
Quorum-oriented Multicast Protocols for Data Replication

Richard A. Golding* and Darrell D. E. Long t
Computer and Information Sciences Board

University of Califomia, Santa Cruz
Santa Cruz, CA 95064

Abstract
Many wide-area distributed applications use replicated

data to improve the availability of the data, and to improve
access latency by locating copies of the data near to their
use. This paper presents a new family of communication
protocols, called quorum multicasts, that provide efficient
communication services for widely replicated data. Quo-
rum multicasts are similar to ordinary multicasts. which
deliver a message to a set of destinations. The new proto-
cols extend this model by allowing delivery to a subset of
the destinations, selected according to distance or expected
data currency. These protocols provide well-defined fail-
ure semantics, and can distinguish between communication
failure and replica failure with high probability. We have
evaluated their performance, taking measurements commu-
nication latency and failure in the Internet. A simulation
study of quorum multicasts shows that they provide low
latency and require few messages. A second study that
measured a test application running at several sites con-
jirmed these results.

1 Introduction
We are investigating a new family of communication

protocols that we term quorum multicasts. These protocols
are efficient and convenient for implementing replicated
and distributed applications. They provide a communica-
tion mechanism similar to traditional multicast protocols,
but unlike other multicast protocols, the quorum multicast
protocols communicate with just a subset of the set of desti-
nations. The quorum multicast protocols can dynamically
select this subset to be the closest available destinations,
limiting the portion of the internetwork affected by any
particular multicast. Such protocols are useful when im-
plementing replication protocols based on voting or when
communicating with one of a group of replicas in a fault-
tolerant manner.

When systems dispersed over a wide area are to access
the same data, that data can be replicated. Several sites in
the network maintain copies of the replicated data. Repli-
cated datacan be more fault-tolerant than unreplicated data,
and its use can improve performance by locating copies of
the data near to their use. Copies of replicated data are

*Supported in pan by the Concurrent Systems Project at Hewlett-
Packard Laboratories.

tSupported in part by the National Science Foundation under Grant
NSF CCR-9 11 1220. by,the Institute for Scientific Computing Research at
Lawrence Livennore. National Laboratory, and by faculty research funds
from the University of Califomia, Santa CNZ

held at a number of replicas that consist of storage and a
process that maintains the data copy. A client process can
communicate with the replicas to read or update the data.
Both the clients and the replicas reside on hosts, which are
connected using an internetwork consisting of local-area
networks with gateways and point-to-point links. When a
host sends a message to another host, the message will be
forwarded through (perhaps many) gateways and links to
its destination.

Communication between the client and the replicas is
performed according to a replication protocol that pro-
vides the client with the illusion of a single data object.
This is more complex than using a single copy of the data,
since operations must be coordinated among the replicas.
Replication protocols hide this complexity by providing a
set of operations performed by clients and a set performed
by replicas: clients can read and update the data, while
replicas perform operations such as failure recovery, cre-
ation of new replicas, and information propagation between
replicas.

Replication protocols are constructed using lower-level
communication mechanisms. Most networks provide one-
to-one datagram and byte stream protocols, and many pro-
vide limited broadcast or multicast facilities. This paper is
concerned with a version of multicast protocols, the quorum
multicast, that is particularly well-suited for implementing
a replication protocol.

Many existing wide-area systems, such as airline reser-
vation systems and library card catalogues, do not use repli-
cation techniques, relying instead on large central systems.
This is in part due to the beliefs that replication is in-
convenient when compared to centralized solutions and
that replicated data provide poor end-to-end performance.
Replication can provide good performance when quorum
multicasts are used. In other work [8] we have shown that
they are a convenient mechanism for constructing replica-
tion protocols.

2 Performance measures
There are several measures that can be used to eval-

uate the performance of replicated data. These include
the latency of operations, the amount of message traffic
caused by an operation, and the data availability. Though
the ideal protocol would provide the highest availability
with the lowest M c and latency, trade-offs between these
measures must be made. The scale of the Internet further
complicates protocol performance, for a protocol that per-
forms well in a local-area network may not scale to the
world-wide Internet. We will show how quorum multicast

0-8186-2545-7192 $3.00 0 1992 IEEE 490

protocols contribute to good availability while using fewer
messages and requiringless latency than a simple multicast.

