
Quorum-oriented Multicast Protocols for Data Replication 

Richard A. Golding* and Darrell D. E. Long t 
Computer and Information Sciences Board 

University of Califomia, Santa Cruz 
Santa Cruz, CA 95064 

Abstract 
Many wide-area distributed applications use replicated 

data to improve the availability of the data, and to improve 
access latency by locating copies of the data near to their 
use. This paper presents a new family of communication 
protocols, called quorum multicasts, that provide efficient 
communication services for widely replicated data. Quo- 
rum multicasts are similar to ordinary multicasts. which 
deliver a message to a set of destinations. The new proto- 
cols extend this model by allowing delivery to a subset of 
the destinations, selected according to distance or expected 
data currency. These protocols provide well-defined fail- 
ure semantics, and can distinguish between communication 
failure and replica failure with high probability. We have 
evaluated their performance, taking measurements commu- 
nication latency and failure in the Internet. A simulation 
study of quorum multicasts shows that they provide low 
latency and require few messages. A second study that 
measured a test application running at several sites con- 
jirmed these results. 

1 Introduction 
We are investigating a new family of communication 

protocols that we term quorum multicasts. These protocols 
are efficient and convenient for implementing replicated 
and distributed applications. They provide a communica- 
tion mechanism similar to traditional multicast protocols, 
but unlike other multicast protocols, the quorum multicast 
protocols communicate with just a subset of the set of desti- 
nations. The quorum multicast protocols can dynamically 
select this subset to be the closest available destinations, 
limiting the portion of the internetwork affected by any 
particular multicast. Such protocols are useful when im- 
plementing replication protocols based on voting or when 
communicating with one of a group of replicas in a fault- 
tolerant manner. 

When systems dispersed over a wide area are to access 
the same data, that data can be replicated. Several sites in 
the network maintain copies of the replicated data. Repli- 
cated datacan be more fault-tolerant than unreplicated data, 
and its use can improve performance by locating copies of 
the data near to their use. Copies of replicated data are 
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held at a number of replicas that consist of storage and a 
process that maintains the data copy. A client process can 
communicate with the replicas to read or update the data. 
Both the clients and the replicas reside on hosts, which are 
connected using an internetwork consisting of local-area 
networks with gateways and point-to-point links. When a 
host sends a message to another host, the message will be 
forwarded through (perhaps many) gateways and links to 
its destination. 

Communication between the client and the replicas is 
performed according to a replication protocol that pro- 
vides the client with the illusion of a single data object. 
This is more complex than using a single copy of the data, 
since operations must be coordinated among the replicas. 
Replication protocols hide this complexity by providing a 
set of operations performed by clients and a set performed 
by replicas: clients can read and update the data, while 
replicas perform operations such as failure recovery, cre- 
ation of new replicas, and information propagation between 
replicas. 

Replication protocols are constructed using lower-level 
communication mechanisms. Most networks provide one- 
to-one datagram and byte stream protocols, and many pro- 
vide limited broadcast or multicast facilities. This paper is 
concerned with a version of multicast protocols, the quorum 
multicast, that is particularly well-suited for implementing 
a replication protocol. 

Many existing wide-area systems, such as airline reser- 
vation systems and library card catalogues, do not use repli- 
cation techniques, relying instead on large central systems. 
This is in part due to the beliefs that replication is in- 
convenient when compared to centralized solutions and 
that replicated data provide poor end-to-end performance. 
Replication can provide good performance when quorum 
multicasts are used. In other work [8] we have shown that 
they are a convenient mechanism for constructing replica- 
tion protocols. 

2 Performance measures 
There are several measures that can be used to eval- 

uate the performance of replicated data. These include 
the latency of operations, the amount of message traffic 
caused by an operation, and the data availability. Though 
the ideal protocol would provide the highest availability 
with the lowest M c  and latency, trade-offs between these 
measures must be made. The scale of the Internet further 
complicates protocol performance, for a protocol that per- 
forms well in a local-area network may not scale to the 
world-wide Internet. We will show how quorum multicast 
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protocols contribute to good availability while using fewer 
messages and requiringless latency than a simple multicast. 

Wide-area networks contain many more systems that 
might share resources, implying that the potential load 
on highly utilized components in an intemetwork is much 
higher than the load on components in a LAN. The poten- 
tial users of an application at a local site number at most a 
few hundred to a few thousand, while the number of poten- 
tial users of a wide-area application is orders of magnitude 
larger. Systems such as the Domain Name Service [ 121 and 
Usenet [151 show that the load on some applications scales 
with the number of users. 

