
www.usenix.org	   S U M M ER 20 19  VO L . 4 4 , N O. 2  27

PROGRAMMING

The Flipside
A Bit Flip Saved Is Power and Lifetime Earned

D A N I E L B I T T M A N , P E T E R A L V A R O , D A R R E L L D . E . L O N G , A N D E T H A N L . M I L L E R

W e have an opportunity to rethink, from scratch, the design of our
data structures. New byte-addressable non-volatile memory
(BNVM) technologies promise the construction of systems

with large persistent memories, potentially improving reliability and per-
formance. With these technologies come new characteristics that deviate
from those of flash and spinning disk—and with new characteristics come
new optimization goals. In particular, the read/write cost disparity and fine
granularity of updates allows us to save power and wear by reducing the bits
flipped during writes to memory. Targeting these optimizations by formu-
lating new data structure design and implementation strategies instead
of relying on existing ideas will be vital for BNVM technology to reach its
full potential. We modified a full-system simulator to count bit flips during
program operation, opening the door for future research to design, construct,
and evaluate data structures for these new goals.

New Optimization Targets
As byte-addressable non-volatile memories (BNVMs) become common, it is increasingly
important that systems are optimized to leverage their strengths and avoid stressing their
weaknesses. Historically, such optimizations have included reducing the number of writes
performed, either by designing data structures that require fewer writes or by using hard-
ware techniques such as caching to reduce writes. While still worthwhile, write-reduction
fails to take advantage of a key optimization made by the memory controller in those non-
volatile memories.

Some technologies, including phase-change memory (PCM), have a significant disparity
between the cost—be it power, time, or wear—of reading a cell and writing a cell. When these
technologies also support fine granularity updates, they can make use of a clever optimiza-
tion: checking if a cell already contains the new, target value [10] instead of blindly overwrit-
ing it. Such an optimization yields a change in perspective on what is costly when operating
on BNVM; it is not the writes themselves so much as bits flipped during the writes. In PCM,
for example, changing a cell consumes 15.7−22.5x more power than reading a cell [5, 6] in
addition to causing wear-out (a significant problem for PCM as it has limited endurance).

Therefore, system designers ought to consider the effects of bit flips when building sys-
tems for BNVM, both when considering the target use-case for the hardware and picking
an appropriate combination of BNVM and DRAM, but also when considering the design
of the software that issues the writes in the first place. To get a sense of how write patterns
might affect power consumption, Figure 1 shows a model of power consumption of DRAM
and PCM under a varying number of bit flips per second. The power consumption of PCM
depends heavily on the bit flips per second, while DRAM’s power consumption is relatively
independent. We also see that DRAM requires a high “maintenance” power (due to the need
to refresh), whereas PCM does not. The choice to use a particular technology could depend,

Daniel Bittman is a PhD
candidate at the University of
California, Santa Cruz, studying
under Ethan Miller, Darrell Long,
and Peter Alvaro. His research

interests include operating systems, non-
volatile memory, concurrency, and systems
security. He is currently working on developing
operating system techniques for improving
the use of persistent memory, reducing power
and wear for persistent memory, and studying
non determinism in distributed systems.
dbittman@ucsc.edu

Peter Alvaro is an Assistant
Professor of Computer Science
at the University of California,
Santa Cruz, where he leads
the Disorderly Labs research

group (disorderlylabs.github.io). His research
focuses on using datacentric languages and
analysis techniques to build and reason about
data-intensive distributed systems in order to
make them scalable, predictable, and robust
to the failures and nondeterminism endemic to
large-scale distribution. Peter earned his PhD
at the University of California, Berkeley, where
he studied with Joseph M. Hellerstein. He is a
recipient of the NSF CAREER Award and the
Facebook Research Award. palvaro@ucsc.edu

28    S U M M ER 20 19  VO L . 4 4 , N O. 2 	 www.usenix.org

PROGRAMMING
The Flipside: A Bit Flip Saved Is Power and Lifetime Earned

Dr. Darrell D. E. Long is
Distinguished Professor of
Engineering at the University of
California, Santa Cruz. He holds
the Kumar Malavalli Endowed

Chair of Storage Systems Research and is
Director Emeritus of the Storage Systems
Research Center. His broad research interests
include many areas of mathematics and
science, and in the area of computer science
include data storage systems, operating
systems, distributed computing, reliability and
fault tolerance, and computer security. He is
currently Editor-in-Chief of the Letters of the
Computer Society, and Editor-in-Chief Emeritus
of the ACM Transactions on Storage.
darrell@ucsc.edu

Ethan L. Miller is a Professor of
Computer Science in the Jack
Baskin School of Engineering,
where he holds the Veritas
Presidential Chair in Storage.

