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1 Abstract 
Distributed storage systems that can support high 

throughput and capacities in the petabytes range, are 
being built using standard Off the Shelf Components 
disks and networks to lower costs. Both the large 
number of components and the quality of these 
components contribute to a high probability of failures. 
The performance and complexity of storage networks 
built using standard topologies with data network 
components has been studied before, but the analysis of 
the effect of network and disk components failures on the 
performance and availability of the system has received 
limited attention. We analyze the effects of network 
components, links and disk failures on storage data 
networks connected with several common network 
topologies in the 4,000 nodes range using a simulation 
program. We compare both the average numbers and 
the peak numbers. Our results indicate that it is possible 
to build storage networks with high level of resiliency 
using several of these topologies and we analyze the 
possible trade-offs among them. 

1 Introduction 
Storage systems that can have up to thousands of 

disk drivers and storage capacity in the order of 
petabytes are quickly becoming a common presence in 
both research and commercial institutions. Cost is still 
an issue, although the use of standard of the shelf 
components coupled with the use of ubiquitous Ethernet 
networking technology has brought down the cost of 
building such systems to very affordable levels.  But as 
the cost to build the system decreases, the use of 
thousands of off-the-shelf components brings the reality 
of multiple component failures in the system, whether 
they are network or storage related.  

While disk capacity has been constantly increasing 
and price has fallen, performance and reliability have 
not accompanied the same trend of improved efficiency. 
Coupled with the  use of powerful and ever faster 
networking technologies, now it is possible to design 
and build storage systems comprised of large clusters of 
disks with increasing data capacity and overall data 
throughput. On the other side, the time consumed on 
regenerating the data lost in case of a disk failure has 
also increased. 

Recent research suggests that using data networks is 
an effective way to create a resilient and robust 
architecture for data storage systems that can hold large 
amount of data and provide high throughput access. We 
propose to analyze the effects of component failures on 
this storage networks in terms of performance impact 
both on average and on extreme scases. We will use a 
simulation program to collect statistics about how 
different failure scenarios affect the performance of 
different network topologies. We will see that many 
topologies can be built in ways to minimize the impact 
of failures both on the average performance and on the 
extreme cases using a simple load based, locally 
determined routing algorithm. 

2 Related Work 
Lustre [12] was one of the first clustered file system 

implemented that uses Object Oriented Storage and can 
scale into thousands of nodes. Its networking approach 
is a modular one that can be used with TCP/IP, Quadric 
Elan and Myrinet in addition to Ethernet. The effects of 
network or disk failures on the performance and 
reliability of Lustre have not been addressed yet.  

Panasas offers a commercial implementation of an 
OSD with its ActiveScale Storage Cluster [9]. Panasas 
utilizes a standard TCP/IP over Gigabit Ethernet 
implementation to connect both clients and servers to the 
OSD system. Servers are connected using 4 aggregated 
gigabit connections to a single gigabit Ethernet switch 
where also the clients are connected. While this paper 
presents a real case study of the file system performance, 
it is clear that such performance is also limited by both 
the network design and the protocol configuration. The 
use of TCP/IP allows the use of other standard protocols 
such as iSCSI, RPC, DNS and NTP while at the same 
time permitting the use of other networking technologies 
like Myrinet and Infiniband. Their approach is directed 
to the study of the performance of the system and not on 
how failures would affect it. 

Other industry solutions include arrays using SAN 
with Fibre Channel (IBM [23], EMC [21], Network 
Appliance [24]), Infiniband [7] (Mellanox) or Gigabit 
Ethernet (e.g. EqualLogic [22], Network Appliance 
[24]). These approaches rely on the inherent fault 
tolerance and failure detection methods from the 
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particular network technology or from the use of 
standard TCP/IP protocols [4]. 

Xin et al. studied the effects of failures on large 
interconnection networks for storage [20] but only 
analyzed a few topologies. This paper built on a 
previous study from Hospodor and Miller [6] that 
proposed the use of switched data networks to 
interconnect storage components and studied the cost, 
throughput and complexity of several network 
topologies but did not analyze the effects of component 
failures. Xin and Miller studied the effects of failures of 
OTSC disks on large storage arrays but did not look at 
network failures [19].   

The study of resilience of networks includes routing 
algorithms and failure detection as the main focus to 
provide resilience but most of the studies are limited in 
the size of the network being analyzed. Many studies 
focus on fault tolerance and failure recovery for generic 
systems like Castro et al. in Byzantine fault tolerant 
systems [2] or for multiprocessors systems such as 
Vaidya et al. that studied how routing algorithms can 
deal with failures in an efficient way [14]. 

 

3 Basic Concepts 
The increasing use of storage capacity in current 

supercomputer or high performance computing has 
created a paradigm shift in how to address and solve the 
storage problem. The advent of affordable and cost 
competitive storage area networks that are easy to install 
and maintain have pushed the industry into the direction 
of using specialized networks to achieve larger density 
and faster access to data. Technologies such as Fibre 
Channel, SCSI and lately IP SCSI (iSCSI) have helped 
mature the industry and the solutions available. But 
these technologies have limits on how much storage 
capacity they can manage efficiently and safely. Even at 
the current growth rate of single disk data capacity, the 
demand for additional storage can increase even faster.  