Wide-area networks contain many more systems that
might share resources, implying that the potential load
on highly utilized components in an intemetwork is much
higher than the load on components in a LAN. The poten-
tial users of an application at a local site number at most a
few hundred to a few thousand, while the number of poten-
tial users of a wide-area application is orders of magnitude
larger. Systems such as the Domain Name Service [121 and
Usenet [151 show that the load on some applications scales
with the number of users.

Sending a message between any two hosts on an in-
ternetwork requires a variable amount of time, termed the
communication latency. The latency depends on the load
on the network and the available routes. In a wide-area in-
ternetwork, communication latency can be the predominant
delay for operations on the replicated data, which often in-
volve only a few disk accesses and a small amount of com-
putation. Communication with nearby replicas requires a
few milliseconds, while access times for distant replicas
often require several hundred milliseconds for communi-
cations across a continent. and as long as several seconds
when satellites are involved.

The amount of message traffic required for an operation
governs the degree the operation will interfere with other
communication in the network. The number of messages,
their size, and their destinations contribute to this effect.
A communication protocol will cause less interference if
it can send a message to a nearby host since the message
will traverse fewer intermediaries. Broadcast messages on
a LAN allow replication protocols to send requests to all
replicas in one message, while a separate message must
generally be sent to each replica in an internetwork.

The availability of a service can be defined as the like-
lihood of providing correct service at a given instant [16].
This must be contrasted with reliability, the probability of
providing correct service during a period of time. Highly-
available applications must be fault-tolerant: they must
continue to provide service even when parts of the sys-
tem have failed. Intemetworks are unreliable, meaning
they lose and duplicate messages from time to time, and
may deliver them out of order. Hosts can use timeouts
and acknowledgments to detect with high probability that
a message has not been received.

3 Multicast protocols
We have developed a family of quorum multicast com-

munication protocols that can take advantage of good
replica placement. These protocols send a multicast to a
subset of a group of replicas, rather than to the entire group.
They first use the closest available replicas, falling back on
more distant replicas when nearby ones are unavailable,
and are parameterized so that the replication protocol can
provide hints to further improve performance. Replication
protocols can be implemented using them, limiting the cost
of message uaffic and using nearby replicas for low latency.

A communication protocol that is to work well in inter-
networks must address their particular performance char-
acteristics: long, variable latency and occasional high mes-
sage loss. These characteristics make some techniques used
for replication in a local-area network inappropriate for in-
ternetwork use. The protocols should not require broadcast,

but instead send messages to replicas in a more controlled
fashion. The protocols should be sensitive to the communi-
cation latency of replicas, and should tend to communicate
with nearby replicas, providing lower access latencies and
limiting the portion of the intemetwork afkcted by an ac-
cess. They should respond to changes in network topology
and performance, perhaps by communicating with different
replicas. The protocols should also address the problems
associated with transient failures by resending messages to
replicas.
3.1 Existing multicast protocols

Quorum multicast protocols are a specialization of ordi-
nary multicastprotocols. Ordinary multicast sends a mes-
sage to a set of destinations in one operation. Replication
protocols can use multicast to send a message to all avail-
able replicas, later receiving a number of responses from
some or all of them. Simple request-response multicast
protocols define a simple interface:

multicast(message, replica set) +- reply set
The message is sent to all replicas in the set.
The operation reports no exceptions.

Several researchers have considered the problem of pro-
viding a multicast facilityon an internetworkthat has no in-
herent broadcast capability. Boggs [2] developed directed
broadcast capabilities for internetworks that deliver a mes-
sage to all hosts on a network segment, even if the sender is
not connected to that segment. Directed broadcast cannot
provide significant performance gain when each replica is
located on a separate subnet. Garcia-Molina and Kogan
[6] extend internetwork broadcast algorithms with a novel
mechanism that provides a reliable multicast facility on an
internetwork with unreliable multicast, even if the network
can partition.