He is the Director of the NSF I/UCRC Center
for Research in Storage Systems and the
Director of the Storage Systems Research
Center. He was a member of the RAID project
at UC Berkeley, where he did his PhD on a
decentralized parallel file system for high-end
scientific computing. His current research
interests include archival storage systems, file
systems for storage-class memories, scalable
view-based metadata management, and issues
in reliability, scalability, and security, both for
short-term and archival storage.
elm@ucsc.edu

therefore, on the expected write patterns to memory, since there is a crossover point on the
graph. This is particularly important for Internet of Things (IoT) devices, where power con-
sumption and conservation is critical.

Another significant advantage to avoiding bit flips is reducing memory cell wear-out. BNVM
technologies typically have a maximum number of lifetime writes, and fewer writes means a
longer lifetime. However, we can make use of hardware techniques such as row shifting [11]
to spread out the “hot spots,” thus translating a reduction of bit flips in part of a word to an
average reduction across the entire word.

Optimizing software for a novel optimization goal such as bit flipping requires rethinking
some core design ideas. The need to incorporate an underlying technology’s characteristics
into software is not new; indeed, it has been seen with block-oriented sequential access
data structures for disk and trading writes for random reads in flash. For BNVM, research
has focused on reducing writes while often ignoring the importance of the bits flipped by
the writes. Prior work that looks at the bit flips directly either merely considers hardware
solutions [4, 7, 8] or suggests that write reduction is a good analog for bit flip reduction [3].
While hardware techniques are certainly a more general solution to the problem, they lack
the semantic knowledge available to software to improve bit flip reduction. Similarly, write
reduction by itself may reduce bit flips, but we have found that this is not always the case [1, 2].

Once we accept that bit flips play a significant role in the power consumption and wear of
BNVM technologies, we must ask the questions, what changes can we make to software to
improve bit flip reduction, and how do we measure our work? We approached this problem
by focusing on optimizing data structures for bit flip reduction, since data organization plays
a large role in the writes that make it to memory. Although data writes themselves signifi-
cantly affect bit flips, these writes are often unavoidable (since the data must be written),
while data structure writes are more easily optimized (as we see in existing BNVM data
structure research). Furthermore, data structures often require a significant number of
updates over time, while data is often written once (since we can reduce writes by updat-
ing pointers instead of moving data). Thus the overall proportion of bit flips caused by data
writes may drop over time as data structures are updated.

To show that bit flips can be optimized for, and to explore several techniques we thought of
to do so, we designed and built several data structures and evaluated them by counting their
bit flips and writes at the memory controller, as well as measuring the performance of each.
While our earlier work [2] focused on manual instrumentation of code to count bit flips, we
decided to use a full-system simulator (Gem5) to count bit flips so we could take into account
caching layers and compiler optimizations. More details for our current work, including
more experiments, data structures, and bit flip reduction techniques, are available [1].

Figure 1: Power use of 1 GB devices as a function of flips per second [2]. DRAM’s power consumption is
largely proportional to memory size whereas PCM’s is largely proportional to bit flip rate.

www.usenix.org	   S U M M ER 20 19  VO L . 4 4 , N O. 2  29

PROGRAMMING
The Flipside: A Bit Flip Saved Is Power and Lifetime Earned

Pointer Distance in Data Structures
Data structures are often made up of a significant number of
pointers. Take the doubly linked list, for instance: each node con-
tains two pointers, one forward and one back. A clever technique
to reduce the memory footprint is to XOR the pointers together,
storing pointer distance instead of absolute addresses. This is
known as an XOR linked list [9]. The program can still traverse
the list in either direction with two adjacent pointers, but the
overhead of the node is halved. When XOR linked lists were origi-
nally proposed, there wasn’t much of an advantage to using them
beyond a modest memory saving. However, they reduce bit flips
by not only cutting the number of writes in half but also zeroing-
out many of the bits contained within a standard pointer value.

