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PROGRAMMING

The Flipside
A Bit Flip Saved Is Power and Lifetime Earned
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W e have an opportunity to rethink, from scratch, the design of our 
data structures. New byte-addressable non-volatile memory 
(BNVM) technologies promise the construction of systems 

with large persistent memories, potentially improving reliability and per-
formance. With these technologies come new characteristics that deviate 
from those of flash and spinning disk—and with new characteristics come 
new optimization goals. In particular, the read/write cost disparity and fine 
granularity of updates allows us to save power and wear by reducing the bits 
flipped during writes to memory. Targeting these optimizations by formu-
lating new data structure design and implementation strategies instead 
of relying on existing ideas will be vital for BNVM technology to reach its 
full potential. We modified a full-system simulator to count bit flips during 
program operation, opening the door for future research to design, construct, 
and evaluate data structures for these new goals.

New Optimization Targets
As byte-addressable non-volatile memories (BNVMs) become common, it is increasingly 
important that systems are optimized to leverage their strengths and avoid stressing their 
weaknesses. Historically, such optimizations have included reducing the number of writes 
performed, either by designing data structures that require fewer writes or by using hard-
ware techniques such as caching to reduce writes. While still worthwhile, write-reduction 
fails to take advantage of a key optimization made by the memory controller in those non-
volatile memories.

Some technologies, including phase-change memory (PCM), have a significant disparity 
between the cost—be it power, time, or wear—of reading a cell and writing a cell. When these 
technologies also support fine granularity updates, they can make use of a clever optimiza-
tion: checking if a cell already contains the new, target value [10] instead of blindly overwrit-
ing it. Such an optimization yields a change in perspective on what is costly when operating 
on BNVM; it is not the writes themselves so much as bits flipped during the writes. In PCM, 
for example, changing a cell consumes 15.7−22.5x more power than reading a cell [5, 6] in 
addition to causing wear-out (a significant problem for PCM as it has limited endurance).

Therefore, system designers ought to consider the effects of bit flips when building sys-
tems for BNVM, both when considering the target use-case for the hardware and picking 
an appropriate combination of BNVM and DRAM, but also when considering the design 
of the software that issues the writes in the first place. To get a sense of how write patterns 
might affect power consumption, Figure 1 shows a model of power consumption of DRAM 
and PCM under a varying number of bit flips per second. The power consumption of PCM 
depends heavily on the bit flips per second, while DRAM’s power consumption is relatively 
independent. We also see that DRAM requires a high “maintenance” power (due to the need 
to refresh), whereas PCM does not. The choice to use a particular technology could depend, 
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therefore, on the expected write patterns to memory, since there is a crossover point on the 
graph. This is particularly important for Internet of Things (IoT) devices, where power con-
sumption and conservation is critical.

Another significant advantage to avoiding bit flips is reducing memory cell wear-out. BNVM 
technologies typically have a maximum number of lifetime writes, and fewer writes means a 
longer lifetime. However, we can make use of hardware techniques such as row shifting [11] 
to spread out the “hot spots,” thus translating a reduction of bit flips in part of a word to an 
average reduction across the entire word.

Optimizing software for a novel optimization goal such as bit flipping requires rethinking 
some core design ideas. The need to incorporate an underlying technology’s characteristics 
into software is not new; indeed, it has been seen with block-oriented sequential access 
data structures for disk and trading writes for random reads in flash. For BNVM, research 
has focused on reducing writes while often ignoring the importance of the bits flipped by 
the writes. Prior work that looks at the bit flips directly either merely considers hardware 
solutions [4, 7, 8] or suggests that write reduction is a good analog for bit flip reduction [3]. 
While hardware techniques are certainly a more general solution to the problem, they lack 
the semantic knowledge available to software to improve bit flip reduction. Similarly, write 
reduction by itself may reduce bit flips, but we have found that this is not always the case [1, 2].

Once we accept that bit flips play a significant role in the power consumption and wear of 
BNVM technologies, we must ask the questions, what changes can we make to software to 
improve bit flip reduction, and how do we measure our work? We approached this problem 
by focusing on optimizing data structures for bit flip reduction, since data organization plays 
a large role in the writes that make it to memory. Although data writes themselves signifi-
cantly affect bit flips, these writes are often unavoidable (since the data must be written), 
while data structure writes are more easily optimized (as we see in existing BNVM data 
structure research). Furthermore, data structures often require a significant number of 
updates over time, while data is often written once (since we can reduce writes by updat-
ing pointers instead of moving data). Thus the overall proportion of bit flips caused by data 
writes may drop over time as data structures are updated.

To show that bit flips can be optimized for, and to explore several techniques we thought of 
to do so, we designed and built several data structures and evaluated them by counting their 
bit flips and writes at the memory controller, as well as measuring the performance of each. 
While our earlier work [2] focused on manual instrumentation of code to count bit flips, we 
decided to use a full-system simulator (Gem5) to count bit flips so we could take into account 
caching layers and compiler optimizations. More details for our current work, including 
more experiments, data structures, and bit flip reduction techniques, are available [1].