In contrast to this work, the Isis system [l] provides
a distributed programming environment based on reliable
atomic multicast in a local area. It provides specialized
protocols to multicast to a process group, providing strong
guarantees on the ordering and atomicity of delivery and
failure detection.

Many other researchers have investigated multicast pro-
tocols as part of distributed operating systems. Cheriton
[3] used multicast with distributedprocess groups as a pri-
mary communication mechanism in the V system,alocally-
distributed operating system at Stanford University.

Some Rpc systems have provided one-to-many and
many-to-many communication semantics similar to a
request-response multicast protocol. The Circus replicated
RPC system [5] extended RPC to include replicated calls
to a group of processes, called a troupe; each process in
the troupe was required to perform the same computation
and issue the same RPCs in the same order. The Parallel
Remote procedure Call (PARPC) system [101 implemented
one-to-many replicated procedure calls. Replication proto-
cols could be implemented in both these system using only
a few lines of code.
3.2 Quorum multicast protocols

We now present designs for a variant of multicast, the
quorum multicast protocols. The design is guided by four
goals: make use of proximity; communicate with subsets
of the destinations; adapt to changing network conditions;

49 I

and minimize latency and message traffic. Some of these
goals conflict, so we will present protocols that trade one
for another.

Quorum multicast protocols send a message to a subset
of the destinations. For example, many replication proto-
cols require that a simple majority of the replicas perform
an operation, while others require only one or two replicas.

The minimum number of destinations required is speci-
fied by a reply count parameter. In many cases the message
need only be sent to enough of the closest replicas to sat-
isfy the requirement, avoiding message traffic to the most
distant replicas. ‘Closeness’ can be defined as ‘fastest to
respond’ or as ‘least number of hops’. Of course, this
multicast should be fault-tolerant, using more distant repli-
cas when those nearby are unavailable. The protocol may
not be able to meet the reply count if some of the repli-
cas are unavailable. Replicas can be unavailable due to
host failure, replica failure (perhaps due to insufficient re-
sources), network gateway or link failure, or controlled
shutdown. Since replication protocols generally require
request-response communication, the responses to a mul-
ticast serve as acknowledgment that the message was re-
ceived and processed.

The semantics of quorum multicast define the interface:

quorum-multicast(message, replica set, reply

The message is sent to at least a reply count of
the replicas. Exceptions: reply count not met.

count) + reply set

The quorum multicast protocols maintain an expected
communication latency for each possible host. When a
request is issued to communicate with q members of a set
of replicas, the communication protocol can order the set
by expected latency and communicate with the q closest
replicas. If responses are not received from all q within
a certain time, then messages can be sent to more distant
replicas. The delay before sending to distant replicas is
determined by the parameter d . The expected latency can
be determined by measuring recent performance, on the
assumption that replicated operations will be performed
much more often than the structure of the network changes.
Many Internet protocols use moving averages of recent
behavior to determine such expectations [4].

The two extremes of sending all messages at once or
sending as few messages as possible are not always appro-
priate for all applications. Three of the new protocols are
parameterized by a delay parameter 0 5 d 5 1 that allows
an application to specify an intermediate position, where
sending more messages than strictly necessary is used to
improve operation latency. When d = 0, the protocol will
not wait to send to distant replicas. When d = 1, the proto-
col waits until a message failure is reported before sending
to distant replicas. Since message failure is detected using
timeout, when d < 1 the protocol will wait some fraction of
the timeout period before sending to more distant replicas.

If the communication protocol has not received a re-
ply from a replica after some amount of time, the protocol
assumes that the message has failed. After some number
of messages have failed, the protocol declares the replica
unavailable and does not attempt to retransmit messages
until the next communication request. Some protocols will
only try sending a message to a replica once, while other

protocols will try several times before giving up. This
persistence is a tunable parameter in one of our protocols.
Once a protocol has declared enough replicas unavailable,
it will return a negative indication to the replication pro-
tocol and abandon the operation. Our measurements of
the Intemet, detailed in another report [9], show that short
transient failures comprise more than three-fourths all mes-
sage failures. They also show that long transient failures
are uncommon, so a protocol can confidently declare host
failure after observing only a few lost messages.

