
Developing a Complete Integrated Real-Time System

Scott A. Brandt, Scott Banachowski, Caixue Lin, and Joel Wu
Computer Science Department

University of California, Santa Cruz
{sbrandt, sbanacho, lcx, jwu}@cs.ucsc.edu

Abstract

Modern systems are frequently called upon to support
mixes of applications with different types of timeliness re-
quirements. Current solutions for supporting such mixes
are ad hocand do not guarantee the requirements of all
types of processes. We discuss the need for better systems
support for such mixes and present partial solutions toward
the development of such systems. These include an inte-
grated real-time scheduler that focuses on best-effort per-
formance, a slack scheduler designed to improve the per-
formance of soft real-time processes, and an integrated soft
real-time disk bandwidth manager.

1. Introduction

Application timeliness requirements vary from hard
real-time to best-effort with many flavors in between, in-
cluding soft real-time, firm real-time, rate-based,etc.Many
application scenarios ranging from desktop multimedia to
large distributed real-time systems require the ability tosi-
multaneously support these different types of requirements,
yet existing systems provide little direct support for more
than one type. We argue that (1) all systems should support
the full range of possible timeliness requirements, and (2)
this can only be accomplished with resource management
algorithms that are hard real-time at their core. Toward
this goal we present a CPU scheduler appropriate for use
as the only scheduler in such a system, a slack scheduling
algorithm designed to optimally address the needs ofother
tasks, and a disk bandwidth manager capable of handling a
variety of timeliness requirements.

Our CPU scheduler, HodgePodge, supports integrated
hard real-time, soft real-time, and best-effort scheduling.
Unlike many previous real-time schedulers, HodgePodge
focuses primarily on the performance of best-effort appli-
cations running concurrently with hard or soft real-time ap-
plications. Our results demonstrate that it is feasible and
practical to combine the processing of these different types
of applications without degrading the performance of any

of them. We believe this is a necessary first step towards
the development of the type of integrated real-time systems
that we envision.

In integrated systems with many different types of pro-
cesses, hard (and occasionally soft) real-time tasks fre-
quently over-reserve resources in order to ensure that they
meet deadlines. Whenever these processes use less re-
sources than they have reserved, dynamic slack is gener-
ated. The performance of soft and non-real-time processes
heavily depends upon the availability and efficient distri-
bution of this slack. Integrated real-time systems therefore
demand the development of algorithms that distribute slack
so as to best support the goals of the other processes. Our
slack scheduling algorithm, SLASH, does this by distribut-
ing slack as soon as it is available, to the process with the
earliest deadline, and allows jobs of a task to borrow re-
sources from future jobs of the same task. This provides
the resources to the most critical job as early as possible
while guaranteeing the correctness of the schedule.

Real-time systems research often focuses on CPU re-
source management. Other resources, and especially I/O
devices, are managed minimally, if at all. Solutions that
do address these resources tend to focus on a single type
of timing requirements: hard, soft, or non-real-time. How-
ever, integrated systems that will support a variety of timing
requirements must manage resources other than the CPU,
and must do so in ways that directly support different tim-
ing requirements. Our Hierarchical Disk Sharing (HDS)
algorithm begins to address this problem in the domain of
disk I/O. Based on a technique developed for networking,
HDS partitions the disk bandwidth and allows processes
to reserve fixed or relative shares of the available band-
width. HDS addresses some of the unique issues that arise
in managing disk I/O, including the non-uniform (and only
partially deterministic) service times associated with disk
requests.

So far we have developed CPU and disk allocation al-
gorithms for integrated systems, but are just beginning to
combine them into a single system. The following sections
discuss HodgePodge, SLASH, and HDS in more detail.

2. HodgePodge

General-purpose operating systems are designed to
serve a wide variety of applications. Yet because these sys-
tems use best-effort CPU scheduling, the growing body of
applications that have time constraints remain unsupported.
We envision a merging of real-time scheduling techniques
with general-purpose systems. The advantage comes from
two perspectives: (1) general-purpose systems need not
treat real-time applications (e.g.multimedia) in anad hoc
fashion, and (2) real-time systems need not treat non-real-
time applications in anad hocfashion.

The definition of “general-purpose” has grown to in-
clude the kind of tasks traditionally thought of as real-
time. Examples include: games, video players and en-
coders, home studio software for multi-track audio gen-
eration/recording/sequencing, voice recognition, and hard-
ware emulation tasks such as soft-modems. Many other
applications benefit from the fine-grained partitioning and
isolation of resources real-time schedulers enforce, suchas
virtual sharing of processors by web servers, or reserva-
tion of CPU for highly compute-intensive data consumers
such as scientific applications or search engines. In our
experience these applications are treated in anad hocfash-
ion. Typically, because they tolerate some degree of missed
deadlines, the tasks are scheduled in the default best-effort
manner and mostly meet deadlines because the CPU re-
source is over-provisioned (or by luck when processor load
is high). Other options include playing with theniceprior-
ity, which is not all that predictable or robust, or overriding
the scheduler by choosing a high static priority (a technique
sanctioned by a POSIX standard [12]). The latter approach
is unsafe when the task is not designed to be cooperative or
is buggy [17]. And this approach is not scalable in the case
where multiple tasks need real-time support. Our approach
is to provide an integrated real-time scheduler for all tasks.