The deterrents for using common data network 
technologies to connect data storage networks 
traditionally have been throughput, latency, reliability 
and cost, where the first three are the main components. 
With Gigabit Ethernet and 10 Gigabit Ethernet, the 
performance seems now acceptable. The cost has come 
down and will continue to follow the same trend. The 
standardization of iSCSI as a protocol to access storage 
across any IP network has allowed a more reliable way 
to build storage networks. Conversely, the availability of 
large of the shelf disks and switches not only allows for 
building large networks but also increases the 
probability of failures that could affect the overall 
availability and performance of the system. 

3.1 Networks and topologies  
Several topologies have been proposed and analyzed 

to implement storage networks. Miller and Hospodor 
explored several of them for use in large storage 
networks [6] and compared their cost, network 
throughput and complexity but not the impact that 
failures would have on their performance. 

The topologies and designs used to create fault 
tolerance networks are very similar to the designs used 
to achieve large throughput. The use of redundant 
elements for connections, switches, routers, disks and 
servers to achieve high throughput are indeed very 
similar. The more resources that are available in the 
network the greater the performance the system will 
achieve.  A single component failure (or a limited 
number of components) will have less effect on the 
overall performance and availability of the whole 
system.  

Note the use of “overall” as a comparison metric. It 
could be argued that even if the average performance 
has not been degraded with a certain failure, some 
accesses will experience such long delays that could 
render the system unusable or the performance 
unacceptable. Thus it should be necessary not only to 
analyze the overall performance but also the extreme 
cases, to see how robust and resilient to failures the 
system really is. We analyze both the average values as 
well as the distribution over time or over quantity of 
components to watch for extreme cases. 

 

3.2 Specific topologies studied  
Some of the topologies have already been analyzed 

for their performance under failure [20]. We will 
analyze both additional topologies and also ones that 
were studied to compare the results. There are several 
basic network interconnect topologies that can scale into 
the thousands of nodes such as meshes, trees, 
hypercubes, butterflies and other variations of 
hierarchical networks.   

The simplest connectivity would be achieved by 
connecting all servers directly to the storage but this will 
neither scale efficiently nor will it be resilient enough. 
The next alternative is a butterfly topology where links 
are distributed across an intermediate network in 
between routers and disks in order to create a single path 
between each router and each disk.  In this case we are 
showing a butterfly topology with 4096 disks and 256 
routers and an intermediate network composed of 1024 
8-port switches with the last 256 switches having 12 
additional ports to connect the disks. The main 
drawback is the lack of redundant routes from routers to 
disks. This has to be addressed by adding redundant 
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links in between switches in the same level to be used 
only in case of failure. 

 

All the other topologies have redundant links to 
create redundant routes. Starting with Mesh 2D where 
every node is a switch plus a disk and is connected to its 
immediate top, down, left and right neighbors. This 
configuration uses 4 port switches plus a disk for each 
node and provides additional routes both for load 
distribution and for fault tolerance. The nodes are 
arranged in a 64x64 2D mesh and there are 8 routers that 
will connect to all nodes on two sides of the mesh. 
Drawbacks are first, that there are not enough links to 
allow great throughput and second, that the average 
length of paths are over 30 hops. 

 

We analyze 4 architectures using Torus from 2D, 
3D, 4D and 5D. A Torus is similar to a mesh with the 
addition of a link that wraps around the connection from 
the end of a row in a dimension to the beginning of that 
row in the same dimension. This allows for half the 
average length as the Mesh. All the Tori topologies that 
we analyze are composed of 3968 nodes with disks and 
128 routers. The routers are distributed randomly inside 
the Torus because this provides better performance [10]. 
The 2D Torus is again a 64x64 mesh, the 3D is 
16x16x16, the 4D is 8x8x8x8 and the 5D is 4x8x4x8x4. 
As the number of dimensions of the Tori goes up, the 
number of links also increases and the average length of 
the routes goes down. See Table-1. 

The last two topologies studied are the ones with the 
most links. The purely hierarchical Fat Tree requires 
large switches and routers but uses only about half the 
number of links as the Torus 5D. We analyzed a fat tree 
with 4096 disks connected to 128 routers each with 64 
ports connecting 32 disks and 32 switches. To create the 
Fat Tree we used 96 switches each one with 128 ports. 

The topology with the largest number of links is the 
12D Hypercube. Again we used a similar arrangement 
as the Torus where the routers connected to the servers 
are randomly distributed in the hyper cube. There are 
3968 nodes each one with 12 ports and one disk and 128 
additional routers with 12 ports. Each node in the 
hypercube has one connection to another node in each 
one of the other dimensions. This gives plenty of 
redundant links for load balance and fault tolerance. 

3.3 Routing messages in the network 
Since almost all the topologies mentioned above 

provide multiple physical paths between two given 
nodes we need to have a method for determining which 
path a message should follow. The first approach would 
be to use a deterministic routing algorithm where the 
path is determined by the source and destination nodes. 

The disadvantage is that this method does not take full 
advantage of the redundant links and it can not adapt to 
variations in network utilization patterns or component 
failures. 

Adaptive routing uses the network resources more 
efficiently to detect congestion patterns or sense faulty 
components at every hop in the path. This data is used to 
decide where to forward the message next. Minimal 
adaptive routing limits the path available for selection to 
the ones providing the shortest path. This might not be 
possible in all cases, so a non-minimal adaptive routing, 
that can use routes that are longer than shortest path, is 
used in our case for routing when failures occur in the 
path of a message. 