In the next sections we will present four quorum mul-
ticast protocols. The first, called naive, is a straightfor-
ward implementation of multicast that sends messages to
all replicas, providing a baseline to which the other proto-
cols can be compared. The second, called reschedule, uses
the delay parameter to send to fewer replicas. The third and
fourth, called retry and count, send to replicas according
to the delay parameter, but will retry messages to replicas
after a first message has failed.

3.2.1 The naive protocol

The first protocol, a simple multicast, is called naive. It
sends one message iteratively to all replicas. Replies are
counted, and when a reply count has been obtained the
protocol returns, indicating success. When a reply or a
failure has been observed for every replica without reaching
the reply count it declares the access a failure.

There are two problems with this protocol: it neither ac-
counts for transient communication failures nor uses prox-
imity to improve performance. It uses more messages than
are necessary, though it can quickly either meet the reply
count or decide that it is unobtainable. It also has a persis-
tence of one message, that is, the failure of just one message
to a host causes the protocol to treat the host as unavailable.

3.2.2 The reschedule protocol
Reschedule addresses the second problem with naive. This
protocol sends fewer messages than naive, though often at
the expense of extra latency. It still has a persistence of one
message, so it does not solve the transient communication
failure problem. It orders replicas by expected communi-
cation latency to determine the order in which messages
should be sent, causing it to communicate with the closest
available replicas. It attempts to send the fewest possible
messages by first sending messages to the q closest replicas,
and to additional replicas as the earlier messages fail.

This approach has a problem: it will take much longer
than naive to complete an operation when nearby replicas
have failed. The protocol cannot determine that a message
has failed until a timer has expired. Since timers should not
expire before the acknowledgment can arrive, the timeout
period is usually set to a large value - commonly chosen
to cover more than 99% of all messages. Our studies of
the Internet showed that this was usually about three times
the average reply latency. If additional messages are sent
earlier, even though it is possibly a reply is on it way, the
operation can complete more rapidly without wasting large
numbers of messages. The delay parameter d can be used
to tune the protocol in this way.

When d = 0, reschedule is identical to naive: mes-
sages are sent to all replicas right away because the delay

492

timer for sending the next message expires immediately.
When d = 1, reschedule only sends additional messages
when communication failures are detected When d = 1,
messages are sent to additional replicas either if a failure
is reported, or if at one-half of the longest message failure
timeout.

This protocol meets the design goals better than the
naive protocol. It sends to the closest replicas lirst, which
tends to minimize message traflic if the nearest replicas
are available. It also will communicate with only as many
replicas as are needed to meet the reply count. The protocol
will adapt somewhat to changing network conditions, in
that it orders the replicas by distance, and uses timeouts
to observe failures. However, since the protocol only has
a persistence of one message, it cannot handle transient
communication failures. We discuss the performance of
this protocol, in terms of fault-tolerance, messages and
latency, in $4.

3.23 The retry protocol

Neither naive nor reschedule accommodate transient fail-
ures. The next protocol, retry, is a modification of resched-
ule that retransmits lost messages in the hope that the failure
was due to some transient problem and the next message
will be delivered and acknowledged. It continues to re-
transmit until either the reply count has been met or until
all replicas have been tried at least once. Such persistence
improves both the success latency and the probability that
the reply count will be met, though at the cost of sending
more messages and possibly at the cost of having longer
failure latencies.

Initially, the retry protocol sends messages to the q
closest replicas, where q is the reply count. When the pro-
tocol receives a reply, it increments the count of successful
replies. If sufficient replies have been obtained it declares
the access a success. When it finds a message has failed
the protocol schedules a retry for that replica. The 6rst
retry occurs immediately, but later retries are delayed. The
performance simulators set each retry delay twice as long
as the previous (a choice inspired by the collision-handling
techniques used in Ethernet [111). The delay helps to avoid
sending vast numbers of messages to a nearby replica that
has failed. As with reschedule the delay parameter d is
used to determine when to send messages to distant repli-

The retry protocol terminates with failure when it has
received at least one reply or a timeout for every replica
and the reply count has not yet been met. As a result this
protocol has a variable persistence. Nearby replicas may be
retried many times before a distant replica can reply. In the
simulator, which doubles the delay after each message, the
expected number of retries for a replica r is bounded above
by log, (T n / U r) , where a, is the expected communication
latency of the rth replica, and T, is the failure timeout
period for the most distant replica.