Figure 1: Power use of 1 GB devices as a function of flips per second [2]. DRAM’s power consumption is 
largely proportional to memory size whereas PCM’s is largely proportional to bit flip rate.
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Pointer Distance in Data Structures
Data structures are often made up of a significant number of 
pointers. Take the doubly linked list, for instance: each node con-
tains two pointers, one forward and one back. A clever technique 
to reduce the memory footprint is to XOR the pointers together, 
storing pointer distance instead of absolute addresses. This is 
known as an XOR linked list [9]. The program can still traverse 
the list in either direction with two adjacent pointers, but the 
overhead of the node is halved. When XOR linked lists were origi-
nally proposed, there wasn’t much of an advantage to using them 
beyond a modest memory saving. However, they reduce bit flips 
by not only cutting the number of writes in half but also zeroing-
out many of the bits contained within a standard pointer value.

We can extend XOR linked lists into the domain of indexing 
structures by reapplying the pointer distance technique to 
binary search trees. Binary search trees are commonly used 
for data indexing and support range queries, and they allow 
efficient lookup and modification, as long as they are balanced. 
In a standard red-black tree (RBT), for example, a node stores a 
left child pointer, a right child pointer, and a parent pointer. We 
can instead store “xleft” and “xright” by XORing the left child 
pointer with the parent pointer and the right child pointer with 
the parent pointer, respectively. This reduces the size of the node 
from three pointers to two pointers while still allowing easy up 
and down traversal (and thus keeping the benefits of the three-
pointer approach), and saves bit flips for the same reason as the 
XOR linked list.

Tree traversal and update operations in the XOR red-black tree 
are largely the same as in a standard red-black tree implementa-
tion. However, since we are storing XORs of pointers and not the 
pointers themselves, some additional effort from the program-
mer is required to “decode” the stored values into a “true” 
address. Additionally, while traversal down the tree is straight-
forward (given a parent node pointer and a current node’s xleft 
value, we can traverse to the left child by XORing together the 
parent pointer and the xleft value), traversing up the tree is 
more difficult. Given a current node and one of its children, the 
traversal algorithm needs to know which child it is. Fortunately, 
we can make use of the node ordering of a binary search tree to 
determine which child we have, thus enabling upward traversal.

Results and Discussion
We implemented our XOR red-black tree design alongside a 
traditional red-black tree and evaluated both under a full-
system simulator—Gem5—which simulates the cache hierarchy 
and allowed us to collect bit flip numbers on unmodified code, 
thus more faithfully representing the behavior of a system. We 
found that the programmer overhead required for dealing with 
pointer distance was not high, especially when considering the 
abundance of tooling that could be used and harnessed to make 

debugging easier. The patch to Gem5 to enable bit flip count-
ing at the memory controller was similarly straightforward, but 
opens up a significant amount of evaluation and research that 
can be done to evaluate the bit flipping characteristics of exist-
ing systems and data structure design (https://gitlab.soe.ucsc 
.edu/gitlab/crss/opensource-bitflipping-fast19).

Figure 2 shows the bit flips and bytes written of xrbt (our XOR 
RBT implementation) and rbt (our standard RBT) under sequen-
tial and random inserts of one million unique items. We also 
evaluated xrbt-big, which was the same implementation as xrbt 
but with the same node size as rbt (to control for node-size in our 
results). Both xrbt and xrbt-big cut bit flips by 1.92x (nearly in 
half) in the case of sequential inserts and by 1.47x in the case of 
random inserts, a dramatic improvement for a simple implemen-
tation change. We can also compare the bytes written, noting 
that due to the cache absorbing writes, xrbt-big and rbt write 
the same number of bytes to memory in all cases, even though 
rbt writes more pointers during its operation.

Because this new optimization target adds additional over-
head, we wanted to get an idea of the performance impact of our 
changes. Figure 3 shows the latency per insert operation for all 
three variants for both sequential and random insert. Somewhat 
surprisingly (at first), the xrbt is faster than rbt! But, when look-
ing at xrbt-big, this makes some sense. There are two conflict-
ing effects in play: the performance cost of doing the extra XOR 
operations, and the performance gain from reducing the size of 
the node. The interval labeled “a” in Figure 3 is the former, while 
the interval labeled “b” is the latter. The two nearly cancel out, 
and we see a similar result for lookup latency.

These results indicate that bit flips can and should be reasoned 
about directly. Not only is it possible to do so, but the methods 
presented here are straightforward once this goal is in mind, 
and they come at little cost to performance and low program-

Figure 2: Memory characteristics of XOR red-black trees compared to 
normal red-black trees (lower is better). The XOR technique significantly 
reduces bit flips.
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ming overhead. Furthermore, while reducing writes can reduce 
bit flips, we have confirmed that this is not always true—xrbt 
reduced writes over xrbt-big at the cost of increasing bit flips.