Conversely, many real-time systems share some
general-purpose requirements. Although the primary func-
tions of flight, defense, and manufacturing control systems
are real-time, they commonly include many non-critical,
yet non-trivial, tasks that are best served using traditional
time-sharing techniques. In our experience these applica-
tions are treated in anad hocfashion. In a real-time system,
non-real-time tasks are often deemed unimportant, and left
to background processing, when they instead prefer time-
share disciplines. More sophisticated approaches use hi-
erarchies of schedulers [6, 10], allowing co-existence of
multiple schedulers for different kinds of tasks. However,
an arbitrary scheduling hierarchy may become (needlessly)
complex, and even in simple hierarchies the effect of stack-
ing schedulers must be well-understood to ensure meeting
constraints [19]. Our approach is to provide a simple mech-
anism for time-sharing the non-reserved resources of a real-

time system.
The goal of the HodgePodge (Holy-Grail, Pipe-Dream)

CPU scheduler is to support a veritable hodgepodge of pro-
cessing or timeliness constraints. HodgePodge uses a real-
time scheduler, EDF [15], for all tasks, whether they have
time constraints or not. Time-sharing is provided by a re-
source allocation layer that uses the reservation capabil-
ity of the real-time scheduler [3]. To make such a system
desirable for general-purpose, it should in all appearances
mimic a time-share scheduler except when called upon to
run a real-time task. Our previous experience showed that,
using aperiodic bandwidth servers for non-real-time tasks,
we may get behavior similar to time-share algorithms in
terms of responsiveness and overhead [2]. The novelty is
to provide time-share-like service by adapting each appli-
cation’s aperiodic server parameters during run-time based
on behavior.

2.1. The Best-effort Bandwidth Server

General-purpose systems behave unpredictably, because
it is not knowna priori which tasks will run, or when. In
contrast, a periodic real-time task is predictable: it is a se-
quence ofjobs, where each job begins at the start of a pe-
riod, and completes at or before the end of the period. Non-
real-time tasks may not resemble periodic tasks at all—
however, during execution tasks can still be modeled as a
sequence of jobs. These jobs may not begin or end in peri-
odic (or even predictable) intervals, so it is therefore natural
to treat these tasks asaperiodic.

An aperiodic serveris an algorithm that assigns peri-
odic deadlines to tasks that are not necessarily periodic,
or which have no deadlines. Modern processors have the
processing headroom for dynamic scheduling, and our pre-
vious work shows that the overhead of using an aperiodic
server for each task is akin to existing time-share sched-
ulers. It follows that it is practical to use a real-time sched-
uler as the core of a general-purpose scheduler, with aperi-
odic servers for non-real-time tasks. The advantage is pro-
viding real-time scheduling as a native feature, without re-
sorting to anad hocaddition or combination of schedulers.

The Best-effort Bandwidth Server (BEBS) is an aperi-
odic server that addresses the two main goals of time-share
scheduling: fairness and better responsiveness for interac-
tive tasks. It achieves fairness by adjusting the reservations
of tasks equally, and allocating the reclaimed slack fairly.
Slack is any CPU that is unreserved, and any reserved CPU
that is unused. IRIS [16] is a server designed to reclaim
slack fairly, and BEBS is similar to IRIS, with differences
noted in our previous report [2]. To meet the interactive
goal, the server adjusts its period according to the run-
time behavior of the task: interactive servers have shorter
periods for better responsiveness, while compute-bound

servers have longer periods (which incur less scheduling
overhead). Each server is assigned a utilization equal to a
fair-share allowance of CPU bandwidth.

2.2. A Brief Comparison

To illustrate the difference in operation between a tradi-
tional time-share scheduler and HodgePodge we describe a
simple scenario. ImagineN tasks executing, all using equal
amount of CPU. In a time-share system based on multi-
level feedback queues, such tasks will reside in the same
priority queue and receive service in round-robin quanta of
lengthq. In the worst-case the longest wait for service is
(N−1)q, and the task will receive at leastq amount of ser-
vice inq×N amount of time.

In HodgePodge, each task is assigned a reservation by
the resource allocation algorithm. In the above workload, a
reservation equal to(p := qN,u := 1/N) will, in the worst-
case, giveq amount of service inq×N amount of time, the
same as the time-share system. In HodgePodge, once set,
this reservation will be guaranteed, independent of other
activities in the system. This is an advantage over tradi-
tional time-share scheduling.

Now consider what happens if tasks differ in interactiv-
ity. In the time-share system, they will be served from dif-
ferent queues, with higher priority tasks preempting lower
priority tasks. It becomes difficult to predict exactly when
a task will receive a full quantumq of service, because the
service of its queue may be preempted by other tasks for
any unknown number of durations.

In HodgePodge, the performance of tasks is adjusted by
controlling server reservations at run-time, based on the
past task activity. Interactive tasks do not receive higher
priority, but instead receive reservations consistent with
their past execution, for example a reduced utilization but
increased periodic rate (scaled in accordance with the level
of interactivity and other factors such asnicesetting). In-
teractive tasks likely preempt less-interactive tasks because
their periodic deadlines are likely earlier when active; inthe
average case they remain responsive. However, each task
is still guaranteed a reservation, so all receive a predictable
level of service in accordance with the time-share goals.
We have found that while running a mix of real and non-
real-time applications, the performance of time-sharing in
this approach is significantly better than assigning real-time
tasks higher priorities, while at the same time there are no
violation of real-time constraints [2].

The reservation policies can be tuned to mimic the ex-
pected performance from Linux or any other time-share
scheduler. An enhancement to the algorithm also tries to
auto-detect multimedia and other periodic soft real-time
applications while they execute, and make reservations
consistent with their inferred requirements (such as by the

measured period of frame synchronizations). In this way,
the system better supports legacy periodic applications.