More sophisticated routing algorithms such as 
wormhole flow control or virtual channels are outside 
the scope of this study and can be done as further 
refinement. 

3.4 Failures 
We can divide the failure scenarios in a large storage 

network in three types: 

- Link Failure: A link is a connection between two 
components of the system. When a link fails the 
greater problem is that there might not be another 
route to reach a certain point and the network might 
become partitioned. Good fault tolerance requires 
enough redundant links to allow several link failures 
without partitioning the network. 

- Node failure: A node can be a router, a server, a 
switch or a storage concentrator. When a switch or 
router fails all of the links connected to it will also 
fail. In some topologies, a node failure could also 
partition the network. In general, it will cause an 
overload on adjacent nodes and on nodes along 
alternate routes. 

- Disk failure: A disk failure will prevent the disk 
from replying to requests and to server data. 
Requests sent to that disk will not be replied and 
will timeout. Furthermore this will increase the load 
on other disks. A good fault tolerance depends not 
only on redundancy but also on an intelligent data 
distribution and duplication policy. Once a disk 
failure has been detected, if there are spare disks in 
the network, a recovery mechanism will be 
triggered that will re-image one of the spare disks. 
The replication process will in turn create additional 
load on the system beyond the normal redistribution 
of the requests destined to that failed disk. 

In case a failure is detected, the requests will need to 
be rerouted around the specific component that has 
failed (except when it is a disk failure). This requires a 
routing algorithm that can discover alternate paths 
depending on failures and network status in general. For 
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example, if an alternate path is getting congested or if 
this alternate path has been used more than a different 
alternate path then the routing algorithm has to be able 
to choose which one is better for the overall system 
performance. Routing has to be done independently of 
other components in the network that have discovered 
the failure and based only on local information from the 
immediate accessible point to where the failure is.  

4 Experimental Setup 

4.1 Simulation description 
We used a simulation program to test the behavior of 

traffic patterns in the different network topologies under 
different types of failures.  The program was written in 
C++ in a modular way to allow the creation of different 
topologies with their proper interconnections and routing 
algorithms. The main building block is the node object 
that is the central part of the simulations. Nodes simulate 
switches and are connected to other nodes using link 
objects. Nodes can have up to two different types of 
objects attached: routers or disks. Nodes without any 
object attached are just switches that pass traffic like the 
ones used on the Butterfly and Fat Tree topologies. 
Routers are responsible for forwarding requests from 
servers into the network and to the appropriate disks. 
Our simulation does not include the servers, so routers 
will generate traffic simulating requests that should have 
come from servers. Disks, on the other hand, are 
responsible for processing these requests and sending 
the results. Some nodes can act as switches with disks 
attached like those needed on the Mesh, Torus and 
Hyper Cube topologies. Other nodes only act as a 
network interface for disks like those needed for Fat 
Tree and Butterfly topologies. 

The system was programmed to simulate 8 different 
types of network topologies although many others could 
easily have been added: 

- Hypercube up to 13 dimensions,  

- Butterfly on 3 levels with configurable number of 
ports per switch and number of switches per level 

- Fat Tree on 3 levels with configurable number of 
switches per level 

- Mesh 2D with configurable number of switches 

- Torus 2D through Torus 5D. Also the number of 
switches per dimension are configurable 

 

The simulator accepts as a parameter which topology 
to run. The sizes of each topology are precompiled in 
advance. Each topology has its own procedures for 
initialization, link creation, requests creation and packet 
forwarding (routing). 

There is a global queue for events and each link has its 
own queue for processing messages.  Each disk has two 
queues, one to process read requests and another to 
process write requests. 

4.2 Determining the right network load 
Before running the failure simulations we needed to 

establish a load base to run on the network. We ran 
several iterations of simulations with no failures at 
different loads. We were looking for a load that would 
utilize the disks around 90% or that would utilize the 
links at a point when the collisions in the network did 
not exceed 50% of the messages.  Some topologies can 
accept larger network loads but have to wait for the 
disks to respond. Other topologies can not carry enough 
load to keep the disks busy without saturating the links. 
In these cases increasing the load would not yield larger 
overall network throughput. 

Another parameter that needed to be determined was 
the amount of time that each router would wait for a 
request to be completed. The request timeout had to be 
long enough as not to generate false lost messages 
(messages that would arrive normally but after the 
timeout triggering undesired retransmissions) and short 
enough as to be smaller than the period of time being 
simulated. The router timeout would become more 
important for the failure cases but we determined it 
using the base case with no failures.  

4.3 Network topologies simulated 

These are the configurations that were simulated (see 
Figures 1 through 6).  Table 1 shows the number of 
switches, disks, routers and links for each topology. 

Table 1 - Number of components per Topology 

Topologies # switches # disks # routers #ports #links 

Butterfly 1024 4096 256 16384 8192 

Fat Tree 4192 4096 128 24576 12288 

Hyper Cube 3968 3968 128 49152 24576 

Mesh 2D 4096 4096 8 18160 9080 

Torus 2D 3968 3968 128 16384 8192 

Torus 3D 3968 3968 128 24576 12288 

Torus 4D 3968 3968 128 32768 16384 

Torus 5D 3968 3968 128 40960 20480 
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Figure 1 - Butterfly Network 

Butterfly: 4096 nodes with disk on a switch with a 
single gigabit Ethernet link, 1024 switches with 8 
gigabit Ethernet links, 256 routers with 4 gigabit 
Ethernet and 2 10 gigabit Ethernet links. 

