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Abstract

Index partitioning techniques—where indexes are

broken into multiple distinct sub-indexes—are a proven

way to improve metadata search speeds and scalability

for large file systems, permitting early triage of the

file system. A partitioned metadata index can rule

out irrelevant files and quickly focus on files that

are more likely to match the search criteria. Also,

in a large file system that contains many users, a

user’s search should not include confidential files the

user doesn’t have permission to view. To meet these

two parallel goals, we propose a new partitioning

algorithm, Security Aware Partitioning, that integrates

security with the partitioning method to enable efficient

and secure file system search.

In order to evaluate our claim of improved efficiency,

we compare the results of Security Aware Partitioning

to six other partitioning methods, including imple-

mentations of the metadata partitioning algorithms of

SmartStore and Spyglass, two recent systems doing

partitioned search in similar environments. We propose

a general set of criteria for comparing partitioning

algorithms, and use them to evaluate the partition-

ing algorithms. Our results show that Security Aware

Partitioning can provide excellent search performance

at a low computational cost to build indexes, O(n).
Based on metrics such as information gain, we also

conclude that expensive clustering algorithms do not

offer enough benefit to make them worth the additional

cost in time and memory.

1. Introduction

From a consumer’s standpoint, storage is cheap.

Individuals have personal computers with external stor-

age; companies, scientific institutions, and academia all

garner benefits from file sharing and shared backup

by storing data on petabyte scale file systems—or

larger—with hundreds or even thousands of users.

With the advent of cloud computing, individuals also

may opt to store and share their personal files in

exabyte scale file systems accessible via the Internet.

In shared file systems, users need their personal data

to remain private and not show up as a result in

an unauthorized user’s search. This is particularly

crucial in a corporate setting. Confidential information

often has severe legal and financial consequences if

leaked, ranging anywhere from a fine for a violation of

the U.S. Securities and Exchange Commission (SEC)

regulations [6] or the Health Insurance Portability

and Accountability Act (HIPAA) [5] to the loss of

consumer trust when confidential user data—such as

credit card information or social security numbers—is

released. Similarly, scientific and academic institutions

maintain a level of confidentiality surrounding their

work. While the consequences are not necessarily as

far-reaching, no scientist wants to find that someone

else published the results he was collecting.

With both the size of file systems and the number

of files stored increasing, it becomes increasingly im-

portant for file systems to offer fast scalable search.

What is more, individuals have come to expect the

high quality split second results that popular web

ranking algorithms [11], [22] provide. A file system’s

hierarchical structure provides different information

than the highly connected graph of the web; it is these

connections in the web that ranking algorithms exploit

for fast results. While some file systems have attempted

to simulate the web’s structure [7], current file system

search is fundamentally different from a standard web

search. File systems contain huge amounts of rich

metadata in a meaningful hierarchy, as well as a

complex security model that has no web analogue. The

ability to query over metadata as well as content is key

to good file system search, and a successful search

algorithm will be one which exploits the properties

specific to file systems as well as respecting its security

restrictions.
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Partitioning algorithms are a proven way to improve

metadata search speeds for large file systems [24],

[21], when a monolithic metadata index is too large

to fit comfortably into main memory. In such systems,

the file system is divided into multiple pieces, each of

which has its own metadata index stored sequentially

on disk. The contents of each index are represented by

a series of Bloom filters [10]—a probabilistic form of a

signature file—generally one for each type of metadata

the system can search over, as illustrated in Figure 1.

These Bloom filters can be quickly compared to the

user’s query before deciding whether to load a full

index into memory. However, partitioning is ineffective

and potentially worse than a monolithic index if every

index must be searched. Ergo, an efficient partitioning

strategy is one in which partitions are small enough to

fit into main memory and only a few partitions must

be searched to find the results of a query.

We propose a new partitioning algorithm, Security

Aware Partitioning, which is advantageous for file

systems with a variety of users and security permis-

sions. While other systems have explored the question

of security, it is usually at the cost of performance.

Wumpus [12], for example, requires a high overhead

security manager and results in a decreased search per-

formance while the access checking solution of Bailey

et al. [9] decreases the match count accuracy. Security

Aware Partitioning takes the security permissions of

the file into account while creating partitions, such

that when a user queries the file system, only files

which the user has permission to access are considered

for the results. By building these restrictions into the

partitions, it increases the search performance at query

times while decreasing the security risk.

Bloom Filters
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Figure 1. Partitioning divides the system into

multiple regions, each with its own metadata index.
Bloom filters are used to quickly triage partitions

without relevant documents. In this diagram, hier-

archy has been used as the partitioning criterion.

Our claim of increased search performance is not

unique: many other systems, such as Spyglass [24]

and SmartStore [21], have proposed different methods

of partitioning large file systems, each promising im-

proved search performance. However, these algorithms

range widely in computational complexity. It is unclear

whether complex algorithms for partitioning are truly

beneficial, or if similar search performance can be

achieved using simpler algorithms.
To this end, in the evaluation of our Security Aware

Partitioning algorithm we also examine other parti-

tioning schemes. We compare the results to determine

whether simple algorithms can generate partitions that

are comparable to more sophisticated algorithms for a

lower cost at indexing time. We examine the quality

of generated partitions using self-similarity and use

information gain to give an estimation of efficiency at

query time for searching the system. Finally, based on

our findings, we discuss selection criteria for a partition

scheme appropriate to a given environment.