We can extend XOR linked lists into the domain of indexing
structures by reapplying the pointer distance technique to
binary search trees. Binary search trees are commonly used
for data indexing and support range queries, and they allow
efficient lookup and modification, as long as they are balanced.
In a standard red-black tree (RBT), for example, a node stores a
left child pointer, a right child pointer, and a parent pointer. We
can instead store “xleft” and “xright” by XORing the left child
pointer with the parent pointer and the right child pointer with
the parent pointer, respectively. This reduces the size of the node
from three pointers to two pointers while still allowing easy up
and down traversal (and thus keeping the benefits of the three-
pointer approach), and saves bit flips for the same reason as the
XOR linked list.

Tree traversal and update operations in the XOR red-black tree
are largely the same as in a standard red-black tree implementa-
tion. However, since we are storing XORs of pointers and not the
pointers themselves, some additional effort from the program-
mer is required to “decode” the stored values into a “true”
address. Additionally, while traversal down the tree is straight-
forward (given a parent node pointer and a current node’s xleft
value, we can traverse to the left child by XORing together the
parent pointer and the xleft value), traversing up the tree is
more difficult. Given a current node and one of its children, the
traversal algorithm needs to know which child it is. Fortunately,
we can make use of the node ordering of a binary search tree to
determine which child we have, thus enabling upward traversal.

Results and Discussion
We implemented our XOR red-black tree design alongside a
traditional red-black tree and evaluated both under a full-
system simulator—Gem5—which simulates the cache hierarchy
and allowed us to collect bit flip numbers on unmodified code,
thus more faithfully representing the behavior of a system. We
found that the programmer overhead required for dealing with
pointer distance was not high, especially when considering the
abundance of tooling that could be used and harnessed to make

debugging easier. The patch to Gem5 to enable bit flip count-
ing at the memory controller was similarly straightforward, but
opens up a significant amount of evaluation and research that
can be done to evaluate the bit flipping characteristics of exist-
ing systems and data structure design (https://gitlab.soe.ucsc
.edu/gitlab/crss/opensource-bitflipping-fast19).

Figure 2 shows the bit flips and bytes written of xrbt (our XOR
RBT implementation) and rbt (our standard RBT) under sequen-
tial and random inserts of one million unique items. We also
evaluated xrbt-big, which was the same implementation as xrbt
but with the same node size as rbt (to control for node-size in our
results). Both xrbt and xrbt-big cut bit flips by 1.92x (nearly in
half) in the case of sequential inserts and by 1.47x in the case of
random inserts, a dramatic improvement for a simple implemen-
tation change. We can also compare the bytes written, noting
that due to the cache absorbing writes, xrbt-big and rbt write
the same number of bytes to memory in all cases, even though
rbt writes more pointers during its operation.

Because this new optimization target adds additional over-
head, we wanted to get an idea of the performance impact of our
changes. Figure 3 shows the latency per insert operation for all
three variants for both sequential and random insert. Somewhat
surprisingly (at first), the xrbt is faster than rbt! But, when look-
ing at xrbt-big, this makes some sense. There are two conflict-
ing effects in play: the performance cost of doing the extra XOR
operations, and the performance gain from reducing the size of
the node. The interval labeled “a” in Figure 3 is the former, while
the interval labeled “b” is the latter. The two nearly cancel out,
and we see a similar result for lookup latency.

These results indicate that bit flips can and should be reasoned
about directly. Not only is it possible to do so, but the methods
presented here are straightforward once this goal is in mind,
and they come at little cost to performance and low program-

Figure 2: Memory characteristics of XOR red-black trees compared to
normal red-black trees (lower is better). The XOR technique significantly
reduces bit flips.

30    S U M M ER 20 19  VO L . 4 4 , N O. 2 	 www.usenix.org

PROGRAMMING
The Flipside: A Bit Flip Saved Is Power and Lifetime Earned

ming overhead. Furthermore, while reducing writes can reduce
bit flips, we have confirmed that this is not always true—xrbt
reduced writes over xrbt-big at the cost of increasing bit flips.