 

Figure 2 - Fat Tree network 

Fat Tree: 4096 nodes with disk on a switch with a 
single gigabit Ethernet link in the first layer; 128 routers 
on the second layer with 32 gigabit Ethernet links to 32 
node with disk in the first layer,  32 gigabit Ethernet 
links to switches in the layer 3 and 2 10 gigabit Ethernet 
links to servers; 64 switches with 64 gigabit Ethernet 
links to the switches in the layer 2 and 64 gigabit 
Ethernet links to switches in the layer 4; and 32 switches 
with 128 gigabit Ethernet links to the switches in the 
layer 3. 

 

 

Figure 3 - Hypercube Network 

Hypercube 12-dimension: 3968 nodes with disks on 
switches with 12 gigabit Ethernet links, and 128 routers 
with 12 gigabit Ethernet links to other nodes and 2 10 
gigabit Ethernet links to servers. Routers are positioned 
randomly in the topology to minimize the impact of 
routers too close in the topology as demonstrated in [10]. 

 

 

Figure 4 - Mesh 2D network 

Mesh 2-dimensions: 4096 nodes with disks with up to 4 
gigabit Ethernet links connected to other nodes and the 
border switches with 4 gigabit Ethernet links to routers, 
and 8 routers with 128  gigabit Ethernet links to nodes 
with disks and 2 10 gigabit Ethernet links to servers. 
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Figure 5 - Torus 2D network 

Tori in 4 different dimensions: Each one with 3968 
nodes with disk and switches and 128 routers all with 
the same level of connectivity depending on the 
dimension. The 128 routers always have 2 additional 10 
gigabit Ethernet links to servers and are placed randomly 
in the topology: 

- 2 Dimension: 64x64 with each switch and 
router having 4 gigabit Ethernet links 

- 3 Dimension: 16x16x16 with each switch and 
router having 6 gigabit Ethernet links 

- 4 Dimension: 8x8x8x8 with each switch and 
router having 8 gigabit Ethernet links 

- 5 Dimension: 4x8x4x8x4 with each switch and 
router having 10 gigabit Ethernet links 

 

 

Figure 6 -Torus 3D network 

4.4 Simulation assumptions 
In order to model systems with these level of 

complexity in a manner that allows them to be 
programmed in a reasonable amount of time and run on 
limited time and computing power, we had to make 

several assumptions both to simplify the system and to 
limit the number of variables that would need to be 
simulated and randomized. This also allowed for a 
clearer and sharper vision of the results. Some of the 
assumptions are: 

The behavior of the links follows the rules of 
Ethernet in terms of inter-packet gap and minimum size. 
All links are considered full duplex which is the 
standard for both gigabit Ethernet over fiber and gigabit 
Ethernet over twisted pair [IEEE 802.3]. This will create 
in effect two separate logical links for each physical 
link. Statistics were compiled separately and combined 
at the end of the simulation to calculate averages. For 
link failure considerations we assume that the physical 
link has failed and declare both logical links as failed. 

The behavior of the switches will not simulate the 
802.1D standard of bridging [IEEE 802.1D] but instead  
will follow a more liberal approach of a routing 
algorithm similar to Infiniband [7,15] where messages 
are redirected only to the next node that offers the 
shortest path to the destination. The shortest path is 
determined locally based solely on the topology being 
used, the destination address, and sometimes on the 
source address.  There is no routing protocol, route 
discovery or routing information exchange between any 
of the nodes. When there are multiple shortest paths 
available from a single node to a particular destination, 
the path is chosen based on the following tie breakers in 
this order: which link will be available first for 
transmission, which link has been used the less and 
unbiased round robin order. 

When the routing algorithm encounters a failure in 
the path chosen most of the time it will be taken care by 
the algorithm mentioned above. Only when there is no 
more than one link to the destination do we need a 
different approach to forward the message. In this case 
the algorithm will look at alternative routes that are not 
the shortest one and will use the same algorithm to 
decide which one of those routes to choose.  

A node can not forward a message to the node from 
which it has received it. This is to avoid a loop when a 
message will be trapped back and forth between two 
nodes. This algorithm does not prevent a message from 
being caught in a loop with more than two nodes but that 
is statistically very unlikely and we did not observe this 
behavior in our simulations. 

The size of the packets is restricted to a few options 
and not all of them match the available standards for 
Ethernet [IEEE 802.3]. In bytes those sizes are 64, 1024, 
1500, 2048, 4096, 8192, 16384, 32768 and 65536.  Any 
arbitrary sized request data can be subdivided in packets 
of these sizes and, although it does not seem as efficient 
as when using specific sizes, for sufficiently large 
messages usually utilized when reading or writing data 
to and from disks, the difference in performance is 
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negligible. But the simplification of the simulation’s 
performance and programming are significant. 

