
OCOLOS: Online COde Layout OptimizationS

Yuxuan Zhang∗ Tanvir Ahmed Khan† Gilles Pokam‡ Baris Kasikci† Heiner Litz§ Joseph Devietti∗
∗University of Pennsylvania †University of Michigan ‡Intel Corporation §University of California, Santa Cruz

∗{zyuxuan, devietti}@seas.upenn.edu †{takh, barisk}@umich.edu
‡gilles.a.pokam@intel.com §hlitz@ucsc.edu

Abstract—The processor front-end has become an increasingly
important bottleneck in recent years due to growing application
code footprints, particularly in data centers. First-level instruc-
tion caches and branch prediction engines have not been able to
keep up with this code growth, leading to more front-end stalls
and lower Instructions Per Cycle (IPC). Profile-guided optimiza-
tions performed by compilers represent a promising approach, as
they rearrange code to maximize instruction cache locality and
branch prediction efficiency along a relatively small number of
hot code paths. However, these optimizations require continuous
profiling and rebuilding of applications to ensure that the code
layout matches the collected profiles. If an application’s code is
frequently updated, it becomes challenging to map profiling data
from a previous version onto the latest version, leading to ignored
profiling data and missed optimization opportunities.

In this paper, we propose OCOLOS, the first online code
layout optimization system for unmodified applications written
in unmanaged languages. OCOLOS allows profile-guided opti-
mization to be performed on a running process, instead of
being performed offline and requiring the application to be re-
launched. By running online, profile data is always relevant to
the current execution and always maps perfectly to the running
code. OCOLOS demonstrates how to achieve robust online code
replacement in complex multithreaded applications like MySQL
and MongoDB, without requiring any application changes. Our
experiments show that OCOLOS can accelerate MySQL by up to
1.41×, the Verilator hardware simulator by up to 2.20×, and a
build of the Clang compiler by up to 1.14×.

I. INTRODUCTION

As the world demands ever more from software, code sizes

have increased to keep up. Google, for example, reports annual

growth of 30% in the instruction footprint of important internal

workloads [6, 45]. This code growth has created bottlenecks

in the front-end of the processor pipeline [50], as the sizes

of front-end hardware resources close to the processor have

been relatively static over time [52]. Figure 1 shows that,

despite Moore’s Law, the per-core L1 instruction cache (L1i)

capacity of server microarchitectures from Intel and AMD has

remained effectively constant (literally so in Intel’s case) over

the past 15 years, because the L1i is so latency-critical [23].

As we attempt to cram ever more code into a fixed-size L1i,

strain on the processor front-end is inevitable. The inability to

deliver instructions to the processor leads to front-end stalls

that tank IPC and end-to-end application performance as even

advanced techniques like out-of-order processing cannot hide

these stalls [58].

To address front-end stalls, large software companies have

Fig. 1: AMD & Intel per-core L1i capacity over time

turned to Profile-Guided Optimizations1 (PGO) from the

compiler community that reorganize code within a binary to

optimize the utilization of the limited L1i for the common-case

control-flow paths (we describe these compiler optimizations in

detail in Section II). Google’s AutoFDO [10] and Propeller [29],

Meta’s BOLT [76, 77], and gcc’s and clang’s built-in PGO

passes are popular examples of this approach. While these

systems have seen successful deployment at scale, there exist

three significant challenges.

First, the results of PGO are only as good as the profiling

information that drives PGO’s optimization decisions [53, 108,

110]. PGO requires relevant, fresh profiling information to

produce high-performance code layouts [72]. However, PGO

is an offline optimization, applied either during compilation

(AutoFDO, gcc, clang) or to a compiled binary (BOLT and

Propeller), creating a fundamental lag between when profiling

information is collected and when it is used to optimize the

code layout [10]. If program inputs shift during this time,

previous profiling information is rendered irrelevant or even

harmful when it contradicts newer common-case behavior [69,

105]. Maintaining profiles for each input or program phase is

prohibitive in terms of storage costs, so profiles are merged

together to capture average-case behavior at the cost of input-

specific optimization opportunities [104, 111].