The rest of the paper is structured as follows: We

begin by presenting the Security Aware Partition algo-

rithm in Section 2. In Section 3 we describe our ex-

perimental setup and the measures we used to quantify

partitioning quality. We discuss our results and their

implications in Section 4, and explore previous work

in partitioning and security for search in Section 5. We

then look forward to the future of file systems and what

this means for partitioned search indexes in Section 6

and the future of this research in Section 7. Finally, we

conclude in Section 8 with a summary of our findings.

2. Algorithms

While most partitioning algorithms, including our

own, claim an advantage over others in some manner,

the results are presented as compared to database algo-

rithms used as a baseline. We chose instead to evaluate

a number of partitioning algorithms to substantiate our

claim of improved efficiency. In addition to evaluating

our Security Aware Partitioning algorithm, we also

evaluate the following six algorithms.

• A greedy time based algorithm

• An interval time based algorithm

• User based partitioning

• Cosine correlation clustering

• Cosine correlation clustering with Latent Seman-

tic Analysis (LSA) – SmartStore [21]

• Greedy depth first search partitioning – Spy-

glass [24]

We present the motivation behind Security Aware

Partitioning and the logistics of how it works. We then

give an overview of the other partitioning algorithms

and our motivation for choosing them.
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2.1. Security Aware Partitioning

Security Aware Partitioning is a new algorithm we

developed to support fast, scalable search, while main-

taining the security of files. Since not every user has

access to every file, displaying search results that are

not accessible to a user is both insecure and poor user

interface design. A list of results should only contain

documents which are accessible to the user initiating

the search.

Some partitioning schemes apply a filtering oper-

ation after the search results have been collected in

order to enforce security restrictions. Bailey et al. [9]

found that such schemes require a query time that

grows linearly with respect to the number of potential

matches. In order to reduce the overhead caused by

such approaches, Security Aware Partitioning takes

these requirements into account when building the par-

titions. This increases search efficiency and can prevent

statistical attacks on ranked search, such as the attack

demonstrated by Büttcher [12]. In our partitioning

scheme, if someone has permission to access one file

in a partition, he can access every file in that partition.

However, to determine what “permission to access”

means, it is necessary to briefly look at the security

model of the underlying file system.

2.1.1. File Permissions. Each operating system im-

plements file permissions slightly differently, but there

are two standard models: Access control lists (ACLs)

and “traditional” UNIX permissions. ACLs, most com-

monly used by NTFS file systems, associate an object

(such as a file) with who may access the object and

in what way. An ACL is comprised of zero or more

entries specifying permissions for a given operation for

various users and groups. For a requested operation,

the system looks at each entry in the ACL until one of

three things happens: an access-denied entry prohibits

access, one or more access-allow entries explicitly

allow access, or there are no more entries. A request

that has not been explicitly allowed is denied access.

Traditional UNIX permissions are used by UNIX-

like and other POSIX compliant operating systems,

including Linux and Mac OS X. Traditional UNIX per-

missions use a nine bit permission model, where every

three bits represent read, write, or execute permission

for each of three security levels: the file’s assigned

user, assigned group, and other, defined as all users

who do not fall into the first two categories.

In practice, while ACLs allow a more complex and

detailed set of permissions, most are used to implement

the same permissions as traditional UNIX permissions:

read, write, or execute. In some operating systems

(such as Linux and FreeBSD) it is possible to use

extended attributes to create a searchable attribute in

the ACL, which, if used for partitioning, would offer

the same benefits as Security Aware Partitioning. Thus

we leave the application of our partitioning algorithm

to standard ACLs for future work and focus on the

traditional UNIX permissions in this paper.

2.1.2. Using Permissions for Partitioning. For search

to be secure, a file system needs to be aware of a

combination of read, write, and execute permissions

for all security levels. For a user on a UNIX system

to access files or subdirectories within a directory, the

directory’s execute bit must be set for some role which

the user fulfills. If the other execute bit is set, any

user who is not the owner or a member of the group

can access files in or below that directory. Otherwise

the user must be the file’s owner or a member of

the group, and have the corresponding execute bit set.

Further, the execute bit must be set on every directory

preceding the current one in the path. In other words,

access is determined by the logical AND of the access

permissions of every directory in a file’s path, relative

to a specific user’s roles.

However, for a user to actually view the contents of a

directory, they must not only have execute permission,

but read permission as well. Unlike execute, read does

not require permissions all along the path. It is possible

to read the contents of a directory as long as the

user has read permissions on the last directory in the

path. This allows security operations such as permitting

users to own a directory without being able to list the

contents of directories above that one. For instance, a

system may choose to not let users view which other

users have directories in /home, even though the users

themselves are the owners of /home/<username>

directories. This is similar to the model for file search

security developed by Büttcher [12].