We calculated the amount of time taken to transmit 
each one of these different size packets on a regular 
gigabit Ethernet using the standard calculations for 
Gigabit Ethernet. The minimum packet size is 64 bytes. 
We add the size of the preamble (8 bytes) and the 
equivalent size of the minimum inter-gap time (12 bytes) 
and that gives us a total size of 84 bytes. The nominal 
throughput for gigabit Ethernet is 10,000,000,000 bits 
per second. Doing the math we reach 1,488,095 packets 
per second. That yields a delay of 67ns for a 64 bytes 
packet. 

Our simulation time unit is fixed as 1 µs (1 micro 
second). The amount of time required to send a 64 bytes 
packet on gigabit Ethernet was approximated to 1 µs. 
The amount of time for a 64K bytes packet, if sent 
continuously as a single packet, would be 525 µs. If sent 
in segments with size 8K bytes, allowed under 
commonly accepted Jumbo Frame standards, the 
transmission would take 527 µs. 

We introduced a further simplification of the model 
for the simulation of large networks; we only used 
packets of either 64 bytes or 64K bytes. The first were 
used to transmit read requests and write replies, and the 
second were used to transmit blocks of data for read 
replies and for write requests. On a comparison run, 
using 64K bytes and 8K bytes packet sizes, the 
difference in terms simulated was non perceptible but 
the amount of time taken by the simulation using 8K 
bytes was 10 times longer than when using 64K bytes. 

Lastly the size of a read or write requests from a 
server to a single disk were fixed at 512 Kbytes. This is 
a reasonable assumption if we consider that the server 
will break data requests in smaller chunks to send them 
in parallel to different disks. 

The disk access delay was consider to be 22ms 
which is derived from the seek time and data transfer of 
a 15000 rpm SCSI-II disk or of a SAS-1 disk. As a base, 
we used the Seagate Cheetah 15Krpm SCSI-II [25]. It 
has a seek time of 3.5ms for reads and 4.0ms for writes 
and a sustained data transfer of 73MB/s. If we assume 
one seek for every 128KB of data, and use the worst 
case of 4ms we arrive at a disk delay of 21.41ms. 

On read requests, the disk will wait for 22ms before 
starting the transmission of the 512KB. The read data 
will be divided on packets fitting the maximum packet 
size (64KB for this simulation) and sent one after the 
other. In the case of write requests, the disk will buffer 
all the segments of the write request and will send a 
confirmation to the router that sent the request as soon as 
it has received all segments. Then it will process the 
write and keep the disk busy for 22ms. 

If the disk is busy when a request arrives, the request 
will be queued. Each disk has two queues to hold 
requests: one for reads and one for writes. The disk will 
empty the read queue first before checking the write 
queue since the write has already been acknowledged 
and the read still has to be sent. This could in theory 
prevent writes from being committed to disk, but the 
random nature of the request generation prevented it 
from happening during the simulation. 

The switches were considered to be crossbar 
switches where traffic from one port to another does not 
cause interference with other traffic in the switch. Since 
the times for transmissions on the links are measured 
from when the first byte is sent on the transmitting end 
until the last byte arrives on the receiving end, including 
the preamble, postamble and minimum inter-gap packet, 
the switch only has to determine the outgoing port and 
queue the packet in the link. Most crossbar switches 
have latency between 500ns and 20ms. For our 
simulation we considered a store and forward switch 
with a low latency of 6 ms. 

Packets are sent immediately by the switch into the 
link after the switch delay unless the link is already 
busy. There is a separate queue per port on each switch 
and for our simulation we consider the queue size to be 
infinite and the time spent on enqueueing and 
dequeueing packets to be negligible.  

The simulator accepts 3 parameters to determine the 
load of the system: 

- Number of simultaneous requests per router. This 
parameter indicates how many outstanding requests 
each router can have at a certain time. When a 
request is fulfilled a new request is generated. When 
a request’s timeout expires a new request of the 
same type (read or write) is generated to a different 
disk. Late replies for expired requests are discarded. 

- Randomization interval for requests: This parameter 
is used to determine the interval when all routers 
will generate their first round of requests. At 
initialization time each router will generate the 
maximum number of simultaneous requests. Each 
request will be randomly selected as a read or a 
write request and will be scheduled randomly 
between 0 and the randomization interval.  When a 
request is fulfilled and a new request is generated to 
a random disk, it will also be randomly sent within 
the same random time interval starting from the 
current time. This mechanism generates a self 
throttling loaded system. When the delay to 
complete a request is long, there are fewer requests 
generated per time unit in the system. When the 
delay to complete a request is short, there are more 
requests generated per time in the system because it 
is capable of completing them. 
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- Request timeout. This parameter is the amount of 
time that a router will wait to receive a reply from a 
disk before declaring the request lost and generating 
a new request to another disk.  

There is a startup time fixed in the simulation to be 
double the time of a regular disk access. When the 
simulation time reaches the defined startup time, all 
statistics are cleared. This procedure is used to avoid 
distortion in the measurements during the “warm up” of 
the system when it is empty, response time is much 
faster and collisions are rare. 

The simulator also needs the amount of time being 
simulated. This parameter has to be larger than the 
request timeout and the startup time described above.  

We simulated three types of failures with a different 
number of components failing simultaneously. All 
failures were generated randomly but could easily also 
have been generated deterministically. 

- Disk failures. We only simulate failure of 4 disks 
simultaneously. When disks fail, all requests sent to 
them are going to be lost since there is no disk to 
respond. The switch to where the disk is connected 
is still working so will not affect the network 
performance and the network will not be able to 
detect this failure. 