We can use the results of prior research reporting on power 
consumption and wear-out of PCM to estimate the effects of our 
XOR red-black tree. Since PCM power consumption is largely 
dependent on bit flip rate, we estimate that the power consump-
tion per second of rbt and xrbt running at full speed are 13mW 
and 6.6mW, respectively—a ratio of nearly two.

Lifetime is more complex, but a quick calculation taking into 
account row-shifting and the differences in bytes written by 
the two variants shows a savings of 1.83x, assuming that the 
memory controller spreads out writes in larger regions [11]. 
These savings are estimates, and we may see more savings since 
potential nonlinearity in power consumption due to heat could 
improve the power savings from bit flip reduction, and the over-
all operational power use of controllers may reduce slightly along 
with the number of writes.

Discussion and Future Research
The data structures presented here emerge from both old and 
new ideas. While not algorithmically different from existing 
implementations (both xrbt and rbt use the same, standard 
red-black tree algorithms), they present a new approach to 
implementation with optimizations for bit flipping. This has not 
been sufficiently studied before in the context of software opti-
mization; after all, there is no theoretical advance nor is there 
an overwhelming practical advantage to these data structures 
outside of the bit flip reduction, an optimization goal that is new 
with BNVM. They do little to impact performance, but perfor-
mance increases are not the direct goal of this work. Instead, these 
modest changes can gain us a significant reduction in bit flips that 
corresponds directly to power and wear reductions, a worthwhile 
effort even if the saving is small (which, in our work, it is not).

The implications are far-reaching when considering the promise 
of BNVM and the potential for disruption throughout the system 
stack. This work is merely the beginning, and we hope that there 
are future bit flip reduction techniques discovered that we have 
not considered here. By providing a framework that counts bit 
flips on data structures, we hope to open an avenue into devel-
oping more sophisticated profiling tools that help navigate the 
tradeoffs between performance, consistency, power consump-
tion, and wear-out.

Considering these results in the context of larger systems is 
important to understanding the overall effect of bit flip reduc-
tion. For example, it would be useful to compare existing 
key-value stores and observe their memory behavior. How-
ever, applying the data structures discussed here as a drop-in 
replacement for data structures in an existing system would sell 
them short. Since current systems are designed for non-BNVM 
technologies, they would fail to make basic optimizations and 
structural changes that one would expect in a BNVM-optimized 
system even without taking bit flips into consideration. A more 
effective evaluation would be to construct a BNVM-optimized 
system from scratch, taking into account write reduction, 
consistency, and bit flips, and then compare it to an existing, 
unmodified system.

There are a number of implementation details in real hardware 
that might affect bit flip optimizations. While the basic optimi-
zation of avoiding unnecessary overwrites would remain, there 
are several questions that we do not know the answers to when 
it comes to bit flip reduction on real hardware. First, what is 
the actual power cost? We will need to wait for real hardware 
to become available to test this. Second, is there a difference 
between flipping from a 0 to a 1 compared to flipping from a 1 to 
a 0? If there is, a new contract between hardware and software 
would need to contain information that ensures software can 
predict which is cheaper. Third, is there a performance differ-
ence between a write that flips few bits compared to many bits? 
This depends on hardware implementation details, but if there 
is, it might make the benefits from bit flip reduction even more 
significant.

Data structures are not the only causes of memory writes, of 
course. The obvious candidate for targeted bit flip reduction 
is the data itself, for which we could rely on existing hardware 
reduction techniques to work in tandem with software tech-
niques. Another significant source of writes is from the program 
stack, especially when considering the desire for efficient restart 
that BNVM offers. We evaluated potential backward-compatible 
ABI modifications [1], but plenty more work can be done to study 
these modifications in a real compiler or take them further.

Figure 3: Insert latency for XOR red-black trees compared to normal 
red-black trees (lower is better). The label “a” shows the cost of the XORs 
(small), while “b” shows the cost of the larger node.
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Finally, there are many existing data organization techniques 
that can be evaluated and tweaked for bit flips. Not only data 
structures, but algorithms too can be evaluated. For example, if 
one were to sort a collection of items in BNVM, what would be 
the most efficient sorting algorithm in terms of bit flips? While 
it is likely one that minimizes the number of moves, this might 
not always be the case; we saw above that write reduction does 
not always correlate with bit flip reduction.

Conclusion
The pressures from new storage hardware trends compel us to 
explore new optimization goals as BNVM becomes more com-
mon as a persistent store; the read/write asymmetry of BNVM 
must be addressed by reducing bit flips. Reasoning about bit flips 
should be done at the application level instead of just in hard-
ware to take into account the semantic knowledge of data struc-

ture operations, and we cannot get away with simply reducing 
writes if we strive to reduce power consumption and wear. While 
hardware techniques apply more broadly, software techniques 
open the door for significant future research at a variety of levels 
of the stack. Our work translates directly to power saving and 
lifetime improvements, both important optimizations for early 
adoption of new storage trends that will have lasting impact on 
systems, applications, and hardware.
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