Therefore, Security Aware Partitioning partitions

the file system according to group and user security

permissions. The algorithm walks the file system in a

breadth first search. Access permission is determined

by examining all permissions in the directories above

the file or directory in question. If the permissions on

the current file or directory are more restrictive than

that of the current partition or the user or group has

changed, then a new partition is created. Subfolders

and files are added until another restriction in per-

missions is encountered. For example, if the current

directory has permissions 700, but the parent directory

has permissions 777, then only a subset of users who

could access the parent directory will be able to access

the current directory, and a new partition must be

created. This ensures that all files and directories in
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a given partition can be accessed by the same set of

users.

2.2. Other Partitioning Algorithms

In order to evaluate the effectiveness of Security

Aware Partitioning, we compared it to a wide variety

of other possible partitioning algorithms. Three of

the algorithms we evaluated are based on likely user

preference: greedy time, interval time, and user based.

Since prior research, such as Stuff I’ve Seen [16],

suggests that users prefer recent files over older ones,

partitioning on time would align well with user inter-

ests.

We implemented two different time based algo-

rithms, one which we call greedy time and the other

interval time. The greedy algorithm creates partitions

by starting at the most recently modified file and moves

backwards in time, filling partitions of 100,000 files

each. It is important to note that this count does not

include directories; the size of the partition is deter-

mined by files only. This is an empirical number that

Leung et al. [24] suggests creates indexes appropriately

sized for main memory. The interval based algorithm

partitions files for the past day, the past week, the past

month, and so forth, excluding files already consumed.

The intervals we chose are shown in Table 1. These

intervals reflect the quarter system that companies and

UCSC use; the future interval exists to handle cases

where some files have modification times in the future.

Table 1. Time Intervals for Interval Time Algorithm

Time Intervals

future

past day

past week

past month

past 3 months

past 6 months

past 9 months

past year

past 2 years

past 5 years

past 10 years

older than 10 years

Similarly, user based partitioning takes advantage

of the fact that users are likely to prefer their own

files. Our implementation gives each user his/her own

partition, adding files to partitions based on the owner

of the file.

Cosine correlation clustering measures the similar-

ity between two vectors (in this case, the metadata for

two files or clusters of files) by finding the cosine of

the angle between them, using the equation

similarity = cos(θ) =
A · B

||A|| ||B||
(1)

where A and B are vectors of metadata. If the correla-

tion of the metadata is above some threshold constant

ǫ, implying a strong similarity in metadata, the two

vectors are merged into a new cluster, and the centroid

vector of the cluster is added back into the pool for

comparison. Clustering can be done by finding a best

match or simply accepting the first match discovered.

We opted for the latter due to the lower computa-

tional complexity. We chose this algorithm because

we wanted to replicate the results of SmartStore [21],

which attempts to improve performance by clustering

data according to the correlation of its metadata, and

then using the clusters as the partitions. It does this

by combining cosine correlation clustering with Latent

Semantic Analysis (LSA) [15].

Latent Semantic Analysis is a technique for group-

ing related attributes, commonly used in information

retrieval to discover correlation, or conceptual relations

between terms. When used in information retrieval,

LSA creates a matrix of the number of times unique

terms occur in each document. For terms and doc-

uments, this usually results in a very sparse matrix,

since most words are in few files. Singular Value

Decomposition (SVD) [17] is applied to this matrix

resulting in three separate matrices: a term-concept

matrix, a singular values matrix, and a transformed

concept-document matrix. LSA reduces the number of

concepts in the concept-document matrix to a value of

k, which eliminates the noise of the document while

preserving the semantic information of the documents.

SmartStore, instead, creates a matrix of attributes

and files. All files will have all the POSIX attributes,

so the matrix is denser than a terms/documents matrix.

SmartStore first applies LSA to a subset of the meta-

data to create a transformation, which is then applied to

the rest of the data. Partitions are created by examining

the cosine correlation of the transformed data and

grouping files which have a correlation greater than the

threshold constant ǫ. Since LSA is a relatively com-

putationally intensive algorithm, we evaluated cosine

clustering with and without LSA in order to determine

what advantages LSA brings.

For both of the correlation based algorithms, a

suitable choice of ǫ was needed. We did statistical

analysis with a subset of the data (between 0.5 and

1%) to determine the mean and standard deviation of

the correlation. We then selected an ǫ the square of one

standard deviation above the mean, which empirically

generated an appropriate set of partition sizes.
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Spyglass [24], a metadata search system, uses a

greedy depth first search when creating partitions. Files

and directories are added to the partition with the

longest pathname match. New partitions are created

when all matching partitions are “full”, defined as con-

taining over 100,000 files. The authors show Spyglass

having an improvement in search performance of be-

tween one and four orders of magnitude in comparison

with database management systems. To test this claim

against other partitioning algorithms designed for file

system search, we implemented a greedy depth first

search algorithm.

3. Experimental Design

To compare the various partitioning algorithms de-

scribed in Section 2, we ran each algorithm over

four different anonymized file system metadata crawls,

summarized in Table 2. One, SOE, was collected from

the School of Engineering at the University of Califor-

nia, Santa Cruz; the other three, Web, Eng, and Home,

were collected from various file servers at NetApp, Inc.

The crawls contain 11 metadata attributes, enumerated

in Table 3. The crawls do not contain any content

information.