Second, even if we have secured timely profiling information,

if the program code itself changes then it is difficult to map

the profiling information onto the new code [10]. By its nature,

profiling information is captured at the machine code level, and

1Many optimizations can be driven by profiling information, so the term
“profile-guided optimization” is quite broad. In this paper, we use it to refer
exclusively to profile-driven code layout optimizations.

530

2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-6654-6272-3/22/$31.00 ©2022 IEEE
DOI 10.1109/MICRO56248.2022.00045

20
22

 5
5t

h
IE

EE
/A

C
M

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
M

ic
ro

ar
ch

ite
ct

ur
e

(M
IC

R
O

) |
 9

78
-1

-6
65

4-
62

72
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

M
IC

R
O

56
24

8.
20

22
.0

00
45

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 16,2023 at 04:59:04 UTC from IEEE Xplore. Restrictions apply.

even modest changes to the source code can lead to significant

differences in machine code [36]. To make things worse, in

large software organizations, code changes can arrive every few

minutes for important applications [3]. Since we always need

to deploy the latest version of an application, there is a constant

challenge when applying PGO with profiling data collected

from version k to the compilation of the latest version k′.
Profiling data that cannot be mapped to k′ is discarded, causing

us to miss optimization opportunities [22].

The third key challenge with offline PGO approaches is

that recording, storing, and accessing PGO profiles adds an

operational burden to code deployment. In particular, for end-

user mobile applications, managing profiles can itself be a

non-trivial task [69, 90].

In this paper, we propose OCOLOS, a novel system for online
profile-guided optimizations in unmanaged languages. OCOLOS

performs code layout optimizations at run time, on a running

process. By moving PGO from compile time to run time, we

avoid the challenges listed previously. Profile information is

always up-to-date with the current behavior the program is

exhibiting. OCOLOS also supports continuous optimizations to

keep up with input changes over time. In OCOLOS, profiling

data always maps perfectly onto the code being optimized

since we profile and optimize the currently-running process.

There is no burden of profile management, as the profile is

produced and then immediately consumed. Some managed

language runtimes (e.g., Oracle HotSpot JVM [39] and Meta

HHVM [73, 74]) support online code layout optimizations and

achieve similar benefits. We are not aware, however, of any

system before OCOLOS that brings the benefits of online PGO

to unmanaged code written in languages like C/C++.

To realize the benefits of PGO in the online setting, OCOLOS

builds on the BOLT [76, 77] offline PGO system, which takes

a profile and a compiled binary as inputs and produces a

new, optimized binary as the output. OCOLOS instead captures

profiles during execution of a deployed, running application,

uses BOLT to produce an optimized binary, extracts the code

from that BOLTed binary, and patches the code in the running

process. To avoid corrupting the process, code patching requires

careful handling of the myriad code pointers in registers and

throughout memory. OCOLOS takes a pragmatic approach that

requires no changes to application code, which enables support

for complex software like relational databases.

OCOLOS is different from other Dynamic Binary Instrumen-

tation (DBI) frameworks like Intel Pin [64], DynamoRIO [8,

35], and Valgrind [71] in that OCOLOS 1) focuses on code

replacement, instead of providing APIs for instrumentation,

and 2) has a “1-time” cost model where major work is done

only during code replacement and the program runs with native

performance once the replacement is complete. Existing DBI

frameworks would be unsuitable for our online PGO use-case

because programs running under, say, Pin experience a non-

trivial ongoing overhead to intercept control-flow transfers

and maintain the code cache. The performance benefits of the

improved code layout would, in practice, often be outweighed

by these ongoing overheads. Instead, OCOLOS exacts a 1-time

cost for code replacement which is readily amortized, along

with a small amount of run-time instrumentation on function

pointer creation (see Section IV-C).

For some short-running programs, even the 1-time cost of

OCOLOS is too high to be effectively amortized at run time.