Sending a message between any two hosts on an in- 
ternetwork requires a variable amount of time, termed the 
communication latency. The latency depends on the load 
on the network and the available routes. In a wide-area in- 
ternetwork, communication latency can be the predominant 
delay for operations on the replicated data, which often in- 
volve only a few disk accesses and a small amount of com- 
putation. Communication with nearby replicas requires a 
few milliseconds, while access times for distant replicas 
often require several hundred milliseconds for communi- 
cations across a continent. and as long as several seconds 
when satellites are involved. 

The amount of message traffic required for an operation 
governs the degree the operation will interfere with other 
communication in the network. The number of messages, 
their size, and their destinations contribute to this effect. 
A communication protocol will cause less interference if 
it can send a message to a nearby host since the message 
will traverse fewer intermediaries. Broadcast messages on 
a LAN allow replication protocols to send requests to all 
replicas in one message, while a separate message must 
generally be sent to each replica in an internetwork. 

The availability of a service can be defined as the like- 
lihood of providing correct service at a given instant [16]. 
This must be contrasted with reliability, the probability of 
providing correct service during a period of time. Highly- 
available applications must be fault-tolerant: they must 
continue to provide service even when parts of the sys- 
tem have failed. Intemetworks are unreliable, meaning 
they lose and duplicate messages from time to time, and 
may deliver them out of order. Hosts can use timeouts 
and acknowledgments to detect with high probability that 
a message has not been received. 

3 Multicast protocols 
We have developed a family of quorum multicast com- 

munication protocols that can take advantage of good 
replica placement. These protocols send a multicast to a 
subset of a group of replicas, rather than to the entire group. 
They first use the closest available replicas, falling back on 
more distant replicas when nearby ones are unavailable, 
and are parameterized so that the replication protocol can 
provide hints to further improve performance. Replication 
protocols can be implemented using them, limiting the cost 
of message uaffic and using nearby replicas for low latency. 

A communication protocol that is to work well in inter- 
networks must address their particular performance char- 
acteristics: long, variable latency and occasional high mes- 
sage loss. These characteristics make some techniques used 
for replication in a local-area network inappropriate for in- 
ternetwork use. The protocols should not require broadcast, 

but instead send messages to replicas in a more controlled 
fashion. The protocols should be sensitive to the communi- 
cation latency of replicas, and should tend to communicate 
with nearby replicas, providing lower access latencies and 
limiting the portion of the intemetwork afkcted by an ac- 
cess. They should respond to changes in network topology 
and performance, perhaps by communicating with different 
replicas. The protocols should also address the problems 
associated with transient failures by resending messages to 
replicas. 
3.1 Existing multicast protocols 

Quorum multicast protocols are a specialization of ordi- 
nary multicastprotocols. Ordinary multicast sends a mes- 
sage to a set of destinations in one operation. Replication 
protocols can use multicast to send a message to all avail- 
able replicas, later receiving a number of responses from 
some or all of them. Simple request-response multicast 
protocols define a simple interface: 

multicast(message, replica set) +- reply set 
The message is sent to all replicas in the set. 
The operation reports no exceptions. 

Several researchers have considered the problem of pro- 
viding a multicast facilityon an internetworkthat has no in- 
herent broadcast capability. Boggs [2] developed directed 
broadcast capabilities for internetworks that deliver a mes- 
sage to all hosts on a network segment, even if the sender is 
not connected to that segment. Directed broadcast cannot 
provide significant performance gain when each replica is 
located on a separate subnet. Garcia-Molina and Kogan 
[6] extend internetwork broadcast algorithms with a novel 
mechanism that provides a reliable multicast facility on an 
internetwork with unreliable multicast, even if the network 
can partition. 

In contrast to this work, the Isis system [l]  provides 
a distributed programming environment based on reliable 
atomic multicast in a local area. It provides specialized 
protocols to multicast to a process group, providing strong 
guarantees on the ordering and atomicity of delivery and 
failure detection. 

Many other researchers have investigated multicast pro- 
tocols as part of distributed operating systems. Cheriton 
[3] used multicast with distributedprocess groups as a pri- 
mary communication mechanism in the V system,alocally- 
distributed operating system at Stanford University. 

