, but actually reflect the capacity
of the network in generate requests.

In general, higher throughput networks are more
susceptible to disks failures due to the fact that requests
can be delivered at the same rate to disks when there are
network failures than on lower throughput networks.
This can be observed when comparing the effect of 2
disks failures on Hypercube (significant) and Mesh 2D
(not noticeable).

6 Future work
Some considerations for future optimizations are the

use of more efficient routing algorithms while still
maintaining the simplicity of local views with no routing
protocols and the use of mixed topologies to try to take
advantage of the best qualities of each topology to create
a simpler, faster and more fault tolerant overall system.

In the topic of failures, the next step would be the
implementation of failure detection algorithms and
protocols. The effect of failures in the system can be
traced to two different reasons: One is the fact that when
devices fail there are fewer of them available to serve
the same load: fewer routers to route requests, fewer
switches to provide additional bandwidth, fewer links to
provide alternative routes and fewer congested paths and
fewer disks to serve the same amount of data. The other
component is the fact that the devices in the system are
not aware that one or more devices have failed and keep
sending requests to that disk or using that switch or
counting on that link to forward the message. This
creates unnecessary errors, longer paths and eventual
timeouts with its consequent retries. In order to
understand the tradeoffs between implementing yet
another protocol and processing additional messages and
using additional bandwidth and the savings that could
come from the fact that the system would not try to use
devices that are not longer responding we need answers
to several questions: how would its use affect the
network performance? And the opposite too, how would
the network topology and its inherent performance
limitations affect the accuracy, responsiveness and
effectiveness of the failure detection protocols? Which
failure detection is more efficient and accurate for each
different topology or to detect different failures? This
topic has been explored by Tan in [16] but many
questions remain unanswered.

This whole study is based on a theoretical premise
that we can use Ethernet like connections and switches
which provide understandable technology readily
available and at a low price that a mass market creates.
But we expect all the switches to behave more like
routers than real switches and that is still a very difficult

14

obstacle to overcome. Thinking about alternatives that
could be implemented is another area of interest to
study.

Furthermore, the simulation can be improved to
include the next layer in the storage access which would
be the transport protocol and the data access protocol.
Interactions at a higher level can have unintended
consequences on the system performance when failures
occur as demonstrated with the Panasas system [9] and
routing in Slice [1].

7 Conclusions
When choosing the design of a high performance

petabytes scale storage network we must consider not
only the total data throughput, but also the sensitivity to
different types of network failures. To guide such
decision we evaluated the performance and tolerance to
failures of 8 different network topologies - Butterfly, Fat
Trees, Hypercube 12D, Mesh 2D, Torus 2D, 3D, 4D and
5D - using a simulation model.

We found that Hypercube and Fat Tree have the best
performance both on the base case and also under any of
the failures. The performance of the Fat Tree was
hindered by our choice of design with a single
connection from disks to network but still had an
impressive performance with only half the gigabit
Ethernet ports than the Hypercube and offering 128
more disks. What makes Fat Tree more difficult to build
is the intermediate switches with 128 ports and the
routers with 64 ports,. This will likely not be a
restriction in the near future since new switches at more
competitive prices are coming out in the market. In
favor of Fat Trees is the fact that cabling and managing
it is more straightforward and it is easier to visualize
than Hypercube which uses switches with 12
connections to very different switches in the network
and with no easy to discern pattern.

Torus 5D and 4D still had a good performance and a
relatively good tolerance to failures and used fewer
connections than Hypercube but more than Fat Tree.
Again, the maintenance of the connection pattern needed
for Torus is not trivial. Butterfly and Mesh 2D also have
good performance under some parameters but tolerance
to failures is not the best, especially on Butterfly. Mesh
also has the added challenge of using just 8 routers with
128 gigabit Ethernet ports and several 10 Gigabit
Ethernet connections for servers. These are still more
difficult to build currently than the 64 ports plus 2
10GbE for the Fat Tree topology. Torus 2D and 3D have
the worse performance to complexity ratio, with still too
many links for not enough performance. Fault tolerance
was still acceptable but these topologies are more
sensitive to link failures.

8 References
[1] Darrell C. Anderson, Jeffrey S. Chase, and

Amin M. Vahdat. Interposed request routing for
scalable network storage. ACM Transactions
on Computer Systems (TOCS), Volume 20
Issue 1, Publisher: ACM Press February 2002

[2] Miguel Castro and Barbara Liskov. Proactive
Recovery in a {B}yzantine-Fault-Tolerant
System. Technical report, Massachusetts
Institute of Technology, 1999.

[3] M. Chen, A. Accardi, E. Kiciman, J. Lloyd, D.
Patterson, A. Fox, and E. Brewer. Path-based
Failure and Evolution Management. In 1st
NSDI, 2004.

[4] Garth A. Gibson, Rodney Van Meter. Network
attached storage architecture. In
Communications of the ACM, Volume 43 Issue
11, November 2000

[5] R. Honicky and E. Miller. An Optimal
Algorithm for online reorganization of
replicated data. Proceedings of the 17th
International Parallel & Distributed
Processing Symposium, Nice, France, April
2003.