Cas.

3.2.4 The count protocol

The count protocol is similar to retry, except that it has a
fixed persistence. It maintains a counter for each replica
and stops retrying that replica when 1 messages have been

sent to it. The protocol terminates when all replicas have
been tried 1 times or the reply count is met.

This protocol improves on retry in a number of ways.
By trying each replica a fixed number of times, it will
meet the reply count more often than retry, since distant
replicas will be tried more times. This bound causes the two
protocols to exhibit significantly different behaviors when
message failures are likely. In addition, retrying a fixed
number of times evens out the number of times messages
are sent to each replica, preventing the protocol from trying
a nearby failed replica many times. Our message failure
measurements suggest that retrying more than a few times is
usually of little value, since communication failures rarely
lasted more than two or three messages. In our performance
evaluation we used an arbitrary limit of 1 = 5. This protocol
uses the same delaying techniques as the retry protocol.

4 Performance evaluation
We used discrete-event simulation and measurement of

a sample application to analyze the performance of these
protocols. The simulation experiments also measured the
sensitivity of the results to the communication latency dis-
tribution, the length of message failure timeouts, and the
overall message failure rate. Some of the simulations used
traces of Internet communication behavior to determine the
communication latency and failure of each message, while
other used synthetic distributions derived from the traces.
In this section we will summarize our findings; details on
the simulation methods can be found in [8], and a more
detailed report covering the performance evaluation and
network measurements is available [9].

4.1 Simulation techniques
The simulations used traces of Internet communication

behavior that we obtained using the ping program, which
sends ICMP echo messages to remote hosts [14]. The re-
mote host is expected to reply to echo messages as soon
as possible. We collected traces of communication latency
and message failure between a host at UC Santa Cruz and
125 randomly selected Sun4 systems throughout the In-
ternet. A set of several samples were taken for each host
every 20 minutes, over a period of seven days. These traces
do not capture any effects that are specific to quorum mul-
ticast protocols, such as congestion at the client or nearby
gateways. Our measurements of an actual implementation
confirm that this limitation does not invalidate the simulated
results.

We used these traces to drive a simulator. The simulator
performed several thousand runs, which consisted of select-
ing five hosts from the 125 sampled, then simulating one
multicast operation with a reply count of three for each of
the sets of samples recorded for those hosts. When a host
was to send a message, the failure or latency was deter-
mined by looking up a sample in the trace. By performing
several thousand runs, we obtained results with confidence
intervals of less than 5% on all values.

The simulation also allowed us to examine the behavior
of each of the four multicast protocols (naive, reschedule,
retry, and count) under artificially high failure conditions
that could not be created on the actual Internet. These
simulations involved deriving synthetic distributions for
communication latency and failure from the traces.

493

4.2 Direct measurement techniques
We constructed and measured a simple application run-

ning on the Intemet to substantiate the simulation results.
This application was structured as a client communicating
with servers. The client ran on a few hosts, and sent UDP
packets to the servers. The server was a simple daemon that
listened for packets on a particular port, and echoed them
back to their origin. The source code to the server was
published on Usenet, and several people elected to run it on
their system. We grouped the participating hosts into sets
of five, some of which contained hosts spread evenly over
Europe and North America, and some containing hosts in
smaller regions. The client multicast to each group of five,
using a reply count of three. The latency results have 95%
confidence intervals generally between 10% and 1536, and
message count results less than 5%.