2.3. HodgePodge Implementation

In order to build a HodgePodge prototype and test and
use BEBS in a general-purpose environment, we imple-
mented EDF in Linux [14]. We replaced the Linux sched-
uler while leaving as much of the existing infrastructure
intact. This is not the approach we’d take if implement-
ing from scratch; the existing structure of Linux definitely
impacts our design and performance. For example, some
process accounting occurs during a periodic timer inter-
rupt that is not necessary for EDF. However, disabling
this interrupt also disables mechanisms for timeouts and
synchronization used by many device drivers and applica-
tions. Also, removing the interrupt would require signif-
icant changes to some of the process accounting. Rather
than disable and re-implement portions of the kernel, we
decided to leave them intact, and when applicable leverage
them for our purpose.

Linux uses a 1000 Hz periodic timer to drive many op-
erations (a.k.a thetick timer). We leverage this interrupt to
schedule the release of jobs. All processes in the system
are treated as sequences of jobs that begin at periodic inter-
vals. Each job has a processing budget (or quantum) equal
to u× p (determined by the reservation tuple(p,u)). When
its budget is used, a job suspends until the start of the next
period. By using the tick timer for scheduling these events,
we do not need to support arbitrary release times or periods,
and reduce the number of interrupts and task preemptions.

Because all task jobs must be released on 1 ms. inter-
vals, the minimum period of a reservation is bounded to an
integral number of milliseconds. We call the occurrence
of 1000 Hz clock interrupt amajor tick. Currently there
are no sub-millisecond periods. For this system we expect
most real-time workloads to involve multimedia rates of at
most 50 Hz, so this is currently sufficient for our purpose.

The EDF scheduler enforce reservations by using a
timer interrupt to prevent tasks from overrunning their bud-
get (similar to the R-EDF implementation [23]). Periods
are scheduled at relatively coarse-grained times, but task
budgets may be a fraction of atick interval, requiring a
higher resolution timer to trigger a reschedule when a job’s
budget expires (we use the Pentium-class APIC timer).
Thus a one-shot timer only needs to be programmed if
an expiration occurs before the nextmajor tick. This im-
plementation resembles firm timers [9], because the actual
overhead of setting up hardware is avoided when a task is
preempted before its budget expires. Also, only a single
one-shot timer must be maintained at any time, so we need
not maintain lists of timer events. The one-shot timer is
programmed to the nearest microsecond, and we call these

clock intervalsminor ticks (although unlikemajor ticks,
there are not periodic interrupts at everyminor tick).

Every task is assigned a utilizationu, which is its allo-
cated fraction of CPU, and dictates the maximum amount
of time (budgetb) it may execute per periodp (b = up).
The granularity of the one-shot timer limits the budget we
may assign to at most 1µs.1 To simplify reservations, the
system requires the utilization be set in an increment of
0.1% (1µs per ms period). Since a task must have some
utilization, this limits the number of servers we may ad-
mit to at most 1000 (however a server may service multiple
tasks, so this is not a limitation on task number).

EDF selects the task with the earliest deadline, requiring
an O(n) search ofn runnable tasks. Previous versions of
Linux (< 2.5) also requiredO(n) selection, but the newer
versions bound the search to a fixed number (locating the
first non-empty priority queue). Our EDF algorithm is not
quite as scalable as Linux’s new constant-time algorithm,
however it is better than the previous version of Linux.

We shift overhead from the selection code to the queue
insertion by keeping the run queue sorted in deadline order.
On average, inserting into an already sorted list is better—
we found that for random task sets, sorted inserts averaged
less than 3 times fewer operations than searching the un-
sorted list. This gives us less overhead than the previous
generation Linux. We are looking into further optimiza-
tions in queuing structures to reduce overload for large sets
of servers.2

2.4. Future Directions

In order to build the HodgePodge prototype and test
and use BEBS in a general-purpose environment, we im-
plemented EDF in Linux [14] by replacing the kernel’s
scheduler. Changing Linux’s CPU scheduler alone does
not make it real-time, but better equips it to handle work-
loads with time constraints. An existing problem is that
CPU used by the kernel is charged to the currently running
task, even if the work is on behalf of another. Using a tech-
nique such as Augmented CPU reservations [18] may track
the time “stolen” from tasks by OS operations, making our
CPU allocations better match reservations.

BEBS could be incorporated into a hard real-time en-
vironment by adapting techniques used by DROPS [11],
which allow time-share and real-time applications to co-
exist on a real-time micro-kernel, or RTLinux [22], which
runs Linux as a low-priority task on a real-time executive.
Both approaches treat the time-share portion of the system

1Budgets this small are impractical for Linux. We measured the aver-
age context switch time on a 2.4 Hz P4 to be about 5µs, so a task with 1µs
budget will consume more time in context switch, not to mention cache
warming, than its budget allows.

2For handling a larger number of tasks we may consider using a sorted
heap withlg(n) insertion and deletion.

as a single user-program; our approach dictates that the
time-share portion be treated as a set of servers, with each
a corresponding user-program. This is an area for future
research.