[6] A. Hospodor and E. L. Miller. Interconnection
Architectures for Petabyte-scale High-
performance Storage Systems. In Proceedings
of the 21st IEEE / 12th NASA Goddard
Conference on Mass Storage Systems and
Technologies, April 2003.

[7] InfiniBand Clustering: Delivering Better
Price/Performance than Ethernet. Mellanox
Technologies White Paper.

[8] Daniel A. Menascé, Odysseas I. Pentakalos,
Yelena Yesha. An analytic model of
hierarchical mass storage systems with
network-attached storage devices. ACM
SIGMETRICS Performance Evaluation Review,
Proceedings of the 1996 ACM SIGMETRICS
international conference on Measurement and
modeling of computer systems SIGMETRICS
'96, Volume 24 Issue 1, May 1996

[9] David Nagle, Denis Serenyi, Abbie Matthews.
The Panasas ActiveScale Storage Cluster:
Delivering Scalable High Bandwidth Storage.
Proceedings of the 2004 ACM/IEEE conference
on Supercomputing SC '04, November 2004

[10] Christopher Olson, Ethan L. Miller.
Cryptographic storage security: Secure
capabilities for a petabyte-scale object-based
distributed file system . Proceedings of the
2005 ACM workshop on Storage security and

15

survivability StorageSS '05, November 2005.
Publisher: ACM Press

[11] Renato John Recio. Promises and reality:
Server I/O networks past, present, and future.
Proceedings of the ACM SIGCOMM workshop
on Network-I/O convergence: experience,
lessons, implications NICELI '03, August 2003.
Publisher: ACM Press

[12] P. Schwan. Lustre: Building a file system for
1000-node clusters. In Proceedings of the 2003
Linux Symposium, July 2003.

[13] A. Vahdat, K. Yocum, K. Walsh, P.
Mahadevan, D. Kosti´c, J. Chase, and D.
Becker. Scalability and Accuracy in a Large-
Scale Network Emulator. In 5th OSDI, 2002.

[14] A.S. Vaidya, C.R. Das, A. Sivasubramaniam.
A testbed for evaluation of fault-tolerant
routing in multiprocessor interconnection
networks. Parallel and Distributed Systems,
IEEE Transactions on Volume 10, Issue 10,
Oct. 1999.

[15] A. Vishnu, A.R. Mamidala, H. Jin, D. Panda.
Performance Modeling of Subnet Management
on Fat Tree InfiniBand Networks using
OpenSM. In Parallel and Distributed
Processing Symposium, 2005. Proceedings.
19th IEEE International, April 2005

[16] C.Tan. Failure Diagnosis for Configuration
Problem in Storage System. IBM Almaden
Reseach Center

[17] Hong Tang, Aziz Gulbeden, Jingyu Zhou,
William Strathearn, Tao Yang, Lingkun Chu. A
Self-Organizing Storage Cluster for Parallel
Data-Intensive Applications. Proceedings of
the 2004 ACM/IEEE conference on
Supercomputing, Publisher: IEEE Computer
Society November 2004

[18] Q. Xin, E. L. Miller, T. J. Schwarz, D. D. E.
Long, S. A. Brandt, and W. Litwin. Reliability
mechanisms for very large storage systems. In
Proceedings of the 20th IEEE / 11th NASA
Goddard Conference on Mass Storage Systems
and Technologies, Apr. 2003.

[19] Q. Xin, E. L. Miller, T. J. E. Schwarz.
Evaluation of Distributed Recovery in Large-
Scale Storage Systems. In Proceedings of the
13th IEEE International Symposium on High
Performance Distributed Computing, June
2004.

[20] Q. Xin, E. L. Miller, T. J. E. Scharz, D. D. E.
Long. Impact of Failure on Interconnection
Networks for Large Storage Systems. In
Proceedings of the 22nd IEEE / 13th NASA

Goddard Conference on Mass Storage Systems
and Technologies (MSST 2005), April 2005

[21] EMC Corporation,
http://www.emc.com/index.jsp

[22]EqualLogic Incorporated, http://equallogic.com/

[23] IBM Systems Storage, http://www-
03.ibm.com/systems/storage/index.html

[24] Network Appliance Incorporated,
http://www.netapp.com/

[25] Seagate Technology LLC,
http://www.seagate.com/products/enterprise/ch
eetah.html

[802.3] IEEE Standard for Information
technology—Telecommunications and
information exchange between systems—Local
and metropolitan area networks—Specific
requirements. Part 3: Carrier sense multiple
access with collision detection (CSMA/CD)
access method and physical layer
specifications. IEEE Std 802.3-2005, December
9, 2005.

[802.1D] IEEE Standard for Information
technology—Telecommunications and
information exchange between systems—Local
and metropolitan area networks—Common
requirements. Part 3: Media Access Control
(MAC) Bridges. ANSI/IEEE Std 802.1D 1998
Edition. 1998.

	ssrctrcover-07-10.pdf
	Mehech MS report final.pdf