- Link failure: We simulate failure of 8 links, 16 
links, and 24 links. There is the possibility of 
network segmentation in some cases but that was 
not observed. A failed link will return -1 as the time 
when it will be free and also as the network 
utilization effectively removing it from the routing 
algorithm used in the nodes. 

- Switch failure: We fail one switch and two 
switches. A switch failure assumes that all the links 
in the switch will fail. In turn all the links 
connecting to this switch will fail (this is necessary 
because we consider all the links to be full duplex).  
We did not fail switches with only one link since 
that would be equivalent to failing the disk attached 
to that switch. But in the case where the switch with 
the disk has more than one connection, the switch 
can be failed and the disk also can not be accessed. 
This will cause lost messages for the hyper cube, 
Mesh and Tori topologies. 

5 Results and analysis 

5.1 Determination of the simulation load  
We run the simulation using different loads. All the 

loads used the same interval randomization value equal 
to the disk delay access. This was done in order to bring 
the system faster to a steady state. Since different 
topologies have different number of routers, we 
parameterized on a total number of simultaneous 

outstanding requests for the whole system and divided 
that number by the number of routers to achieve the 
requests per routers.  

We simulated 6 different loads expressed by total 
number of requests: 1280, 2560, 3840, 5120, 6400 and 
7680. We then divided the number of requests by the 
number of routers and arrived to the following loads: for 
topologies with 128 routers, it was 10, 20, 30, 40, 50 and 
60 respectively. For topologies with 256 routers it was 5, 
10, 15, 20, 25 and 30 and for topologies with 8 routers it 
was 160, 320, 480, 640, 800 and 960.  

From the results we can see that above 6400 requests 
the disks are almost over saturated in the topologies with 
more links such as Hypercube, Fat Tree, Torus 4D and 
5D (Figure 7). On the topologies with less links such as 
Butterfly, Mesh and Torus 2D, we see that most links 
are saturated without being able to keep the disks busy 
(Figure 8). 
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Figure 7 - Average disk usage time by number of 
requests per interval 
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 Figure 8 - Average link usage time by number of 
requests per interval 

On Figures 9, 10 and 11 we can see the network 
throughput, request delay and link collision percentages 
for each run. The network throughput is the aggregated 
sum of all the bytes received by routers and disks. The 



9 

request delay is the average time taken by a request 
since it is sent from the router until it finishes receiving 
the replies from the disk. The link collision is the 
percentage of all packets that when arriving at a link, 
found that the link was busy transmitting another 
message and had to wait in queue.  We can see that in 
the topologies where the links have over 50% utilization, 
the number of collisions also has climbed to over 50% 
and the I/O delay has increased significantly at the same 
time that the network throughput has decreased.  

Based on these results we decided to conduct our 
simulations at a steady 5120 requests per interval which 
would allow most of the topologies to top 100GB/s of 
aggregated throughput and still have some room to 
increase the disk utilization and keep adequate I/O 
requests delay. 
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 Figure 9 - Network throughput by system load 
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 Figure 10 - Average I/O delay by system load 
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Figure 11 - Percentage of messages in links that were 
queued because of collisions 

5.2 Effects of failures on number of hops 
per message 

The number of hops that a message has to traverse to 
arrive at its destination is a measure of the connectivity 
of the topology and also an indication of the delay that it 
will face. We counted the hops for all messages and 
divided them by the total of messages in the links. When 
failures occur some messages will need to deviate and 
take longer paths in order to avoid failed devices. This is 
not necessary for disks.  Figure 12 the average hops 
count for each topology in the base case and Figure 13 
shows the maximum variation due to failures.  

Average hop count by topology

0 5 10 15 20 25 30 35

Butterfly

Fat Tree

Hyper Cube

Mesh 2D

Torus 2D

Torus 3D

Torus 4D

Torus 5D

 Figure 12 - Average hop count by topology 

We can see that for topologies with many links per 
node there is almost no variation on the number of hops. 
The less links per nodes, the greater the variation on the 
number of hops, but even in the cases like Torus 2D and 
Mesh 2D the actual percentage variation over the 
absolute total is very small (0.38% for Torus 2D and 
0.39%  for Mesh 2D). In general hop count on all 
topologies behave well under failures. 
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Max variation of hop count due to faults
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 Figure 13 - Maximum variation of hop count due to 
failures 

5.3 Effect of failures on I/O requests delay 
The delay for each request will directly affect the 

overall performance of the system and it is an important 
parameter when designing a network and evaluating its 
final throughput. In our case we examine both the 
average I/O request delay in ms as shown on Figure 14 
and 15 and the distribution over time for number of 
requests per millisecond as shown in Figure 16. In the 
first metric we are looking for a trend that would 
indicate that the network is slowing down in average. In 
the second metric we are looking for indications of hot 
spots that could be masked in the average. Additionally, 
this information should be correlated with the number of 
lost messages as seen in the next item. The loss of a 
message indicates that the I/O request it was carrying 
will timeout and will need to be retransmitted therefore 
increasing the delay. 