The measurement experiment validated most of the re-
sults obtained by simulation, since the relative performance
of each protocol is similar. The primary differences arose
because the hosts showed fewer failed messages than those
in the traces that drove the simulations. An error in the
client invalidated the results for failed operations for the
count protocol, but successful operations showed the ex-
pected behavior. Overall, the measurements confirm the
conclusion that quorum multicast protocols can provide
significant performance advantages for wide-area applica-
tions, and show that there is a trade-off among latency,
traffic, and operation success.
4.3 Operation success

Operation success is measured by the fraction of all
multicast operations that were successful in meeting the
reply count. The naive and reschedule protocols each
exhibited an approximately constant success fraction, at
about 82% of all operations. Since these two protocols
each attempt to send at most one message to a replica, the
delay fraction has no effect on the probability of success.
The retry protocol, however, retries nearby replicas more
times when the delay parameter d is larger, since this allows
more time for retries. Retry succeeds in more than 94% of
all cases when d 2 0.1 , while count performs even better.
This shows that persistence has a significant positiveeffect
on protocols for intemetworks.

The data obtained by measuring a test application show
that all four protocols met the reply count more than 95%
of the time. Count succeeded more often than the other
protocols for almost all values of d, with retry generally
succeeding more often than naive and reschedule. These
results are similar to the simulation results.
4.4 Latency

For operations that are able to meet their reply count,
naive is generally the fastest of the four protocols, since it
always sends messages to every replica immediately. The
communication latency for the other protocols increases
approximately linearly as the delay parameter d increases,
taking about the same amount of time as naive at d = 0.
Of the three, count takes longer than retry, which in turn
takes very slightly longer than reschedule. Reschedule
takes less time than the other two because of the rare cases
where the retry and count protocols must send more than
one message to distant replicas to obtain the reply count.

The performance of the four protocols is quite different
when the reply count cannot be met - all four protocols

,A.,,,’*

0 0:4 <6 Ob i
Lm8yRnrr lod

02 -.

FIGURE 1: Communication latency for d operations.

require several seconds to declare failure. While this is
quite a long time, failures constitute only a few percent
of all operations and the latency is not onerous. Naive
is the baseline measure, requiring about 4.8 seconds to
determine that a reply count cannot be obtained - almost
an order of magnitude longer than was generally required
for success. The latency of the other three protocols again
increases roughly linearly in d. Reschedule requires more
time than naive since it must detect just as many failed
messages, but it may have delayed sending some of those
messages. Retry requires more time than all the others for
most values of d. Count performs much better than any of
the other three protocols. It avoids the problem of having
to communicate with the most distant replica, since it can
stop when sufficient nearby replicas have failed.

The measured results differ slightly because fewer mes-
sages failed. While simulation indicated that reschedule
takes more time than naive to declare failure, and that this
time increases with d , the measured results show that the
two have quite similar latencies. The sample size is small
enough that this result is inconclusive.

Figure 1 shows the overall latency for each protocol.
Since the probability of meeting the reply count is quite
high, the values for successful operations predominate in
these graphs. However, it is worth noting that even with
a high probability of success, the low failure latency of
count makes it the fastest of the three quorum multicast
protocols, consistently faster even than naive. Resched-
ule has the highest latency of the three for all values of d.
Retry is better than naive or reschedule for values of d
less than about 0.6. This is the reverse of their positions for
successful operations. The latency of the quorum multicast
algorithms increases approximately linearly as d increases.
The overall measurement results are consistent with simu-
lation results since the overall success rate was in excess of
958, despite the differences in failure behavior.
4.5 Messages

The naive protocol always sends one message to each
host. For successful operations, reschedule sends fewer
messages, except at d = 0 when the two algorithms are
identical. This savings happens when reschedule avoids

494

FIGURE 2 Messages for all operations.

sending messages to distant replicas. Retry often uses at
least as many messages as naive since it must try each
replica at least once before declaring failure, and messages
to nearby hosts may be retried. Count uses more messages
than naive for low values of d, behaving much like retry:
sending messages to all replicas and occasionally resending
when a message fails. When d is set to a higher value,
the protocol behaves more like reschedule, except that it
resends (on the average) about one message because of
failure. The differences between the protocols were less
accentuated in the measurement results. The hosts in the
measurement experiment exhibited fewer message failures
than did those measured for traces, and the three protocols
all behave identically when no failures occur.