To address this problem, we propose BATCH ACCELERATOR

MODE (BAM), a technique that allows batch workloads

consisting of a large collection of short-running processes,

like large software builds, to benefit from OCOLOS. BAM

works by profiling initial executions of a binary, generating

an optimized binary with BOLT, and using that optimized

binary in subsequent executions. BAM operates transparently

to the workload, via LD PRELOAD injection, allowing BAM

to accelerate builds of the Clang compiler without any changes

to Clang code or build scripts.

While in this paper we focus on using OCOLOS to enable

online PGO, we envision OCOLOS also being applicable in

a range of other cases such as performance optimization

and security. We will open-source OCOLOS to facilitate this

exploration.

In summary, this paper makes the following contributions:

• We describe the design of OCOLOS, the first online profile-

guided code layout optimization tool for unmanaged code.

• We show how to perform online code replacement effi-

ciently in unmodified, large-scale C/C++ programs.

• We evaluate OCOLOS on a series of big-code applications

like MySQL and MongoDB, demonstrating speedups of

up to 1.41× on MySQL.

• We evaluate a variant of OCOLOS targeted at batch work-

loads with many short-running processes, demonstrating

a 1.14× speedup on a from-scratch Clang build.

II. BACKGROUND

In this section, we provide the necessary background of

PGO passes implemented in tools like AutoFDO [10] and

BOLT [76, 77], which are now the state of the art at all major

cloud companies including Google and Meta.

A. Hardware Performance Profiling

Profile collection is the first step of all PGO workflows.

There are two different methods of profile collection: 1) through

compiler instrumentation of branch instructions (e.g., Clang

and GCC), and 2) through hardware support (e.g., Intel’s Last

Branch Record [56] and Processor Trace [55]). Due to the high

overheads of compiler instrumentation [10], cloud providers

generally leverage hardware profiling support [10, 13, 18, 67, 76,

77]. For instance, Intel’s LBR [56] facility, which dates back to

the Netburst architecture (Pentium 4), is widely available at this

point. When LBR tracing is enabled, the processor records the

Program Counter (PC) and target of taken branches in a ring

buffer2. The recording overhead via LBR is negligible [43, 67]

and software can then sample this ring buffer to learn the

branching behavior of an application. The Linux perf utility

2The LBR buffer in Skylake and newer cores has 32 entries.

531

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 16,2023 at 04:59:04 UTC from IEEE Xplore. Restrictions apply.

provides simple access to LBR sampling, including the ability

to start and stop LBR recording of arbitrary running processes.

Each LBR sample represents a snippet of the program’s

control flow. By aggregating these snippets, the approximate

frequency of branch taken/not-taken paths through the code

can be reconstructed. With these branch frequencies in hand,

we can make intelligent decisions about optimizing the code

layout as described below.

B. Basic Block Reordering

Basic block reordering is typically the most impactful

PGO code transformation [76]. Whenever programs contain

if statements, the compiler must decide how to place the

resulting basic blocks into a linear order in memory [80].

Without profiling information, the compiler must use some

heuristics to decide on a layout based on static code proper-

ties [7, 9, 15, 44, 66, 85, 107, 112], often leading to sub-optimal

results [69].

The ideal layout places the common-case blocks consecu-

tively, maximizing L1i and instruction Translation Lookaside

Buffer (iTLB) locality while reducing pressure on the branch

prediction mechanism [72]. In particular, by linearizing the

code, the number of taken branches is minimized, reducing the

pressure on the Branch Target Buffer (BTB) which only stores

information about taken branches [40, 41, 48, 98]. Consider the

example program in Figure 2. Assuming both conditions are

typically true, shaded basic blacks constitute the common-case

execution. A naive layout which places the blocks from each

if statement together results in two taken branches (shown

by arrows). The optimal layout, however, avoids any taken

branches, and results in better performance.

if (cond1) { // A
 // B
} else {
 // C
}
if (cond2) { // D
 // E
} else {
 // F
}
// G

naive
layout

A
B
C
D
E
F
G

A
B

C

D
E

F

G

optimal
layout

Fig. 2: Example program which benefits from PGO

C. Function Reordering

Function reordering optimizes the linear order of functions

within a binary to take advantage of caller-callee relationships.