Some Rpc systems have provided one-to-many and 
many-to-many communication semantics similar to a 
request-response multicast protocol. The Circus replicated 
RPC system [5] extended RPC to include replicated calls 
to a group of processes, called a troupe; each process in 
the troupe was required to perform the same computation 
and issue the same RPCs in the same order. The Parallel 
Remote procedure Call (PARPC) system [ 101 implemented 
one-to-many replicated procedure calls. Replication proto- 
cols could be implemented in both these system using only 
a few lines of code. 
3.2 Quorum multicast protocols 

We now present designs for a variant of multicast, the 
quorum multicast protocols. The design is guided by four 
goals: make use of proximity; communicate with subsets 
of the destinations; adapt to changing network conditions; 
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and minimize latency and message traffic. Some of these 
goals conflict, so we will present protocols that trade one 
for another. 

Quorum multicast protocols send a message to a subset 
of the destinations. For example, many replication proto- 
cols require that a simple majority of the replicas perform 
an operation, while others require only one or two replicas. 

The minimum number of destinations required is speci- 
fied by a reply count parameter. In many cases the message 
need only be sent to enough of the closest replicas to sat- 
isfy the requirement, avoiding message traffic to the most 
distant replicas. ‘Closeness’ can be defined as ‘fastest to 
respond’ or as ‘least number of hops’. Of course, this 
multicast should be fault-tolerant, using more distant repli- 
cas when those nearby are unavailable. The protocol may 
not be able to meet the reply count if some of the repli- 
cas are unavailable. Replicas can be unavailable due to 
host failure, replica failure (perhaps due to insufficient re- 
sources), network gateway or link failure, or controlled 
shutdown. Since replication protocols generally require 
request-response communication, the responses to a mul- 
ticast serve as acknowledgment that the message was re- 
ceived and processed. 

The semantics of quorum multicast define the interface: 

quorum-multicast(message, replica set, reply 

The message is sent to at least a reply count of 
the replicas. Exceptions: reply count not met. 

count) + reply set 

The quorum multicast protocols maintain an expected 
communication latency for each possible host. When a 
request is issued to communicate with q members of a set 
of replicas, the communication protocol can order the set 
by expected latency and communicate with the q closest 
replicas. If responses are not received from all q within 
a certain time, then messages can be sent to more distant 
replicas. The delay before sending to distant replicas is 
determined by the parameter d .  The expected latency can 
be determined by measuring recent performance, on the 
assumption that replicated operations will be performed 
much more often than the structure of the network changes. 
Many Internet protocols use moving averages of recent 
behavior to determine such expectations [4]. 

The two extremes of sending all messages at once or 
sending as few messages as possible are not always appro- 
priate for all applications. Three of the new protocols are 
parameterized by a delay parameter 0 5 d 5 1 that allows 
an application to specify an intermediate position, where 
sending more messages than strictly necessary is used to 
improve operation latency. When d = 0, the protocol will 
not wait to send to distant replicas. When d = 1, the proto- 
col waits until a message failure is reported before sending 
to distant replicas. Since message failure is detected using 
timeout, when d < 1 the protocol will wait some fraction of 
the timeout period before sending to more distant replicas. 

If the communication protocol has not received a re- 
ply from a replica after some amount of time, the protocol 
assumes that the message has failed. After some number 
of messages have failed, the protocol declares the replica 
unavailable and does not attempt to retransmit messages 
until the next communication request. Some protocols will 
only try sending a message to a replica once, while other 

protocols will try several times before giving up. This 
persistence is a tunable parameter in one of our protocols. 
Once a protocol has declared enough replicas unavailable, 
it will return a negative indication to the replication pro- 
tocol and abandon the operation. Our measurements of 
the Intemet, detailed in another report [9], show that short 
transient failures comprise more than three-fourths all mes- 
sage failures. They also show that long transient failures 
are uncommon, so a protocol can confidently declare host 
failure after observing only a few lost messages. 

In the next sections we will present four quorum mul- 
ticast protocols. The first, called naive, is a straightfor- 
ward implementation of multicast that sends messages to 
all replicas, providing a baseline to which the other proto- 
cols can be compared. The second, called reschedule, uses 
the delay parameter to send to fewer replicas. The third and 
fourth, called retry and count, send to replicas according 
to the delay parameter, but will retry messages to replicas 
after a first message has failed. 