Table 2. Crawl Descriptions

Crawl Description # of Files

SOE file server 6901466

NetApp Web web/wiki 15569242

NetApp Eng engineering scratch 60432243

NetApp Home home directories 268539360

We evaluated the resulting partitions using the fol-

lowing criteria: size of the partitions, runtime and

memory usage (evaluated using Big-O run times, in

order to account for variations in the algorithms),

the actual files within the partitions, partition entropy,

and information gain. By looking at the size of the

partitions, the runtime and memory usage, and the files

within the partitions, we can gain an understanding

of how the file system would be partitioned. Partition

entropy and information gain can be used to under-

stand how the partitioned file system might perform

if the system was queried for a given attribute. These

criteria were selected because it allows the partitioning

algorithms to be compared without building complete

systems with working implementations of each algo-

rithm.

Since there are currently no standard benchmarks

for file system search, many systems have adopted the

method of generating randomized queries in order to

evaluate performance [24], [21]. Unfortunately, most of

these queries are not representative of what real users

will ask. Information retrieval teaches us that users

focus on certain attributes and specific values [13].

Without conducting a study of user querying behavior,

it is impossible to know which attributes and values

will be popular for a given system and data set.

We therefore chose the criteria in an effort to fully

characterize what a system with a specific algorithm

implemented would, and would not, be good at. We

do not intend for these criteria to replace performance

benchmarking, but rather serve as a complement–a way

of identifying which algorithms to investigate further

through implementation in a fully working system.

3.1. Criteria

In the rest of the paper, we define entropy to be

the variance of attribute values in a given partition. In

other words, entropy measures the number of values

of an attribute within a partition. An entropy of zero

means that all instances of that attribute have the same

value in that partition. To calculate entropy, we used

the Shannon formula for information [30]:

H(X) = −

n∑

i=1

p(xi) logb p(xi) (2)

We define information gain as the difference be-

tween the entropy of the whole data set and the entropy

of individual partitions, calculated by attribute. Infor-

mation gain, then, is the amount of information you

gain about an attribute by being in a given partition.

A high information gain indicates that the values for

that attribute are generally unique to that partition. We

used information gain as described by Quinlan [28]:

H(X) − H(X |p) for each partition p (3)

For each attribute, we calculated the average informa-

tion gain over all partitions. This allows us to look at

the whole system; a high average information gain on

a given attribute implies that values of that attribute

are generally concentrated in unique partitions.

Finally, we compared the files in the partitions

generated by each algorithm to the partitions generated

by each other algorithm. We use an intersection metric

that measures how many files from a partition under

one algorithm are contained in the best match partition

from another. This captures both differences in content

and size of partitions. Note that this measure is not

symmetric, since the best match may not be the same in

both directions, and therefore we present intersection

results both ways for a given pair of algorithms.
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Table 3. Attribute Descriptions

Name Description

path path to file

type file extension

inode inode number

mode security permissions

links number of hard links

uid user id

gid group id

size file size

atime access time

mtime modification time

ctime creation time

4. Results and Analysis

In the interests of brevity, we only present results

for the SOE and NetApp Web/Wiki data sets. We dis-

cuss partition sizes, compare the contents of partitions

across partitioning algorithms, and analyze the infor-

mation density. We explore the implications for each of

these results. We show that Security Aware Partitioning

has minimal space and time requirements, as well as

good query performance, as judged by entropy and

information gain, regardless of the metadata used in

the query.

In addition, we determine that partition sizes have

high variance for every algorithm except those with

fixed sizes, leading to poorer index performance. Fi-

nally, we show that LSA and cosine correlation cluster-

ing are nearly indistinguishable, given the right choice

of constants.

4.1. Runtime

The runtime in Table 4 is presented in Big-O no-

tation, in order to compensate for factors which can

cause the runtime to vary. In general, lower runtimes

are preferred, since they reduce the overhead for the

system to support search.

Security Aware Partitioning is linear with respect

to the size of the data set. Files and directories do

not need to be compared to other files/directories, just

to the security permissions of the current partition.

Because UNIX style permissions rely on the hierarchy,

we do a recursive tree descent. The permissions of

each file in the path are stored on the stack, for a

memory requirement no greater than the depth of the

file system, logb(n), where n is the number of files,

and the base of the log, b, is the branching factor.

The wide branching factor of directories makes the

constants quite low in practice. This memory usage

is a constraint specific to UNIX style permissions,

since they rely on parent directories, and would not

necessarily apply to other architectures.

Greedy algorithms, by their nature, require very little

time and space. The current file is compared to the

count of files in the existing partition, and either the

partition is full and a new partition is created, or the file

is added to the current partition. The memory needed

for user partitioning is predicated on the number of

users in the system being fairly constant and signifi-

cantly smaller than the number of files.

Both cosine correlation and LSA with cosine cor-

relation require that every file in the data set poten-

tially be compared to every other file. In addition,

LSA requires a singular value decomposition operation

(SVD), which runs in O(npq), where p is the number

of metadata elements (one for each numeric attribute,

and one for each possible value of a non-numeric

attribute), and q is the number of dimensions to reduce

to. While this is not expensive for basic numeric UNIX

metadata, it quickly becomes prohibitively expensive

for extended metadata and non-numerical metadata

such as user. These attributes need to be treated as a

series of binary attributes, one for each possible value,

in order to correctly perform SVD.