3. SLASH

The increasing demand for more powerful computing
platforms and applications requires modern operating sys-
tems capable of simultaneously supporting applications
with a variety of different time constraints. The hierarchi-
cal HLS scheduler [19], and the flat integrated RBED [3]
and closely related HodgePodge schedulers are examples.
Such systems simultaneously support (1) critical hard real-
time applications such as external signal sampling and pro-
cessing, (2) non-critical soft real-time applications such as
desktop multimedia, and (3) best-effort applications such
as compilers, word processors,etc. Hard real-time appli-
cations make worst-case resource reservations to guaran-
tee their constraints; soft real-time applications may re-
serve less than worst-case to achieve good average-case
performance; and best-effort applications generally make
no reservations beyond what is necessary to avoid starva-
tion. Any variance in execution times below what has been
reserved leads to dynamic slack—reserved but unused re-
sources. Efficient distribution of this slack to processes
whose current needs exceed their reservation can signifi-
cantly improve the performance of both soft real-time and
best-effort applications.

SLASH is a slack scheduling mechanism system specif-
ically designed to improve the performance of soft real-
time applications while guaranteeing the worst-case reser-
vations of hard real-time processes. Our evaluation shows
that SLASH reduces the number of missed deadlines and
decreases the average tardiness of late deadline for soft
real-time applications when both hard real-time and soft
real-time applications coexist. In our experiments, SLASH
always misses fewer deadlines than CBS [1], BEBS, and
CASH [5], reducing missed deadlines by 70%, 70% and
10% (respectively) in the best scenario we observed.

3.1. SLASH Design and Implementation

SLASH is implemented in RBED [3], which uses an
integrated scheduler for hard, soft, and non-real-time pro-
cesses. The low-level scheduler is earliest deadline first
(EDF). Processes use the scheduler by associating their
tasks with a rate-based server, conceptually similar to CBS
and other bandwidth servers. A server is characterized by a
reservation tuple(Bs,Ps), whereBs is the execution budget
andPs is the period (both in units of time). The server uti-
lization isUs = Bs

Ps
. A deadline occurs at the end of the each

period. Each hard or soft real-time task is associated with

0 1 2 3 4 5 6 7 8 9 10

Overrun part

Slack time

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

T1

T2

T3

Slack time

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Overrun part

0 1 2 3 4 5 6 7 8 9 10

T1

T2

T3

(a) case 1 (b) case 2

Figure 1. Drawbacks of idle-time slack management

0 1 2 3 4 5 6 7 8 9 10
Slack time

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

T1

T2

T3

Slack time

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

T1

T2

T3

(a) case 1 (b) case 2

Figure 2. SLASH solves both problems

its own server. Periodic and aperiodic best-effort tasks are
scheduled as soft real-time tasks. All other best-effort tasks
are served by one server in first come, first serve order.

SLASH combines ourSLAck Donation (SLAD) al-
gorithm [13] with the CASH slack management algo-
rithm [5]. In SLAD, when a task completes, itimmediately
donates any remaining budget to the task whose server has
the earliest deadline. This server is the most critical, the
most likely to be near the completion of its current job, and
the least likely to benefit from any later donations of slack.

Figure 1 shows two problems that can occur when slack
is only made available to tasks when all other tasks are
idle, a technique common among other algorithms. The
problems are that slack cannot be used to prevent a dead-
line miss caused by either (1) a past overrun or (2) a fu-
ture overrun. The examples show three soft real-time tasks,
T1, T2, andT3, with the following respective reservation
configurations:(B1 = 1.5,P1 = 6), (B2 = 4,P2 = 8) and
(B3 = 2.5,P3 = 10); the CPU is 100% utilized. Each task
has an actual deadline coinciding with its server deadline,
and may overrun its reserved budget. In Figure 1(a), the
first job of T1 has an actual execution time of 2, exceed-
ing its reservation by 0.5, and the first job ofT2 has an
actual execution time of 2, 2 less than its reserved bud-
get. With idle-time slack management, the overrun portion
of T1 does not resume execution until time 6, missing its
deadline. In Figure 1(b), the first job ofT1 has an actual ex-
ecution time of 1, 0.5 less than its reservation; the first job
of T2 overruns by 0.5. Again with idle-time slack manage-
ment, the slack is “pushed back” and unused until a later
idle point, resulting inT2 missing its deadline. By donating
slack to other processes as soon as it is available, SLASH
solves both of these problems. The resulting schedules are
shown in Figure 2. In both cases no task misses its dead-
line, despite the overruns.

In CASH [5], when a server becomes idle, any remain-

ing budget is recorded in a queue. When a server runs,
it first consumes all queued budgets with deadlines≤ its
own. When a server consumes its budget, it is recharged
and its deadline extended by one period, allowing it to bor-
row against its future budget to complete the current job.
This has some benefits, allowing current jobs that need
more CPU to safely borrow from future jobs of the same
task, which may need less CPU (or may borrow from still
more future jobs). Unfortunately, this borrowing may pre-
vent slack from getting to the tasks that need it most—when
a task overruns its budget, its server deadline will be post-
poned before the task completes its current job, reducing
its EDF priority and making it less likely to receive slack.

SLASH addresses this problem by combining the SLAD
EDF-based slack donation mechanism with the CASH
greedy budget replenishment mechanism, donating slack to
the tasks that need it the most and executing overrun tasks
as early as possible (so that they improve their chance of
meeting deadlines) by not forcing servers to remain inac-
tive when their budget is consumed.