3.2.1 The naive protocol 

The first protocol, a simple multicast, is called naive. It 
sends one message iteratively to all replicas. Replies are 
counted, and when a reply count has been obtained the 
protocol returns, indicating success. When a reply or a 
failure has been observed for every replica without reaching 
the reply count it declares the access a failure. 

There are two problems with this protocol: it neither ac- 
counts for transient communication failures nor uses prox- 
imity to improve performance. It uses more messages than 
are necessary, though it can quickly either meet the reply 
count or decide that it is unobtainable. It also has a persis- 
tence of one message, that is, the failure of just one message 
to a host causes the protocol to treat the host as unavailable. 

3.2.2 The reschedule protocol 
Reschedule addresses the second problem with naive. This 
protocol sends fewer messages than naive, though often at 
the expense of extra latency. It still has a persistence of one 
message, so it does not solve the transient communication 
failure problem. It orders replicas by expected communi- 
cation latency to determine the order in which messages 
should be sent, causing it to communicate with the closest 
available replicas. It attempts to send the fewest possible 
messages by first sending messages to the q closest replicas, 
and to additional replicas as the earlier messages fail. 

This approach has a problem: it will take much longer 
than naive to complete an operation when nearby replicas 
have failed. The protocol cannot determine that a message 
has failed until a timer has expired. Since timers should not 
expire before the acknowledgment can arrive, the timeout 
period is usually set to a large value - commonly chosen 
to cover more than 99% of all messages. Our studies of 
the Internet showed that this was usually about three times 
the average reply latency. If additional messages are sent 
earlier, even though it is possibly a reply is on it way, the 
operation can complete more rapidly without wasting large 
numbers of messages. The delay parameter d can be used 
to tune the protocol in this way. 

When d = 0, reschedule is identical to naive: mes- 
sages are sent to all replicas right away because the delay 
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timer for sending the next message expires immediately. 
When d = 1, reschedule only sends additional messages 
when communication failures are detected When d = 1, 
messages are sent to additional replicas either if a failure 
is reported, or if at one-half of the longest message failure 
timeout. 

This protocol meets the design goals better than the 
naive protocol. It sends to the closest replicas lirst, which 
tends to minimize message traflic if the nearest replicas 
are available. It also will communicate with only as many 
replicas as are needed to meet the reply count. The protocol 
will adapt somewhat to changing network conditions, in 
that it orders the replicas by distance, and uses timeouts 
to observe failures. However, since the protocol only has 
a persistence of one message, it cannot handle transient 
communication failures. We discuss the performance of 
this protocol, in terms of fault-tolerance, messages and 
latency, in $4. 

3.23 The retry protocol 

Neither naive nor reschedule accommodate transient fail- 
ures. The next protocol, retry, is a modification of resched- 
ule that retransmits lost messages in the hope that the failure 
was due to some transient problem and the next message 
will be delivered and acknowledged. It continues to re- 
transmit until either the reply count has been met or until 
all replicas have been tried at least once. Such persistence 
improves both the success latency and the probability that 
the reply count will be met, though at the cost of sending 
more messages and possibly at the cost of having longer 
failure latencies. 

Initially, the retry protocol sends messages to the q 
closest replicas, where q is the reply count. When the pro- 
tocol receives a reply, it increments the count of successful 
replies. If sufficient replies have been obtained it declares 
the access a success. When it finds a message has failed 
the protocol schedules a retry for that replica. The 6rst 
retry occurs immediately, but later retries are delayed. The 
performance simulators set each retry delay twice as long 
as the previous (a choice inspired by the collision-handling 
techniques used in Ethernet [ 111). The delay helps to avoid 
sending vast numbers of messages to a nearby replica that 
has failed. As with reschedule the delay parameter d is 
used to determine when to send messages to distant repli- 

The retry protocol terminates with failure when it has 
received at least one reply or a timeout for every replica 
and the reply count has not yet been met. As a result this 
protocol has a variable persistence. Nearby replicas may be 
retried many times before a distant replica can reply. In the 
simulator, which doubles the delay after each message, the 
expected number of retries for a replica r is bounded above 
by log, ( T n / U r ) ,  where a,  is the expected communication 
latency of the rth replica, and T, is the failure timeout 
period for the most distant replica. 

Cas. 

3.2.4 The count protocol 

The count protocol is similar to retry, except that it has a 
fixed persistence. It maintains a counter for each replica 
and stops retrying that replica when 1 messages have been 

sent to it. The protocol terminates when all replicas have 
been tried 1 times or the reply count is met. 