4.2. Partition Size

Partition sizes directly impact the effectiveness of

search. If the partitioning algorithm results in a large

number of small partitions, then finding relevant files

may result in many calls to the disk in order to load all

of the required indexes. By contrast, if partitions are

too large then the index cannot easily fit into memory.

An ideal partitioning algorithm will result in most

partitions being near the maximum size, with a fairly

low variance in size. We show the mean, median, and

variance for partition size in Table 5 and Table 6.

As mentioned in Section 2.2, the greedy algorithms

used a fixed number of files to determine the partition

size, not including directories. This is why there is

a standard deviation associated with the greedy algo-

rithms, and why not every partition had a size of ex-

actly 100,000. As expected, the non-greedy algorithms

had a large number of smaller partitions and a few

large partitions, as shown in Figures 2(a) and 2(b).

The skewed nature of metadata has been explored by

Leung [24], and any algorithm which relies on it is

likely to be somewhat skewed in distribution. This

means any non-greedy algorithm will construct many

smaller indexes that will later need to be accessed.

However, this cost can potentially be mitigated through

clever on-disk layout and data structures. Non-greedy

algorithms can also result in partitions which are over
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Table 4. Runtime analysis. n is the number of files

Greedy DFS Greedy Time Interval User Security Cosine LSA

Time O(n) O(n) O(n) O(n) O(n) O(n2) O(n2)−O(n3)

Memory O(1) O(1) O(1) O(1) O(log n) O(n) O(n)
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Figure 2. CDFs for the partition sizes of different partitioning schemes. (a) SOE – Security Aware

Partitioning produces many small partitions, but very few that are over the 100,000 mark. (b) NetApp
Web/Wiki – Over half of the partitions created by Security Aware Partitioning are smaller than 100,000.

100,000 files and may be too large for indexing. In this

case, a secondary algorithm (such as partitioning by

modification time), could be used to split the partition

into more manageable sub-partitions. Further investi-

gation on the use of secondary algorithms remains as

future work; in this paper we focus on identifying a

good primary algorithm.

LSA and cosine correlation are similar for some data

sets. For the Web/Wiki data, the mean and standard

deviation for partition sizes are identical. (Recall that

the size of partitions is governed by the choice of con-

stant, ǫ.) For the SOE data, they are more dissimilar,

suggesting that the algorithm may have found more

correlation to exploit.

Security Aware Partitioning has a low standard de-

viation, suggesting that partitions tend to be approx-

imately the same size. However, the mean size is at

least an order of magnitude lower than any of the other

algorithms. This means Security Aware Partitioning

creates a large number of small partitions. A possible

solution to this would be to merge partitions that have

the same set of users who can access them, eliminating

the hierarchical boundaries that are currently in place.

This requires a more advanced version of the Security

Aware Partitioning algorithm, and is part of our future

work.

B

A1

A2

Figure 3. Comparing content. A1 and A2 are

the same size, while B is much larger. A1 is fully

contained in B, but is only 30% of B, so the
pairwise comparison A1/B would be 0%/70%. A2

is not fully contained in B—20% is different—so the

pairwise comparison A2/B would be 20%/75%. If,
however, A1 and A2 were merged into a single par-

tition, then the pairwise comparison A/B becomes
10%/45%. This can be used to infer that partitions

generated by algorithm A are very similar to those

generated by B, since they divide up the data in a
similar fashion.

4.3. Partition Content

If two algorithms place the same files in the same

partitions, all other things being equal, they will have

similar costs for a given query. Therefore, compar-
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Table 5. SOE Size Statistics. Greedy algorithms did not count directories in the size determination, thus

the mean size is not exactly 100,000 and there is a standard deviation.

Greedy DFS Greedy Time Interval User Security Cosine LSA

Number of partitions 81 64 8 384 29479 131 1370

Mean size 85203 107835 862683 17973 234 5037 52683

Standard Deviation 44487 43634 2163134 128252 3309 36776 292193

Table 6. NetApp Web/Wiki Size Statistics. Greedy algorithms did not count directories in the size

determination, thus the mean size is not exactly 100,000 and there is a standard deviation.

Greedy DFS Greedy Time Interval User Security Cosine LSA

Number of partitions 156 125 12 1908 318782 140 140

Mean size 99802 124553 1297437 8159 48 111208 111208

Standard Deviation 2463 134993 1552147 92735 3930 777795 777795

ing the content of partitions is a useful metric for

comparing the behavior of partitioning algorithms. In

order to evaluate content similarities, we opted for an

intersection metric, since it would capture variations

in both content and size of partitions. Since we used

a intersection metric, results are not symmetric and

should be considered in pairs: how well X is contained

by Y versus how well Y is contained by X. Figure 3

shows an example of how to interpret the data. In Ta-

bles 7 and 8, two low numbers in the same cell indicate

the partitioning algorithms generate partitions similar

in content and size, while two high numbers in the

same cell indicate the algorithms generate partitions

different in both content and size. A low number and

a high number indicates similar content, but different

size partitions.

Note in Table 7 that cosine correlation compared

to LSA is very similar, with a difference of 9.9%.