3.2. The SLASH algorithm

SLASH uses an earliest virtual deadline first (EVDF) for
slack scheduling decisions. The virtual deadline of a server
is calculated as follows:

vds,k = ds,k−

⌊

ds,k− t

Ps

⌋

Ps

wheret is current time (note that the conditionds,k > t al-
ways holds). Like CASH, SLASH has noexpiredstatus.
When a SLASH server consumes its budget, the budget is
recharged, its deadline is advanced by one period, and its
state is reset towaiting. The algorithm is as follows:

1. At the beginning of each period, the current budget
of a servercs is set to its reservation budgetBs, its

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.05 0.1 0.15 0.2 0.25

D
ea

dl
in

e
M

is
s

R
at

io
 (

%
)

ST3 Load (fraction of CPU)

CBS
BEBS
CASH
SLAD

SLASH
RANDOM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.05 0.1 0.15 0.2 0.25

A
ve

ra
ge

 T
ar

di
ne

ss
 (

fr
ac

tio
n

of
 p

er
io

d)

ST3 Load (fraction of CPU)

CBS
BEBS
CASH
SLAD

SLASH
RANDOM

(a) Deadline Miss Ratio as a function of load (b) Average Tardiness as a function of load

Figure 3. Load effect on performance (one soft real-time tas k, p = 310)

dynamic deadlineds,k is set tods,k−1+Ps, and its state
is set towaiting.

2. Thewaitingserver with the earliest deadline becomes
running.

3. A runningserver executes its pending task on the CPU
until it has finished its task or consumed its budget,
and decreases its budgetcs by the actual amount of
CPU consumed. If it has no pending task, it donates
any remaining budget to:

(a) the task of thewaiting server with the earliest
virtual deadline; or, if none exist, to

(b) the idle task

4. Whencs of a running server equals zero, the server
is recharged with full budgetcs = Bs, its deadline is
incrementedds,k = ds,k + Ps, and its state is reset to
waiting (or remainsrunning if it still has the earliest
deadline).

5. When arunningserver is preempted, its state is set to
waiting.

Step 3 implies that if servers always have their own asso-
ciated tasks to execute, then no slack scheduling occurs. If
there is slack available, it is immediately donated to other
pending tasks whose servers have the highest priority de-
termined by EDF. It is possible for other slack scheduling
choices besides EDF to perform better for certain applica-
tions or in certain easily contrived circumstances. Never-
theless, SLASH is simple, straightforward, and effective in
practice.

3.3. SLASH Performance

We compare the performance of SLAD and SLASH to
CBS, BEBS, CASH, and a RANDOM algorithm (which
provides aggressive slack donation like SLAD but, instead
of using EDF, assigns slack to a random task). All hard
real-time tasks meet their deadlines. Our metrics of soft
real-time performance are deadline miss ratio (DMR), and
average tardiness (ATD).

The first experiment examines soft real-time perfor-
mance as a function of system load. The workload consists
of two periodic hard real-time tasks and one periodic soft
real-time task. In this experiment HRT1 has constant exe-
cution time equal to its server budget, HRT2 has normally
distributed execution times with its server budget equal to
the worst-case, and SRT3 has normally distributed execu-
tion times with its server budget set to their average. SRT3
will often overrun its budget but should meet most of its
deadlines by taking advantage of the slack from HRT2.

Figures 3 and 4 show SRT3’s deadline misses and tar-
diness, using the different algorithms, as a function of uti-
lization between 5% and 29% (in all cases, the total aver-
age sum of server utilization is 100%). RANDOM, SLAD,
and SLASH outperform CBS and BEBS, demonstrating
the benefit of donating slack at the earliest possible time.
SLAD and SLASH outperform RANDOM, demonstrating
the additional benefit of giving the slack to the process with
the earliest deadline. SLAD and CASH outperform each
other in different circumstances. Finally, SLASH outper-
forms both SLAD and CASH, demonstrating the effective-
ness of combining SLAD slack donation with CASH bud-
get replenishment.

The second experiment shows soft real-time perfor-
mance as a function of server (and task) period. The work-
load consists of five periodic hard real-time tasks and one
periodic soft real-time task. Every hard real-time task has
execution times fitting a normal distribution and a server
budget set to their worst-case execution time. SRT6 has
normally distributed execution times with its server budget
set to the average. Each hard real-time task reserves 10%
of the CPU and SRT6 reserves the remaining 50%.

Figure 4 shows SRT6’s performance as a function of pe-
riod ranging from 10 to 190. We see results similar to the
previous subsection: (1) RANDOM, CASH, SLAD, and
SLASH outperform CBS and BEBS, (2) SLAD and CASH
outperform each other in different circumstances, and (3)
SLASH is always the best. Interestingly, as we increase
the number of soft real-time tasks (and decrease their tar-
get utilization and reservations accordingly), we find that

 0

 10

 20

 30

 40

 50

 60

 70

 10 30 50 70 90 110 130 150 170 190

D
ea

dl
in

e
M

is
s

R
at

io
 (

%
)

ST6 Period

CBS
BEBS
CASH
SLAD

SLASH
RANDOM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 30 50 70 90 110 130 150 170 190

A
ve

ra
ge

 T
ar

di
ne

ss
 (

fr
ac

tio
n

of
 p

er
io

d)

ST6 Period

CBS
BEBS
CASH
SLAD

SLASH
RANDOM

(a) Deadline Miss Ratio as a function of period (b) Average Tardiness as a function of period

Figure 4. Period effect on performance (one soft real-time t ask, u = 50%)

the performance of SLASH improves (not shown).
In our experiments, SLASH always outperforms CBS,

BEBS, and CASH in this regard, reducing missed deadlines
by 70%, 70% and 10% (respectively) in the best scenario
we observed. Although designed for our integrated real-
time system, RBED [3], SLASH should work equally well
with any deadline-aware scheduler.