This protocol improves on retry in a number of ways. 
By trying each replica a fixed number of times, it will 
meet the reply count more often than retry, since distant 
replicas will be tried more times. This bound causes the two 
protocols to exhibit significantly different behaviors when 
message failures are likely. In addition, retrying a fixed 
number of times evens out the number of times messages 
are sent to each replica, preventing the protocol from trying 
a nearby failed replica many times. Our message failure 
measurements suggest that retrying more than a few times is 
usually of little value, since communication failures rarely 
lasted more than two or three messages. In our performance 
evaluation we used an arbitrary limit of 1 = 5. This protocol 
uses the same delaying techniques as the retry protocol. 

4 Performance evaluation 
We used discrete-event simulation and measurement of 

a sample application to analyze the performance of these 
protocols. The simulation experiments also measured the 
sensitivity of the results to the communication latency dis- 
tribution, the length of message failure timeouts, and the 
overall message failure rate. Some of the simulations used 
traces of Internet communication behavior to determine the 
communication latency and failure of each message, while 
other used synthetic distributions derived from the traces. 
In this section we will summarize our findings; details on 
the simulation methods can be found in [8], and a more 
detailed report covering the performance evaluation and 
network measurements is available [9]. 

4.1 Simulation techniques 
The simulations used traces of Internet communication 

behavior that we obtained using the ping program, which 
sends ICMP echo messages to remote hosts [14]. The re- 
mote host is expected to reply to echo messages as soon 
as possible. We collected traces of communication latency 
and message failure between a host at UC Santa Cruz and 
125 randomly selected Sun4 systems throughout the In- 
ternet. A set of several samples were taken for each host 
every 20 minutes, over a period of seven days. These traces 
do not capture any effects that are specific to quorum mul- 
ticast protocols, such as congestion at the client or nearby 
gateways. Our measurements of an actual implementation 
confirm that this limitation does not invalidate the simulated 
results. 

We used these traces to drive a simulator. The simulator 
performed several thousand runs, which consisted of select- 
ing five hosts from the 125 sampled, then simulating one 
multicast operation with a reply count of three for each of 
the sets of samples recorded for those hosts. When a host 
was to send a message, the failure or latency was deter- 
mined by looking up a sample in the trace. By performing 
several thousand runs, we obtained results with confidence 
intervals of less than 5% on all values. 

The simulation also allowed us to examine the behavior 
of each of the four multicast protocols (naive, reschedule, 
retry, and count) under artificially high failure conditions 
that could not be created on the actual Internet. These 
simulations involved deriving synthetic distributions for 
communication latency and failure from the traces. 
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4.2 Direct measurement techniques 
We constructed and measured a simple application run- 

ning on the Intemet to substantiate the simulation results. 
This application was structured as a client communicating 
with servers. The client ran on a few hosts, and sent UDP 
packets to the servers. The server was a simple daemon that 
listened for packets on a particular port, and echoed them 
back to their origin. The source code to the server was 
published on Usenet, and several people elected to run it on 
their system. We grouped the participating hosts into sets 
of five, some of which contained hosts spread evenly over 
Europe and North America, and some containing hosts in 
smaller regions. The client multicast to each group of five, 
using a reply count of three. The latency results have 95% 
confidence intervals generally between 10% and 1536, and 
message count results less than 5%. 

The measurement experiment validated most of the re- 
sults obtained by simulation, since the relative performance 
of each protocol is similar. The primary differences arose 
because the hosts showed fewer failed messages than those 
in the traces that drove the simulations. An error in the 
client invalidated the results for failed operations for the 
count protocol, but successful operations showed the ex- 
pected behavior. Overall, the measurements confirm the 
conclusion that quorum multicast protocols can provide 
significant performance advantages for wide-area applica- 
tions, and show that there is a trade-off among latency, 
traffic, and operation success. 
4.3 Operation success 

Operation success is measured by the fraction of all 
multicast operations that were successful in meeting the 
reply count. The naive and reschedule protocols each 
exhibited an approximately constant success fraction, at 
about 82% of all operations. Since these two protocols 
each attempt to send at most one message to a replica, the 
delay fraction has no effect on the probability of success. 
The retry protocol, however, retries nearby replicas more 
times when the delay parameter d is larger, since this allows 
more time for retries. Retry succeeds in more than 94% of 
all cases when d 2 0.1 , while count performs even better. 
This shows that persistence has a significant positiveeffect 
on protocols for intemetworks. 