Average I/O delay in ms by topology
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 Figure 14 - Average I/O delay by topology 
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 Figure 15 - I/O delay increase by failure and 
topology 
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 Figure 16 - I/O requests delay (in ms) distribution 
for base case for each topology 

The I/O request delay increases in all cases when we 
fail disks because requests directed to those disks will 
timeout and will need to be retransmitted, greatly 
increasing the I/O delay. Fat Tree is insensitive to other 
failures, especially since we are not failing links or 
switches connected to disks and there are many 
redundant connections. Hypercube, Mesh 2D and Tori 
are sensitive to switch failures since each switch is 
connected to a disk but the sensitivity to link failures 
varies greatly. Torus 2D and Mesh 2D are the most 
sensitive since there are very few links per node. Torus 
3D, 4D and 5D are similarly insensitive to link failures, 
while Hypercube is not affected.  Butterfly is the most 
affected due to its lack of redundant paths. 

Looking at the distribution of delay per messages, 
we can see that Hypercube and Fat Tree have almost all 
messages delay in a very narrow interval between 3ms 
and 5ms, while the Tori and the Mesh get more 
dispersed as the number of links per node decreases. 
Only the Torus 2D, Mesh 2D and Butterfly show 
different distribution of delays under failures, while the 
other 5 topologies are virtually indistinguishable, 
reinforcing the conclusion that delay is not affected by 
failures. 
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5.4 Effect of failures on messages lost 
Loss of messages indicate that the level of 

congestion has increased enough to cause the requestor 
to timeout the request or to partition the network in a 
way that there is no route to reach the destination, or the 
routing algorithm is incapable of finding a valid route. 
We experimented with different timeout values to 
determine the lowest timeout that would separate 
network congestion from lack of viable routes. We run 
the simulation on a Torus 2D and vary the timeout from 
175ms to 275ms. The results are shown on Figure 17. 
We then measured the influence of messages lost on the 
number of requests completed without timeouts and no 
retries, as shown on Figure 18. 
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 Figure 17 - Number of messages lost in a Torus 2D 
with different timeout values under failures 

The first test showed that Torus 2D would not miss 
any messages if the timeout was long enough, showing 
that the network was not partitioned. The second test 
showed that other than disk failures, which would 
certainly cause messages to be lost, all topologies, with 
the exception of Butterfly, were able to receive all 
messages sent.  
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Figure 18 - Percentage of I/O requests completed 
without timeout 

 

5.5 Effect of failures on network 
congestion and network throughput 

Network congestion and network throughput are 
inter-related and are different measurements of 
performance of the overall system. Network congestion 
measures the percentage of times a packet arrived at a 
link in the network and the link was busy transmitting 
another message and the packet had to be queued. Since 
links are full duplex, a link was receiving behavior had 
no effect on the transmission, so congestion is measured 
only on the transmission side. We discounted the effects 
of limited buffers for queuing and assumed that there 
were separate buffers for transmission and reception. 
When links or switches fail in the network, adjacent 
links get additional traffic and that increases the amount 
of collisions that will be seen in the network overall. 
Average collision percentage per topology on the base 
case are shown on Figure 19, percent variation on the 
amount of collision for each type of failure are shown on 
Figure 20. Notice that in some cases the variation is 
negative, indicating that there are less collisions. 
Distributions of percentage of link usage time are shown 
on Figure 21 and 22.  We show the total accumulated 
percentage of links usage in percentage of time for each 
type of network and each failure. In most cases the 
variation by failures is so small as to be considered null. 
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 Figure 19 - Percentage of network collisions on links 
per topology on base case 
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Network Collision variation (%)
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 Figure 20 - Percentage variation from base on 
network collisions by topology and failure 
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 Figure 21 - Link usage cumulative distribution for 
Butterfly topology 
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 Figure 22 - Link usage cumulative distribution for 
base case for all topologies 

Similarly, the aggregate system’s overall network 
throughput indicates the capability of the system to 
transfer data in and out of the disks. The effect of 
failures on data throughput is due both to the increased 
congestion of the network and the need to re-request the 

data when an undetected disk failure occurs. Also, disk 
utilization changes slightly when disks fails due to the 
increased number of requests per disk. That can be offset 
by fewer requests being generated due to network 
congestion.  Figure 23 shows the aggregate network 
throughput and Figure 24 shows the percentage drop in 
network throughput for each different type of failures. 
Similarly Figure 25 shows the disk utilization time 
average per topology in the base case and Figure 26 
shows the disk utilization drop per topology for each 
failure case. Again note that in some cases disk 
utilization increases under certain failures. 
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 Figure 23 - Aggregate network throughput per 
topology on base case 
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 Figure 24 - Network throughput drop by topology 
for different failures 

We can see that the number of network collisions 
increases only for Mesh 2D and Torus 2D and it actually 
decreases for Butterfly networks. The latter is due to the 
fact that the network becomes partitioned and there are 
many links that will not receive any traffic, much less 
collision and that would bring the average down.  