4. HDS

Systems that use or serve multimedia data require timely
access to data on hard drives. To ensure adequate perfor-
mance in an integrated real-time environment, users must
either prevent overload of disk resources, not generally fea-
sible in a general-purpose environment, or use real-time al-
gorithms that rely on intricate knowledge of disk internals
to meet deadline requirements. Hierarchical Disk Sharing
(HDS) allows disks to be (nearly) fully utilized while sus-
taining bandwidth reservations, without requiring detailed
knowledge of the drive internals. Derived from hierarchical
link sharing for networks [8], HDS uses a hierarchy of to-
ken bucket filters to isolate disk access among clients and
groups of clients, and to allow for reclaiming of unused
bandwidth, capabilities that are absent in current commod-
ity operating systems and which are necessary to support
time constraints in an integrated system.

One of our main design goals is that the reservation
mechanism be independent of high-level features like file-
systems, and low-level features like disk schedulers, so that
it can be employed across many systems, including storage
network devices. Therefore we chose to implement our
prototype of HDS in the block device layer of the Linux
kernel. We discuss the design of HDS and present our
Linux implementation, demonstrating both the effective-
ness (and limitations) of this approach.

4.1. HDS Design and Implementation

Traditional disk access is best-effort, with no timing
guarantees. Acceptable performance is achieved when the

disk is not overloaded. When demand for disk bandwidth
exceeds the supply, all applications may experience perfor-
mance degradation, including those with time constraints.
Our approach to this problem is to provide a mechanism
that allows reservations of disk bandwidth, graceful degra-
dation under heavy load, and reclaiming of unused reser-
vations. A hierarchical structure for resource sharing pro-
vides a basis for meeting all of these goals.

Specifying a disk reservation by bandwidth is intuitive,
but disk bandwidth is not constant; service times vary de-
pending upon the initial position of the read-write head,
the position of the requested data on the disk, the low-level
disk scheduling algorithm,etc. Translating bandwidth re-
quirements into low-level disk operations is a complicated
task [7]. Alternatively, specifying a disk reservation by a
reserved time-slice (instead of bandwidth) may result in
different amounts of data being retrieved per time-slice.

Existing reservation-capable schedulers contend with
this issue. The Cello [20] scheduler presents two meth-
ods of accounting, either by size or time. Some schedulers
allow reservations in terms of number of requests [4, 21].
However, requests may also vary in size and service time.
To fulfill QoS goals, the system must provide perfor-
mance in line with the users’ expectations, regardless of
the amount of work that the disk is actually doing on behalf
of different users. We expect users to perceive the quality
of service for disk by the bandwidth (data rate) that it can
provide. Therefore HDS accounts for disk usage in terms
of bandwidth and does its accounting based on the actual
amount of data transferred.

In HDS, a disk’s bandwidth is divided between applica-
tions in a hierarchical tree structure; an example is pictured
in Figure 5. Each leaf node represents a point of control for
accessing the disk, and is associated with a Linux process.
When a process first attempts to access the disk, a leaf node
is created and added to the tree. When it quits, its node is
removed. Non-leaf nodes are calledclasses, and represent
a group of clients. The children of a class node may be leaf
nodes or other class nodes.

Figure 5 demonstrates using classes to isolate best-effort

Disk

Best-Effort
Soft Real-TIme

P

s1

P

b3

P

b2

P

b1

P

s2

100%

40%
 60%

20%
 15%

P

b4

80%
 30%
30%
25%

G

C
 C

P
P
P
P
P
P

Figure 5. HDS allows arbitrary mix of shares
controlled by Global bucket, Class buckets,
and Process buckets

and real-time processing, an approach useful for multime-
dia servers where the requests with time constraints should
be isolated from other traffic. Our system has an interface
for constructing the desired class hierarchy, including dy-
namically adding and deleting classes.

Each nodexhas an associated reservationrx, determined
by the reservations of nodes above it in the tree structure.
There are two modes for a node to specify its reservation:
either anabsolutefraction fx, or a relative fraction, based
on a weightwx, of the parent node’s reservation. The root
node has an absolute fraction of 1. If a nodex has an abso-
lute reservationfx (between 0 and 1), its reservation is this
fraction of its parent’s reservation. For example, because
the root node hasr0 = 1, a child of the root withfx = 0.4
will have a reservation ofrx = fxr0 = 0.4. The sum of abso-
lute fractions among any node’s children may not exceed 1.
A class’s bandwidth that is not used by absolute reserva-
tions is shared by its other children in proportion to their
relative weights.

By default, clients are added to a parent node with equal
weight to promote fair sharing. When a client needs a
higher level of service than others, it may do so by either in-
creasing its weight or requesting an absolute fraction of its
parent’s bandwidth. If the nodes on the path from a client
to the root all have absolute reservations, then the client
effectively reserves a static fraction of the total disk band-
width; if any node in this path has a relative reservation, the
node’s reservation may vary when other nodes join or leave
the structure. HDS allows administrators to set permissions
for adding classes or nodes, changing reservations, admis-
sion control,etc.

Disk bandwidth may be controlled at different points in
the I/O stack. HDS resides at the block-device layer, be-
tween the file system and disk scheduler. The regulation of
disk bandwidth in HDS is implemented using token bucket
filters. In order to make disk requests, a client must possess
tokens. In HDS, each token represents 1 KB of data, mean-

ing a request for 16 KB of data requires 16 tokens. Each
nodex in the hierarchy has an associated bucket, which
may hold up toNx tokens. When a client request is ser-
viced, tokens are removed from its bucket. Tokens are re-
plenished at a rate corresponding to the client’s reservation.
If the root token rate isT0, then its child nodex with reser-
vation rx will replenish tokens at rateTx = rxT0. The root
token rate represents the entire available bandwidth of a
disk.