Conversely, LSA compared to cosine correlation has a

difference of 60.1%. This suggests that for every one

partition created by cosine correlation clustering, the

LSA algorithm puts the same information in multiple

partitions. This seems reasonable, given the disparity

in partition sizes between LSA and cosine correlation.

This means that the two will access a similar propor-

tion of indexes for a given query, but LSA will have

to load more indexes in total.

By contrast, the greedy time algorithm and the

greedy DFS algorithm have a very symmetric differ-

ence in Table 7, around 66% in both directions. Since

they have very similar partition sizes, this suggests that

the contents of partitions are very different for these

two algorithms, and will have very different index

accesses for a query. The comparison numbers for

Security Aware Partitioning are around 10% for al-

most all the other algorithms (excluding greedy time),

indicating that the partitions generated are similar in

content but not in size. This result makes sense, since

Security Aware Partitioning generates a large number

of smaller partitions (we discuss mitigation strategies

in future work). Based on this, we can conclude

that Security Aware Partitioning will access similar

proportions of indexes to other algorithms.

4.4. Partition Entropy and Information Gain

Partition entropy and information gain help estimate

the effectiveness of the partitioning method for search.

Partition entropy measures the “goodness” of a par-

tition, by measuring the entropy per attribute within

each partition. This measures the number of values

of an attribute in a given partition. A low entropy

suggests that the attribute values within that partition

are somewhat homogeneous – there are only a few

attribute values in that partition.

Information gain is the difference between the en-

tropy of the whole data set and the entropy of individ-

ual partitions and is calculated on a per attribute basis.

High information gain indicates the attribute values

found within that partition are highly concentrated in

that partition, meaning that most of the files with a

specific attribute value can be found there.

For entropy calculations, we did not include the path

name or the inode number, since these will almost

always be unique to a specific file or directory. In

Figures 4 and 5 we present the cumulative distribution

function of entropy for different attributes, with each

algorithm displayed. Here, a fast growth rate implies

that most of the entropy for that algorithm was low,

and therefore the algorithm will be more efficient

at retrieving data related to that attribute. We have

selected a few attributes from the SOE data to display,

based on common user queries.
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Table 7. SOE Partition Content Comparison. Each entry for row X, column Y, can be read as “% average

of X in Y/% average of Y in X”. Items of particular interest have been highlighted. Security is not

significantly different from most other algorithms, about 10% on average, but is significantly different from
greedy time. Cosine and LSA are very similar to one another.

Greedy DFS Greedy Time Interval User Security Cosine LSA

Greedy DFS 0% 66.9/65.9% 10.3/97.3% 28.5/56.4% 60.3/10.6% 7.4/79.8% 26.6/42.6%

Greedy Time 65.9/66.9% 0% 1.2/92.0% 56.5/74.3% 78.0/41.5% 40.0/85.3% 60.9/68.9%

Interval 97.3/10.3% 92.0/1.2% 0% 65.3/10.3% 95.7/10.0% 56.7/10.3% 89.3/10.3%

User 56.4/28.5% 74.3/56.5% 10.3/65.3% 0% 71.1/14.2% 24.2/52.8% 49.0/33.7%

Security 10.6/60.3% 41.5/78.0% 10.0/95.7% 14.2/71.1% 0% 4.6/83.1% 13.3/63.6%

Cosine 79.8/7.4% 85.3/40.0% 10.3/56.7% 52.8/24.2% 83.1/4.6% 0% 60.1/9.9%

LSA 42.6/26.6% 68.9/60.9% 10.3/89.3% 33.7/49.0% 63.6/13.3% 9.9/60.1% 0%

Table 8. NetApp Web/Wiki Partition Content Comparison. Each entry for row X, column Y, can be read as

“% average of X in Y/% average of Y in X”. Items of particular interest have been highlighted. For this data
set, LSA partitions are identical to cosine correlation, and therefore LSA makes no difference. Security is

more distinct from other schemes for this data set, but extremely similar to the more expensive LSA.

Greedy DFS Greedy Time Interval User Security Cosine LSA

Greedy DFS 0% 79.3/82.1% 46.1/94.3% 31.3/79.0% 59.5/27.4% 2.5/92.4% 2.5/92.4%

Greedy Time 82.1/79.3% 0% 1.9/82.1% 56.2/80.4% 74.5/55.4% 40.5/88.9% 40.5/88.9%

Interval 94.3/46.1% 82.1/1.9% 0% 72.4/49.0% 83.9/28.3% 46.4/66.5% 46.4/66.5%

User 79.0/31.3% 80.4/56.2% 49.0/72.4% 0% 65.0/12.3% 16.9/67.9% 16.9/67.9%

Security 27.4/59.5% 55.4/74.5% 28.3/83.9% 12.3/65.0% 0% 1.5/81.6% 1.5/81.6%

Cosine 92.4/2.5% 88.9/40.5% 66.5/46.4% 67.9/16.9% 81.6/1.5% 0% 0%

LSA 92.4/2.5% 88.9/40.5% 66.5/46.4% 67.9/16.9% 81.6/1.5% 0% 0%

Table 9. SOE Average Information Gain in bits

Algorithm type mode links uid gid size atime mtime ctime

Greedy DFS 3.5 1.5 0.3 2.4 1.8 6.6 3.2 7.0 9.0

Greedy Time 7.1 3.0 0.5 4.8 3.7 13.2 6.4 14.1 18.2

Interval 6.3 2.7 0.5 4.2 3.3 11.7 5.7 12.5 16.1

User 3.6 1.5 0.3 2.4 1.8 6.7 3.2 7.1 9.1

Security 7.2 3.0 0.5 4.8 3.7 13.4 6.5 14.3 14.3

Cosine 7.1 3.0 0.5 4.8 3.7 13.2 6.4 14.1 18.1

LSA 7.2 3.0 0.5 4.8 3.7 13.4 6.5 14.2 18.4

The information gain is presented in Tables 9 and 10

for each attribute, so that the quality of partition-

ing can be evaluated for different types of searches.