We can use the results of prior research reporting on power
consumption and wear-out of PCM to estimate the effects of our
XOR red-black tree. Since PCM power consumption is largely
dependent on bit flip rate, we estimate that the power consump-
tion per second of rbt and xrbt running at full speed are 13mW
and 6.6mW, respectively—a ratio of nearly two.

Lifetime is more complex, but a quick calculation taking into
account row-shifting and the differences in bytes written by
the two variants shows a savings of 1.83x, assuming that the
memory controller spreads out writes in larger regions [11].
These savings are estimates, and we may see more savings since
potential nonlinearity in power consumption due to heat could
improve the power savings from bit flip reduction, and the over-
all operational power use of controllers may reduce slightly along
with the number of writes.

Discussion and Future Research
The data structures presented here emerge from both old and
new ideas. While not algorithmically different from existing
implementations (both xrbt and rbt use the same, standard
red-black tree algorithms), they present a new approach to
implementation with optimizations for bit flipping. This has not
been sufficiently studied before in the context of software opti-
mization; after all, there is no theoretical advance nor is there
an overwhelming practical advantage to these data structures
outside of the bit flip reduction, an optimization goal that is new
with BNVM. They do little to impact performance, but perfor-
mance increases are not the direct goal of this work. Instead, these
modest changes can gain us a significant reduction in bit flips that
corresponds directly to power and wear reductions, a worthwhile
effort even if the saving is small (which, in our work, it is not).

The implications are far-reaching when considering the promise
of BNVM and the potential for disruption throughout the system
stack. This work is merely the beginning, and we hope that there
are future bit flip reduction techniques discovered that we have
not considered here. By providing a framework that counts bit
flips on data structures, we hope to open an avenue into devel-
oping more sophisticated profiling tools that help navigate the
tradeoffs between performance, consistency, power consump-
tion, and wear-out.

Considering these results in the context of larger systems is
important to understanding the overall effect of bit flip reduc-
tion. For example, it would be useful to compare existing
key-value stores and observe their memory behavior. How-
ever, applying the data structures discussed here as a drop-in
replacement for data structures in an existing system would sell
them short. Since current systems are designed for non-BNVM
technologies, they would fail to make basic optimizations and
structural changes that one would expect in a BNVM-optimized
system even without taking bit flips into consideration. A more
effective evaluation would be to construct a BNVM-optimized
system from scratch, taking into account write reduction,
consistency, and bit flips, and then compare it to an existing,
unmodified system.

There are a number of implementation details in real hardware
that might affect bit flip optimizations. While the basic optimi-
zation of avoiding unnecessary overwrites would remain, there
are several questions that we do not know the answers to when
it comes to bit flip reduction on real hardware. First, what is
the actual power cost? We will need to wait for real hardware
to become available to test this. Second, is there a difference
between flipping from a 0 to a 1 compared to flipping from a 1 to
a 0? If there is, a new contract between hardware and software
would need to contain information that ensures software can
predict which is cheaper. Third, is there a performance differ-
ence between a write that flips few bits compared to many bits?
This depends on hardware implementation details, but if there
is, it might make the benefits from bit flip reduction even more
significant.

Data structures are not the only causes of memory writes, of
course. The obvious candidate for targeted bit flip reduction
is the data itself, for which we could rely on existing hardware
reduction techniques to work in tandem with software tech-
niques. Another significant source of writes is from the program
stack, especially when considering the desire for efficient restart
that BNVM offers. We evaluated potential backward-compatible
ABI modifications [1], but plenty more work can be done to study
these modifications in a real compiler or take them further.

Figure 3: Insert latency for XOR red-black trees compared to normal
red-black trees (lower is better). The label “a” shows the cost of the XORs
(small), while “b” shows the cost of the larger node.

www.usenix.org	   S U M M ER 20 19  VO L . 4 4 , N O. 2  31

PROGRAMMING
The Flipside: A Bit Flip Saved Is Power and Lifetime Earned

Finally, there are many existing data organization techniques
that can be evaluated and tweaked for bit flips. Not only data
structures, but algorithms too can be evaluated. For example, if
one were to sort a collection of items in BNVM, what would be
the most efficient sorting algorithm in terms of bit flips? While
it is likely one that minimizes the number of moves, this might
not always be the case; we saw above that write reduction does
not always correlate with bit flip reduction.