The data obtained by measuring a test application show 
that all four protocols met the reply count more than 95% 
of the time. Count succeeded more often than the other 
protocols for almost all values of d, with retry generally 
succeeding more often than naive and reschedule. These 
results are similar to the simulation results. 
4.4 Latency 

For operations that are able to meet their reply count, 
naive is generally the fastest of the four protocols, since it 
always sends messages to every replica immediately. The 
communication latency for the other protocols increases 
approximately linearly as the delay parameter d increases, 
taking about the same amount of time as naive at d = 0. 
Of the three, count takes longer than retry, which in turn 
takes very slightly longer than reschedule. Reschedule 
takes less time than the other two because of the rare cases 
where the retry and count protocols must send more than 
one message to distant replicas to obtain the reply count. 

The performance of the four protocols is quite different 
when the reply count cannot be met - all four protocols 
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FIGURE 1: Communication latency for d operations. 

require several seconds to declare failure. While this is 
quite a long time, failures constitute only a few percent 
of all operations and the latency is not onerous. Naive 
is the baseline measure, requiring about 4.8 seconds to 
determine that a reply count cannot be obtained - almost 
an order of magnitude longer than was generally required 
for success. The latency of the other three protocols again 
increases roughly linearly in d.  Reschedule requires more 
time than naive since it must detect just as many failed 
messages, but it may have delayed sending some of those 
messages. Retry requires more time than all the others for 
most values of d. Count performs much better than any of 
the other three protocols. It avoids the problem of having 
to communicate with the most distant replica, since it can 
stop when sufficient nearby replicas have failed. 

The measured results differ slightly because fewer mes- 
sages failed. While simulation indicated that reschedule 
takes more time than naive to declare failure, and that this 
time increases with d ,  the measured results show that the 
two have quite similar latencies. The sample size is small 
enough that this result is inconclusive. 

Figure 1 shows the overall latency for each protocol. 
Since the probability of meeting the reply count is quite 
high, the values for successful operations predominate in 
these graphs. However, it is worth noting that even with 
a high probability of success, the low failure latency of 
count makes it the fastest of the three quorum multicast 
protocols, consistently faster even than naive. Resched- 
ule has the highest latency of the three for all values of d. 
Retry is better than naive or reschedule for values of d 
less than about 0.6. This is the reverse of their positions for 
successful operations. The latency of the quorum multicast 
algorithms increases approximately linearly as d increases. 
The overall measurement results are consistent with simu- 
lation results since the overall success rate was in excess of 
958, despite the differences in failure behavior. 
4.5 Messages 

The naive protocol always sends one message to each 
host. For successful operations, reschedule sends fewer 
messages, except at d = 0 when the two algorithms are 
identical. This savings happens when reschedule avoids 
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FIGURE 2 Messages for all operations. 

sending messages to distant replicas. Retry often uses at 
least as many messages as naive since it must try each 
replica at least once before declaring failure, and messages 
to nearby hosts may be retried. Count uses more messages 
than naive for low values of d, behaving much like retry: 
sending messages to all replicas and occasionally resending 
when a message fails. When d is set to a higher value, 
the protocol behaves more like reschedule, except that it 
resends (on the average) about one message because of 
failure. The differences between the protocols were less 
accentuated in the measurement results. The hosts in the 
measurement experiment exhibited fewer message failures 
than did those measured for traces, and the three protocols 
all behave identically when no failures occur. 

The four protocols perform quite differently when they 
are unable to obtain a reply count of responses. Naive 
requires exactly five messages. Reschedule also requires 
exactly five messages, since it will generally send to all 
replicas before it can determine that the operation has failed. 
The retry and count algorithms will generally send more 
than five messages before they can declare failure, but the 
difference between the two is dramatic. The retry protocol 
sends between three and six times as many messages as 
the other protocols, while count usually sends only one 
additional message. The difference is due to the extra 
control that count exercises over sending messages - no 
replica will be tried more than a fixed number of times. 
Retry may try nearby replicas a great many times: if a 
nearby replica has failed, it will have time to retry many 
times while waiting for a response (or timeout) from the 
most distant replica. 

Figure 2 shows the overall number of messages sent by 
each protocol. Once again, since the probability of meeting 
the reply count is high, the values for successful operations 
predominate. However, the large number of messages sent 
by retry make that the least attractive quorum multicast 
protocol. The measurement results confirm the simulation, 
though the low number of message failures makes retry 
competitive with the other protocols. 
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 FIGURE^: Total time, varying failure probability, d = 0.5. 