Although every node has a token bucket, only leaf nodes
make requests. The token buckets of non-root nodes facil-
itate sharing of bandwidth. In addition to its own tokens,
a node may use tokens from its parent (which in turn may
use those of its parent). The effect is that unused bandwidth
is shared first among nodes of the same class, then among
parent class, and eventually, globally.

When a node drains tokens from a bucket, it also drains
those from buckets in the path up to and including the root.
The result is that when a class’s children make disk re-
quests, the class’s tokens will be drained as well. If some
of the children are not fully using their reservation, the par-
ent will have surplus tokens. These tokens are available
to other children when their own supply runs out, so that
a node that has exceeded its reservation may still be able
to proceed. Bandwidth isolation is preserved not only be-
tween leaf nodes, but at the class level and, in fact, at every
level of the hierarchy.

4.2. HDS Performance

We ran several experiments to demonstrate the ability of
HDS to shape disk traffic, using synthetic applications to
generate disk workload. We focus mostly on read work-
loads both because multimedia is typically read-intensive
and because write performance is often aided by buffering.
Our test system is a 1.5 GHz P4 with 512MB of RAM. The
disk is a Seagate ST340810A IDE drive formatted with the
ext2 file system.

Figure 6 shows a situation where disk bandwidth has
become saturated by two processes reading from the disk.
The x-axis shows the requested bandwidth and the y-axis
shows the measured received bandwidth. Figure 6(a) shows
the result on unmodified Linux. Both processes receive
their desired bandwidth until the disk becomes saturated
with requests. There is no isolation, so at that point actual
throughput is unpredictable and varies considerably.

HDS provides reservation and isolation of bandwidth.
Figure 6(b) shows the same experiment with HDS, where
each task reserves equal relative weight. At saturation
the bandwidth divides evenly between the streams and
achieved throughput is very stable. This fair-sharing comes
at the expense of slightly lower overall disk throughput be-
cause we limit the number of requests. Figure 6(c) demon-

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5000 10000 15000 20000 25000

R
ec

ei
ve

d
B

an
dw

id
th

 (
K

B
/s

)

Requested Bandwidth (KB/s)

Stream 1
Stream 2

(a) Normal Linux system behavior

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5000 10000 15000 20000 25000

R
ec

ei
ve

d
B

an
dw

id
th

 (
K

B
/s

)

Requested Bandwidth (KB/s)

Stream 1: 50%
Stream 2: 50%

(b) With HDS sharing of 50%-50%

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5000 10000 15000 20000 25000

R
ec

ei
ve

d
B

an
dw

id
th

 (
K

B
/s

)

Requested Bandwidth (KB/s)

Stream 1: 70%
Stream 2: 30%

(c) With HDS sharing of 70%-30%

Figure 6. The effect of overload on throughput

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

K
B

/s
)

Time (s)

Stream 1 (100% of class A)
Stream 2 (65% of class B)
Stream 3 (35% of class B)

(a) Isolation of bandwidth (Class A and B reserve 50%
each. All streams are greedy)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

K
B

/s
)

Time (s)

Stream 1 (80% of class A)
Stream 2 (20% of class A)
Stream 3 (100% of class B)

(b) Using unassigned bandwidth (Class A and B re-
serve 50% each. All streams are greedy)

Figure 7. HDS isolation and slack reclamation

strates the effect of allocating 70% of the disk to stream 1
and 30% to stream 2.

The next experiment shows the ability of HDS to pro-
vide hierarchical resource sharing. We created two classes,
A and B, each reserving 50% of the disk. Stream 1 be-
longs to Class A, so it reserves 100% of the class reserva-
tion. Streams 2 and 3 belong to Class B, and reserve 65%
and 35% of Class B’s reservation, respectively. Figure 7(a)
shows that all three streams receive bandwidth correspond-
ing to their allocation, with no interference from each other.

Excess bandwidth may be available when a process
needs more than its reserved share. Figure 7(b) shows this
scenario. In this experiment, there are two classes and three
streams. Class A and B each reserve 50%. Stream 1 and 2
belong to Class A and reserve 80% and 20% of its band-
width. Stream 3 belongs to class B, so receives 100% of
its bandwidth. At the beginning, only Stream 1 is active.
Although its total share is only a fraction of the total band-
width (its share is 40%), because no other tasks are active
it receives the total disk bandwidth. At time 60 Stream 2
becomes active. There is still excess bandwidth because
Class A’s share is only 50%. The excess bandwidth is dis-
tributed to Streams 1 and 2. From time 60 to time 120,
they receive their fair-share plus the excess bandwidth. Ex-

cess bandwidth is allocated on first-come first-serve basis,
accounting for the observed variation in actual rate (this
variation is a topic for future investigation). At time 120
Stream 3 begins and, now fully loaded, the nominal reser-
vations are enforced.

5. Conclusion

We are developing flexible integrated real-time solu-
tions based on real-time scheduling algorithms. This is a
first step in providing better real-time support in general-
purpose systems, better general-purpose support in real-
time systems, and, ultimately, a general framework to fully
integrate applications of different types of processing con-
straints.