Conclusion
The pressures from new storage hardware trends compel us to
explore new optimization goals as BNVM becomes more com-
mon as a persistent store; the read/write asymmetry of BNVM
must be addressed by reducing bit flips. Reasoning about bit flips
should be done at the application level instead of just in hard-
ware to take into account the semantic knowledge of data struc-

ture operations, and we cannot get away with simply reducing
writes if we strive to reduce power consumption and wear. While
hardware techniques apply more broadly, software techniques
open the door for significant future research at a variety of levels
of the stack. Our work translates directly to power saving and
lifetime improvements, both important optimizations for early
adoption of new storage trends that will have lasting impact on
systems, applications, and hardware.

Acknowledgments
This research was supported in part by the National Science
Foundation grant number IIP-1266400 and by the industrial
partners of the Center for Research in Storage Systems. The
authors additionally thank the members of the Storage Systems
Research Center for their support and feedback.

References
[1] D. Bittman, P. Alvaro, D. D. E. Long, and E. L. Miller, “Opti-
mizing Systems for Byte-Addressable NVM by Reducing Bit
Flipping,” in Proceedings of the 17th USENIX Conference on File
and Storage Technologies (FAST ’19), February 2019: https://​
www.usenix.org/system/files/fast19-bittman.pdf.

[2] D. Bittman, M. Gray, J. Raizes, S. Mukhopadhyay, M. Bryson,
P. Alvaro, D. D. E. Long, and E. L. Miller, “Designing Data Struc-
tures to Minimize Bit Flips on NVM,” in Proceedings of the 7th
IEEE Non-Volatile Memory Systems and Applications Sympo-
sium (NVMSA 2018), August 2018.

[3] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking Database
Algorithms for Phase Change Memory,” in Proceedings of the
5th Biennial Conference on Innovative Data Systems Research,
January 2011, pp. 21–31.

[4] S. Cho and H. Lee, “Flip-N-Write: A Simple Deterministic
Technique to Improve PRAM Write Performance, Energy and
Endurance,” in Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2009,
pp. 347–357.

[5] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A Hybrid
PRAM and DRAM Main Memory System,” in Proceedings of the
46th IEEE Design Automation Conference (DAC ’09), 2009, pp.
664–669.

[6] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A Circuit-
Level Performance, Energy, and Area Model for Emerging Non-
volatile Memory,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 31, no. 7, July 2012.

[7] A. N. Jacobvitz, R. Calderbank, and D. J. Sorin, “Coset
Coding to Extend the Lifetime of Memory,” in Proceedings of
High Performance Computer Architecture (HPCA ’13), 2013, pp.
222–233.

[8] S. M. Seyedzadeh, R. Maddah, D. Kline, A. K. Jones, and R.
Melhem, “Improving Bit Flip Reduction for Biased and Random
Data,” IEEE Transactions on Computers, vol. 65, no. 11, 2016, pp.
3345–3356.

[9] P. Sinha, “A Memory-Efficient Doubly Linked List,” Linux
Journal, vol. 129, 2004: http://www.linuxjournal.com/article​
/6828.

[10] B. D. Yang, J. E. Lee, J. S. Kim, J. Cho, S. Y. Lee, and B. G. Yu,
“A Low Power Phase-Change Random Access Memory Using a
Data-Comparison Write Scheme,” in Proceedings of IEEE Inter-
national Symposium on Circuits and Systems, May 2007.

[11] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A Durable and
Energy Efficient Main Memory Using Phase Change Memory
Technology,” in Proceedings of the 36th International Sympo-
sium on Computer Architecture, 2009, pp. 14–23.

https://www.usenix.org/system/files/fast19-bittman.pdf
https://www.usenix.org/system/files/fast19-bittman.pdf
http://www.linuxjournal.com/article/6828
http://www.linuxjournal.com/article/6828