4.6 Effect of failure probability 
The simulation experiments also examined the perfor- 

mance of all four protocols under different failure condi- 
tions. The Internet measurements suggest that message 
failure is usually unlikely, but when a host becomes parti- 
tioned from the rest of the network,or there is a pathological 
condition in the Internet, it is nearly certain that a message 
will fail to reach its destination. The simulation allowed 
us to evaluate quorum multicast performance under these 
worst-case conditions. 

For these experiments we fixed the delay parameter d 
at 0.5, because it was close to neither extreme. The sim- 
ulations used synthetic hyperexponential distributions for 
communication latency and uniform message failure prob- 
ability, since we could not manipulate the Internet to obtain 
traces with specific message failure rates. Message failures 
were treated as independent events occurring with a fixed 
probability f .  Values off in the range0.2 to 0.3 are similar 
to the behavior of messages in the traces. 

As expected, the count was able to successfully gather 
a reply count of responses more often than the other pro- 
tocols, and retry succeeded less often than count. Both 
these protocols succeed more often than reschedule and 
naive, which only try each replica once. The data for naive 
match availability figures for data replicated using Major- 
ity Consensus Voting [7], estimated using Markov analysis 
and assuming reliable communication channels [13]. In 
that study, hosts were only checked once for availability, 
just as with the naive and reschedule protocols in these 
experiments. 

Figure 3 shows the overall communication latency at 
different values of f .  Naive requires the least time, as ex- 
pected. At low failure probabilities, reschedule requires 
more time than the other protocols, but at high failure prob- 
abilities it does not retry failed messages and so can com- 
plete - with failure - in little more time than naive. At high 
failure probabilities, the retry protocol requires one-fifth 
the latency of the count protocol, since it sends only one 
message to the most distant host. 

Figure 4 shows the overall number of messages sent by 
each protocol. As always, naive sends one message to each 
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FIGURE 4: Total messages,varying failure probability, d = 0.5. 

replica regardless of conditions. The number of messages 
sent by reschedule approaches the number of replicas as 
the probability of failure increases, since it becomes more 
likely that the protocol will have to send a message to all 
replicas. Retry sends more messages than reschedule, 
since it will retry messages that fail. This becomes in- 
creasingly important as the probability of failure increases. 
Count sends slightly fewer messages than retry, particu- 
larly when the probability of message failure f approaches 
unity. The count protocol is limited to sending at most 25 
message (5 replicas, 5 messages per replica), while retry 
can send a nearly unbounded number of messages in the 
worst case. 

5 Conclusions 
In this paper we have presented a family of quorum 

multicast protocols, called naive, reschedule, retry, and 
count. We have shown that these protocols provide good 
availability while using fewer messages and requiring less 
latency than a simple multicast. 

These protocols provide multicast to a subset of a group 
of sites. The protocols can communicate with the clos- 
est available sites and resort to more distant sites when 
the nearby ones fail. By varying the reply count, they 
can be used as a fault-tolerant one-to-one communication 
mechanism that contacts ‘spare’ replicas on failure, or as 
a one-to-many multicast for contacting several replicas at 
once. 

Quorum multicast protocols are also useful for their 
clear definition of failure detection and its fault-tolerance. 
They can be used to approximate actual failure detection 
with high probability. The ability to retry communications 
makes quorum multicasts more robust in the face of tran- 
sient network problems than a simple multicast protocol, 
making our protocols a convenient mechanism for building 
higher-level fault tolerant mechanisms. 

We can choose between the protocols depending on 
whether the probability of success, operation latency, or 
message count are more important. When message failure 
is unlikely, the protocols all require about the same la- 
tency, though naive requires more messages than the other 

three. As thelikelihoodof message failureincreases, count 
provides the best chance of successfully completing an op- 
eration and the lowest latency, while reschedule uses the 
fewest messages. However, under pathological conditions 
the protocols behave quite differently. Count can send 
many messages and take several seconds when no replicas 
are available. Retry is perhaps a more reasonable choice 
under pathological conditions, succeeding less often than 
count but taking between half and one-fifth as much time. 
If availability is not of great importance, reschedule and 
naive both perform much better than the other two proto- 
cols under high-failure conditions, since they do not retry 
messages for extended periods of time. 
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