High information gain indicates that partitions mostly

contain a single or small number of attribute values.

Algorithms which partition over a specific attribute are

likely to have good information gain for that attribute.

For instance, the greedy time algorithm has excellent

information gain for modification time (mtime) since it

partitions based on that attribute. However, a good par-

titioning criteria will also have high information gain

for other attributes. Cosine correlation’s information

gain is slightly lower than cosine correlation with LSA,

suggesting that LSA is slightly better, but may not

garner sufficient additional benefits to justify the added

computation. Security Aware Partitioning has good

information gain for all attributes, and consistently

outperforms all other algorithms.

5. Related Work

In addition to the algorithms we have compared in

this paper, there has been a great deal of prior research

into partitioning indexes, both for file systems and web

search. We mention here other work in addition to the

algorithms we evaluated.

Security for search is a complex area. We have

focused particularly on desktop and enterprise search

9



Table 10. NetApp Web/Wiki Server Average Information Gain in bits.

Algorithm type mode links uid gid size atime mtime ctime

Greedy DFS 3.2 2.6 1.0 5.1 0.6 4.2 0.0 12.8 8.9

Greedy Time 3.2 2.6 1.0 5.1 0.6 4.2 0.0 12.8 8.9

Interval 2.7 2.2 0.9 4.3 0.5 3.5 0.0 10.9 7.6

User 3.2 2.6 1.0 5.1 0.6 4.2 0.0 12.8 8.9

Security 3.2 2.6 1.0 5.1 0.6 4.2 0.0 12.8 8.9

Cosine 3.2 2.6 1.0 5.0 0.6 4.2 0.0 12.6 8.8

LSA 3.2 2.6 1.0 5.0 0.6 4.2 0.0 12.6 8.8
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Figure 4. SOE entropy in bits. CDFs of entropy by (a) mode, (b) mtime, (c) type, and (d) uid for percentage
of partitions. Algorithms which grow more quickly in this graph are better for search. Note that the security

algorithm grows quickly, meaning it has excellent entropy for all attributes.

in our review of related work. However, large file

system search combines aspects of both of these and

is an under-explored area of research.

5.1. Partitioning

One of the first systems to propose a search tech-

nique similar to partitioning was GLIMPSE [25]. It

was designed for full text search over a file system,

and was created to reduce the cost of brute force

search without incurring the space costs of a full text

index. GLIMPSE used a dictionary over large areas

of a file system. Once an area of the file system

was identified that contained the search term, a brute

force search would be carried out within the area to

find the individual documents that satisfied the query.

This is similar to current techniques for file system

partitioning. However, it still required a brute force

search once the correct partition was identified, making

it necessary to access the disk for the contents of a

large number of files. By contrast, our system only

requires that the metadata index be loaded into memory
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Figure 5. Web/Wiki entropy in bits. CDFs of entropy by (a) mode, (b) mtime, (c) type, and (d) uid for

percentage of partitions. Interestingly, security performs less well for permissions on this data set, but still
does well over-all.

(or already be resident in memory), for significantly

less overhead.

Lester et al. proposed geometric partitioning [23] in

order to allow full text search indexes to be updated on-

line. A series of increasingly large indexes would store

documents, from newest to oldest, favoring newer doc-

uments. However, all partitions needed to be searched

in order to return results; partitioning simply amortized

the cost of merging indexes. Rather than using variably

sized hierarchical indexes, we use parallel indexes and

only require partitions to be searched if they contain

the metadata the user is looking for.

One of the first examples of user partitioning is

found in the Rapid Access Storage Hierarchy (RASH)

file system [19]. RASH grouped files from each user on

volume sets separate from other users when archiving,

so each user had dedicated volume sets of his/her files.

Our implementation takes the same approach and gives

each user his/her own partition, adding files based on

the owner of the file.

Carmel et al. [14] proposed a lossy method for prun-

ing indexes, term-based pruning, where term listings

below some threshold would be eliminated. This was

designed to reduce index size for small environments

such as PDAs.
Other systems have focused on index pruning as

a form of multi-level caching – maintaining a full

index but only keeping some fraction of it in top level

storage and maintaining the rest in slower storage. For

instance, document centric pruning [13], proposed by

Büttcher and Clarke, was a development on term-based

pruning. Rather than retaining the top k entries in a

posting list, they retained the top k term postings for

a given document. Query based partitioning [26] takes

this idea one step further, calculating which queries are

likely, based on prior query history, and retaining only

the top k documents for each likely query.