The four protocols perform quite differently when they
are unable to obtain a reply count of responses. Naive
requires exactly five messages. Reschedule also requires
exactly five messages, since it will generally send to all
replicas before it can determine that the operation has failed.
The retry and count algorithms will generally send more
than five messages before they can declare failure, but the
difference between the two is dramatic. The retry protocol
sends between three and six times as many messages as
the other protocols, while count usually sends only one
additional message. The difference is due to the extra
control that count exercises over sending messages - no
replica will be tried more than a fixed number of times.
Retry may try nearby replicas a great many times: if a
nearby replica has failed, it will have time to retry many
times while waiting for a response (or timeout) from the
most distant replica.

Figure 2 shows the overall number of messages sent by
each protocol. Once again, since the probability of meeting
the reply count is high, the values for successful operations
predominate. However, the large number of messages sent
by retry make that the least attractive quorum multicast
protocol. The measurement results confirm the simulation,
though the low number of message failures makes retry
competitive with the other protocols.

0.2 0.4 0.6 Od 1
154

zoooo-

0'
0 02 0.4 Od O d I

F.lampoL3irarf

 FIGURE^: Total time, varying failure probability, d = 0.5.

4.6 Effect of failure probability
The simulation experiments also examined the perfor-

mance of all four protocols under different failure condi-
tions. The Internet measurements suggest that message
failure is usually unlikely, but when a host becomes parti-
tioned from the rest of the network,or there is a pathological
condition in the Internet, it is nearly certain that a message
will fail to reach its destination. The simulation allowed
us to evaluate quorum multicast performance under these
worst-case conditions.

For these experiments we fixed the delay parameter d
at 0.5, because it was close to neither extreme. The sim-
ulations used synthetic hyperexponential distributions for
communication latency and uniform message failure prob-
ability, since we could not manipulate the Internet to obtain
traces with specific message failure rates. Message failures
were treated as independent events occurring with a fixed
probability f . Values off in the range0.2 to 0.3 are similar
to the behavior of messages in the traces.

As expected, the count was able to successfully gather
a reply count of responses more often than the other pro-
tocols, and retry succeeded less often than count. Both
these protocols succeed more often than reschedule and
naive, which only try each replica once. The data for naive
match availability figures for data replicated using Major-
ity Consensus Voting [7], estimated using Markov analysis
and assuming reliable communication channels [13]. In
that study, hosts were only checked once for availability,
just as with the naive and reschedule protocols in these
experiments.

Figure 3 shows the overall communication latency at
different values of f . Naive requires the least time, as ex-
pected. At low failure probabilities, reschedule requires
more time than the other protocols, but at high failure prob-
abilities it does not retry failed messages and so can com-
plete - with failure - in little more time than naive. At high
failure probabilities, the retry protocol requires one-fifth
the latency of the count protocol, since it sends only one
message to the most distant host.

Figure 4 shows the overall number of messages sent by
each protocol. As always, naive sends one message to each

495

e

0 (2 i4 Ok Ob i
-n*f

- .

FIGURE 4: Total messages,varying failure probability, d = 0.5.

replica regardless of conditions. The number of messages
sent by reschedule approaches the number of replicas as
the probability of failure increases, since it becomes more
likely that the protocol will have to send a message to all
replicas. Retry sends more messages than reschedule,
since it will retry messages that fail. This becomes in-
creasingly important as the probability of failure increases.
Count sends slightly fewer messages than retry, particu-
larly when the probability of message failure f approaches
unity. The count protocol is limited to sending at most 25
message (5 replicas, 5 messages per replica), while retry
can send a nearly unbounded number of messages in the
worst case.

5 Conclusions
In this paper we have presented a family of quorum

multicast protocols, called naive, reschedule, retry, and
count. We have shown that these protocols provide good
availability while using fewer messages and requiring less
latency than a simple multicast.

These protocols provide multicast to a subset of a group
of sites. The protocols can communicate with the clos-
est available sites and resort to more distant sites when
the nearby ones fail. By varying the reply count, they
can be used as a fault-tolerant one-to-one communication
mechanism that contacts ‘spare’ replicas on failure, or as
a one-to-many multicast for contacting several replicas at
once.