The longer-term goals of this project include combin-
ing these solutions in a single system, and developing com-
plete solutions for other resources including, network I/O,
memory, cache, and others. A key challenge will be the
development of a framework that supports the combined
management of all of the system resources so that, for ex-
ample, failure to meet a soft deadline in one resource will
not negate the benefit of meeting the same deadline with an-
other resource. Our ultimate goal is the complete merging

of real-time scheduling techniques with general-purpose
systems, supporting a range of timing constraints from hard
real-time to background best-effort batch processing.

Our research is funded by a DOE HPCS Fellowship and
the Intel Corporation.

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applica-
tions in hard real-time systems. InProceedings of the 19th
IEEE Real-Time Systems Symposium (RTSS 1998), pages
4–13, Dec. 1998.

[2] S. Banachowski, T. Bisson, and S. A. Brandt. Integrating
best-effort scheduling into a real-time system. InProceed-
ings of the 25th IEEE Real-Time Systems Symposium (RTSS
2004), Dec. 2004.

[3] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dy-
namic integrated scheduling of hard real-time, soft real-time
and non-real-time processes. InProceedings of the 24th
IEEE Real-Time Systems Symposium (RTSS 2003), pages
396–407, Dec. 2003.

[4] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Silber-
schatz. Disk scheduling with quality of service guarantees.
In IEEE International Conference on Multimedia Comput-
ing and Systems, volume 2, pages 400–405, June 1999.

[5] M. Caccamo, G. Buttazzo, and L. Sha. Capacity shar-
ing for overrun control. InProceedings of the 21th IEEE
Real-Time Systems Symposium (RTSS 2000), pages 295–
304, Dec. 2000.

[6] G. M. Candea and M. B. Jones. Vassal: Loadable sched-
uler support for multi-policy scheduling. InProceedings of
the 2nd USENIX Windows NT Symposium, pages 157–166,
Aug. 1998.

[7] S. Childs. Portable and adaptive specification of disk band-
width quality of service. InProceedings of the 9th Interna-
tional Workshop on Network and Operating Systems Sup-
port for Digital Audio and Video (NOSSDAV), June 1999.

[8] S. Floyd and V. Jacobson. Link-sharing and resource man-
agement models for packet networks.IEEE/ACM Transac-
tions on Networking, 3(4):365–386, 1995.

[9] A. Goel, L. Abeni, C. Krasic, J. Snow, and J. Walpole. Sup-
porting time-sensitive applications on general-purpose op-
erating systems. InProceedings of the 5rd Symposium on
Operating Systems Design and Implementation (OSDI’02),
Dec. 2002.

[10] P. Goyal, X. Guo, and H. M. Vin. A hierarchical CPU
scheduler for multimedia operating systems. InProceed-
ings of the 2nd Symposium on Operating Systems Design
and Implementation (OSDI’96), Oct. 1996.

[11] H. Härtig, M. Hohmuth, and J. Wolter. Taming Linux.
In Proceedings of the Fifth Parallel and Real-time Systems
(PART98), 1999.

[12] The Institute of Electrical and Electronics Engineers. IEEE
Standard for Information Technology-Portable Operating
System Interface (POSIX)-Part 1: System Application Pro-
gramming Interface (API)-Amendment 1: Realtime Exten-
sion [C Language], Std1003.1b-1993 edition, 1994.

[13] C. Lin and S. A. Brandt. Efficient soft real-time processing
in an integrated system. InWork in Progress Proceedings
of the 25th IEEE Real-Time Systems Symposium (RTSS WIP
2004), Lisbon, Portugal, Dec. 2004.

[14] The Linux kernel archives. http://www.kernel.org, Jan.
2004. A web site with the latest Linux kernel and infor-
mation.

[15] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment.Jour-
nal of the Association for Computing Machinery, 20(1):46–
61, Jan. 1973.

[16] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo. IRIS:
A new reclaiming algorithm for server-based real-time sys-
tems. In10th IEEE Real-time and Embedded Technology
and Applications Symposium (RTAS04), May 2004.

[17] J. Nieh, J. G. Hanko, J. D. Northcutt, and G. A. Wall.
SVR4UNIX scheduler unacceptable for multimedia appli-
cations. InProceedings of the Fourth International Work-
shop on Network and Operating System Support for Digital
Audio and Video, 1993.

[18] J. Regehr and J. A. Stankovic. Augmented CPU reserva-
tions: Towards predictable execution on general-purpose
operating systems. InProceedings of the Real-Time Tech-
nology and Applications Symposium (RTAS01), pages 141–
148, May 2001.

[19] J. Regehr and J. A. Stankovic. HLS: A framework for com-
posing soft real-time schedulers. InProceedings of the 22nd
IEEE Real-Time Systems Symposium (RTSS 2001), pages
3–14, London, UK, Dec. 2001. IEEE.

[20] P. Shenoy and H. Vin. Cello: A disk scheduling framework
for next generation operating systems. InProceedings of
the ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 44–55. ACM Press,
1998.

[21] R. Wijayaratne and A. L. Reddy. Integrated QOS manage-
ment for disk I/O. InProceedings of the IEEE International
Conference on Multimedia Computing and Systems, pages
487–492, June 1999.

[22] V. Yodaiken and M. Barabanov. Real-time Linux. InPro-
ceedings of Linux Applications Development and Deploy-
ment Conference (USELINUX), Jan. 1997.

[23] W. Yuan, K. Nahrstedt, and K. Kim. R-EDF: A reservation-
based EDF scheduling algorithm for multiple multimedia
task classes. InProceedings of the Real-Time Technology
and Applications Symposium (RTAS01), May 2001.