5.2. Security

Conventional desktop search strategies are not de-

signed to deal with such a large volume of data,

and security is generally not a concern. Most desktop

search systems do handle security but at the price of

constructing indexes for every user, such as Coper-
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nic [1], MSN Toolbar [2], Yahoo Desktop [3], and

Google Desktop [4]. This strategy is not scalable to

the enterprise level. There are a large number of files

on an enterprise system that everyone can access, and

there are other smaller subsets which are shared among

groups and single users. A per user index results in an

untenable amount of duplicate data from shared files.
Büttcher et al. have explored the question of security

models for file system search [12]. However, their

proposed system, Wumpus, requires a decrease in

search performance in order to achieve security and

requires a high overhead security manager. By contrast,

we propose to both offer secure search and improve

search performance.

This problem is also similar to the problem of enter-

prise search, where the user is searching over a variety

of documents with differing security permissions in a

corporate intranet. Some research has been done on

this subject, notably Bailey, Hawking and Matson’s

paper on document level security [9]. Bailey et al.

propose access checking at the “collection” level for

intranet documents, but at the cost of accurate match

counts.

According to Bailey et al. [9], Enterprise search

technologies such as Google Search Appliance, Coveo,

and FAST ESP (formerly Convera RetrievalWare) have

some awareness of security, but take performance hits,

consume more space, and/or suffer accuracy penalties

to offer it. Security must be painstakingly and manually

applied or extracted from external security systems, a

task which can lead to high latency, and slowdowns

for document filtering and re-ranking. According to

Google, Google Search Appliance, for instance, per-

forms late-binding security in which access control

checks are performed against the content hosts in

real time when the query is executed [18]. And, as

with other web search, even the best enterprise search

systems do not take advantage of the rich metadata

available on the file system.

6. Non-hierarchical File Systems and

Their Implications

There is a clarion call for file systems that no

longer rely on hierarchy to organize content. From

Inversion [27] and LiFS [7] to iTunes [8] and Seltzer’s

position paper that “hierarchical file systems are

dead” [29], systems are moving towards rich metadata

and search for organizing and finding content. On such

a file system, fast high quality search over metadata

and content is more important than ever, since the

hierarchy can no longer be used to navigate and find

information. How well do these algorithms perform

when the file system no longer has explicit hierarchy?

Any algorithm that relies explicitly on hierarchy is

clearly out of the question, such as a greedy depth

first search method. However, methods which rely on

properties of the data itself, such as the owner, the

security permissions, or the time, will continue to

create similar partitions and be just as effective.

While UNIX file system permissions currently rely

on the hierarchy to describe access rights, there is no

reason to believe that users will change the way they

assign access rights, simply because the organization

of the file system has changed. Users and groups will

continue to guide who can see what files, and therefore

Security Aware Partitioning is a strategy with long

term potential, no matter the underlying file system

organization.

7. Future Work

We will be extending this work in the future to ex-

plore content and richer metadata, especially semantic

and security metadata. We intend to implement a fully

functional prototype of this system using Ceph [31]

as a foundation. While metadata search is important,

full text and keyword search is an integral part of any

search system. We will explore the effectiveness of

our algorithm applied to full text search in addition to

metadata. We also intend to explore the impact of rich

metadata on the performance of partitioning systems.

We would like to explore whether other metadata

can provide partitions as optimal as Security Aware

Partitioning.

Access Control Lists (ACLs) can be used to imple-

ment a much richer security model, and we would like

to explore real world usage of ACLs, to determine the

implications for security based partitioning.

8. Conclusions

As the volume of file systems increases, the per-

formance of search becomes increasingly important.

Algorithms which are good on a thousand files may

be painfully slow for a hundred million. Partitioning

algorithms are an effective way to reduce the cost of

search, but these algorithms must also scale well, or the

cost of building indexes will overwhelm the system.

The choice of a partitioning algorithm will always

depend on the requirements of a specific system.

For some systems, security may be a non-issue and

temporal access the dominant criteria. In these systems,

a greedy algorithm is likely the best solution, due to

its creation of fixed size partitions. For other systems,

security may be mission critical. However, for any

system, performance is always a first concern. We have

proposed a series of metrics which can be be used
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to evaluate the expected performance of partitioning

algorithms without actually building the search indexes

and testing with generated queries, which may not

be representative of real user needs. In addition, we

have measured the performance of a variety of current

algorithms using these metrics. We anticipate these will

be useful to others seeking to design and benchmark

future algorithms.

Not only must file system search be scalable and

high performance, it must respect the security con-

straints of the file system over which it operates. Users

should never be able to see files they cannot access. By

combining these two necessary qualities of search, we

have developed a new partitioning algorithm that will

scale as file systems grow. Security Aware Partitioning

respects the file system’s security settings, creating par-

titions in which all files are accessible by the same set

of people. By early elimination of areas users cannot

see, we can speed up search significantly. Due to the

simplicity of our algorithm, we also reduce overhead at

indexing time. Furthermore, the partitions generated by

Security Aware Partitioning have good properties for

search. They have low entropy, high information gain,

and are similar to partitions created by other, more

computationally expensive algorithms. We have shown

that partitioning with respect to security permissions

is both secure and efficient, making Security Aware

Partitioning a strong partitioning algorithm for file

system search.
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