Quorum multicast protocols are also useful for their
clear definition of failure detection and its fault-tolerance.
They can be used to approximate actual failure detection
with high probability. The ability to retry communications
makes quorum multicasts more robust in the face of tran-
sient network problems than a simple multicast protocol,
making our protocols a convenient mechanism for building
higher-level fault tolerant mechanisms.

We can choose between the protocols depending on
whether the probability of success, operation latency, or
message count are more important. When message failure
is unlikely, the protocols all require about the same la-
tency, though naive requires more messages than the other

three. As thelikelihoodof message failureincreases, count
provides the best chance of successfully completing an op-
eration and the lowest latency, while reschedule uses the
fewest messages. However, under pathological conditions
the protocols behave quite differently. Count can send
many messages and take several seconds when no replicas
are available. Retry is perhaps a more reasonable choice
under pathological conditions, succeeding less often than
count but taking between half and one-fifth as much time.
If availability is not of great importance, reschedule and
naive both perform much better than the other two proto-
cols under high-failure conditions, since they do not retry
messages for extended periods of time.

Acknowledgments
John Wilkes, of the Concurrent Systems Project at

Hewlett-Packard laboratories, provided insight during the
initial research, and helped improve the presentation of
this paper. George Neville-Neil, at UC Berkeley, and the
anonymous reviewers also provided helpful comments.

References
[l] K. P. Birman and T. A. Joseph. Reliable communica-

tion in the presence of failures. ACM Transactions on
Computer Systems, 5(1):47-76 (February 1987).

[2] D. R. Boggs. Internet broadcasting. Technical report
CSL-83-3 (October 1983). Xerox Palo Alto Research
Center, CA.

[3] D. R. Cheriton and W. Zwaenepoel. One-to-many in-
terprocess communication in the V-system. Technical
report STAN-CS-84-1011 (August 1984). Computer
Systems Laboratory, Stanford University.

[4] D. Comer. Internetworking with TCPIIP: principles,
protocols, and architecture (1988). Prentice Hall, En-
glewood Cliffs, NJ.

[5] E. C. Cooper. Circus: a replicated procedure call fa-
cility. Proceedings of 4th Symposium on Reliability
in Distributed Software and Database Systems, pages
11-24 (October 1984).

[6] H. Garcia-Molinaand B. Kogan. An implementation of
reliable broadcast using an unreliable multicast facility.
Proceedings of 7th Symposium on Reliable Distributed
Systems, pages 101-1 1 (10-12 October 1988).

[7] D. K. Gifford. Weighted voting for replicated data. Pro-
ceedingxpf 7thACM Symposium on Operating Systems
Principles, pages 150-62 (December 1979).

[8] R. Golding and D. D. E. Long. Accessing replicated
data in a large-scale distributed system. International
Journal in Computer Simulation, l(4) (1991, to ap-

[9] R. A. Golding. Accessing replicated data in a large-
scale distributed systems. Master’s thesis; published
as Technical report UCSC-CRL-91-18 (June 1991).
Computer and Information Science Board, University
of California at Santa Cruz.

pear).

496

[lo] B. Martin, C. Bergan, and B. Russ. PARPC: a system
for parallel procedure calls. Proceedings of 1987 In-
ternational Conference on Parallel Processing (1 987).

[111 R. M. Metcalfe and D. R. Boggs. Ethemet: distributed
packet switching for local computer networks. Com-
munications of the ACM, 19(7):395-404 (July 1976).

[12] P. Mockapetris. Domain names - concepts and facil-
ities. Request for comments 1034 (November 1987).
ARPA Network Working Group.

[13] J . -E Paris, Voting with witnesses: a consistency
scheme for replicated files. 6th International Confer-
ence on Distributed Computer Systems, pages 606-12
(1986).

[141 J. Postel. Internet control message protocol, Request
for comments 792 (September 1981).USC Information
Sciences Institute.

[151 J. S. Quarterman and J. C. Hoskins. Notablecomputer
networks. Communications of the ACM, 29(10):932-
71 (October 1986).

[16] K. Trivedi. Probability and statistics with reliability,
queuing, and computer science applications (1982).
Prentice-Hall, Englewood Cliffs, NJ.

497