The network throughput is extremely high on 
Hypercube and Fat Tree due to the large number of 
paths between routers and disks that keep the network 
congestion low. The fact that our results for Fat Tree 
show lower network throughput than the Hypercube 
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when the first has more redundant network connections 
is explained by the fact that our Fat Tree design uses 
only one network connection from the disk to the 
network compared with 12 connections for a disk in our 
design for the Hypercube. All segments of a data 
message are sent simultaneously in different packets. In 
a Fat Tree topology, all these packets will be queued on 
the single link to the disks while in the Hypercube they 
can be distributed among the many links of the switch. 
Torus 5D and Torus 4D see a similar performance 
slightly slower than the first two since they have fewer 
links on the network and fewer connections per switch.  
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 Figure 25 - Disk utilization per topology on base 
case. It includes rotation time, seek and access time. 
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 Figure 26 - Disk utilization drop per topology under 
different failures 

Torus 3D and Butterfly have about the same middle 
of the ground network performance, but Butterfly is 
affected more by failures due to the network partition. 
On the slow side are Torus 2D and Mesh 2D with not 
enough links to maintain the throughput and more 
susceptible to failures.   

Disk utilization does actually go down when there 
are fewer disks. This can be explained by the fact that 
requests to failed disks are still being generated but are 
not being processed. In turn this leads to fewer requests 
in the network leading to less disk utilization. This can 

also be observed when there are fewer switches or fewer 
links or anything that would lower the network 
throughput. For these topologies the disks are not a 
performance constrain, but actually reflect the capacity 
of the network in generate requests.  

In general, higher throughput networks are more 
susceptible to disks failures due to the fact that requests 
can be delivered at the same rate to disks when there are 
network failures than on lower throughput networks. 
This can be observed when comparing the effect of 2 
disks failures on Hypercube (significant) and Mesh 2D 
(not noticeable). 

6 Future work  
Some considerations for future optimizations are the 

use of more efficient routing algorithms while still 
maintaining the simplicity of local views with no routing 
protocols and the use of mixed topologies to try to take 
advantage of the best qualities of each topology to create 
a simpler, faster and more fault tolerant overall system. 

In the topic of failures, the next step would be the 
implementation of failure detection algorithms and 
protocols. The effect of failures in the system can be 
traced to two different reasons: One is the fact that when 
devices fail there are fewer of them available to serve 
the same load: fewer routers to route requests, fewer 
switches to provide additional bandwidth, fewer links to 
provide alternative routes and fewer congested paths and 
fewer disks to serve the same amount of data. The other 
component is the fact that the devices in the system are 
not aware that one or more devices have failed and keep 
sending requests to that disk or using that switch or 
counting on that link to forward the message. This 
creates unnecessary errors, longer paths and eventual 
timeouts with its consequent retries. In order to 
understand the tradeoffs between implementing yet 
another protocol and processing additional messages and 
using additional bandwidth and the savings that could 
come from the fact that the system would not try to use 
devices that are not longer responding we need answers 
to several questions:  how would its use affect the 
network performance? And the opposite too, how would 
the network topology and its inherent performance 
limitations affect the accuracy, responsiveness and 
effectiveness of the failure detection protocols? Which 
failure detection is more efficient and accurate for each 
different topology or to detect different failures?  This 
topic has been explored by Tan in [16] but many 
questions remain unanswered. 

This whole study is based on a theoretical premise 
that we can use Ethernet like connections and switches 
which provide understandable technology readily 
available and at a low price that a mass market creates. 
But we expect all the switches to behave more like 
routers than real switches and that is still a very difficult 
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obstacle to overcome. Thinking about alternatives that 
could be implemented is another area of interest to 
study. 

Furthermore, the simulation can be improved to 
include the next layer in the storage access which would 
be the transport protocol and the data access protocol. 
Interactions at a higher level can have unintended 
consequences on the system performance when failures 
occur as demonstrated with the Panasas system [9] and 
routing in Slice [1]. 

7 Conclusions 
When choosing the design of a high performance 

petabytes scale storage network we must consider not 
only the total data throughput, but also the sensitivity to 
different types of network failures. To guide such 
decision we evaluated the performance and tolerance to 
failures of 8 different network topologies - Butterfly, Fat 
Trees, Hypercube 12D, Mesh 2D, Torus 2D, 3D, 4D and 
5D -  using a simulation model.  

We found that Hypercube and Fat Tree have the best 
performance both on the base case and also under any of 
the failures. The performance of the Fat Tree was 
hindered by our choice of design with a single 
connection from disks to network but still had an 
impressive performance with only half the gigabit 
Ethernet ports than the Hypercube and offering 128 
more disks. What makes Fat Tree more difficult to build 
is the intermediate switches with 128 ports and the 
routers with 64 ports,. This will likely not be a 
restriction in the near future since new switches at more 
competitive prices are coming out in the  market. In 
favor of Fat Trees is the fact that cabling and managing 
it is more straightforward and it is easier to visualize 
than Hypercube which uses switches with 12 
connections to very different switches in the network 
and with no easy to discern pattern. 

Torus 5D and 4D still had a good performance and a 
relatively good tolerance to failures and used fewer 
connections than Hypercube but more than Fat Tree. 
Again, the maintenance of the connection pattern needed 
for Torus is not trivial. Butterfly and Mesh 2D also have 
good performance under some parameters but tolerance 
to failures is not the best, especially on Butterfly. Mesh 
also has the added challenge of using just 8 routers with 
128 gigabit Ethernet ports and several 10 Gigabit 
Ethernet connections for servers. These are still more 
difficult to build currently than the 64 ports plus 2 
10GbE for the Fat Tree topology. Torus 2D and 3D have 
the worse performance to complexity ratio, with still too 
many links for not enough performance. Fault tolerance 
was still acceptable but these topologies are more 
sensitive to link failures. 
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