This optimization first uses profiling information to construct

a call graph and annotates edges with the frequency of calls.

The classic Pettis-Hansen (PH) algorithm [80] puts functions

next to each other if they call or are called by each other

frequently. While the PH algorithm uses a greedy approach to

place the most frequently-invoked functions adjacent to each

other, it makes no distinction between callers and callees.

The C3 [75] algorithm improves upon Pettis-Hansen by

placing callers before callees, which is especially helpful in

asymmetric calling relationships where A calls B frequently

but B never calls A. This allows C3 to move the target of a

function call closer to the call instruction itself, improving L1i

and iTLB locality beyond what PH can provide.

Sometimes PGO passes will incorporate additional opti-

mizations, such as function inlining or peephole optimizations.

However, nearly all of the performance benefit of PGO passes

comes from basic block reordering and function reordering [76].

D. BOLT: Binary Optimization & Layout Tool

BOLT [76, 77] is a post-link optimization tool built in the

LLVM framework, which operates on compiled binaries. The

BOLT workflow begins with gathering profiling information.

Though BOLT can use a variety of profile formats, LBR

samples are preferred. Armed with the profile and the original,

non-BOLTed binary, BOLT decompiles the machine code into

LLVM’s low-level Machine Intermediate Representation (MIR)

format, not to be confused with the more commonplace LLVM

IR. BOLT performs a series of optimizations, including basic

block reordering and function reordering, at the MIR level

before performing code generation to emit a new, BOLTed

binary.

The layout of a BOLTed binary is unconventional in a few

ways. First, cold functions are left in-place in the original .text
section of the binary, which is renamed to the bolt.org.text
section. These cold functions are subject to small peephole op-

timizations but their starting addresses do not change and their

basic blocks are not reordered because there was insufficient

profiling information to justify stronger optimizations. The hot

functions, however, are heavily optimized by BOLT (via basic

block and function reordering) and are moved to a new .text
section at a higher address range. Additionally, BOLT may

perform hot-cold code splitting, where the cold basic blocks of

a hot function f are not stored contiguously with the hot blocks

for f , but are instead exiled to another region of the binary

with other cold blocks from other hot functions. Functions that

are entirely cold are not worth splitting in this way, and have

their code stored contiguously in the bolt.org.text section.

III. CHALLENGES

A well-known and intuitive challenge with offline profiling-

based optimizations like conventional PGO is ensuring that

the gathered profile data is of high quality [11, 53, 54, 106].

Profiling with one program input and then running on a different

input can lead to many sub-optimal optimization decisions [2,

51]. We validate this effect experimentally in Section III-A.

OCOLOS offers a solution to offline PGO’s input sensitivity:

since OCOLOS profiles and optimizes a running process, the

profile data is always for the current binary and the current

inputs. However, performing code replacement at run time

introduces other challenges. Chief among them is that changing

code can break any explicit or implicit code pointers (pointers

to other instructions, not data) that referenced the changed

code. In Section III-B, we catalog the myriad sources of code

532

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 16,2023 at 04:59:04 UTC from IEEE Xplore. Restrictions apply.

pointers in a running process, to better motivate the design of

OCOLOS in Section IV which can update or preserve these

code pointers as necessary.

A. Input Sensitivity

Figure 3 quantifies the sensitivity of BOLT’s performance

to the quality of its profile data. The bars show along the

x-axis the throughput of a BOLTed MySQL binary running

the read only input from Sysbench [1]. The y-axis lists the

Sysbench input used to provide profile data to BOLT. Thus, the

bottom bar shows the performance when profiling the insert
input, BOLTing the binary, and then running with the read only
input. For reference, the dashed line shows the performance

of the original MySQL binary without BOLT optimizations.

While BOLT improves performance regardless of the training

input used, the worst profile (insert) is 21% slower than the best

profile (read only). Aggregating all profiling inputs (the bar

labeled all) experiences some destructive interference between

profiles and is about 8% slower than the best profile. Because

OCOLOS (shown with the solid line) runs online instead of

ahead of time, it always profiles the current input, and achieves

high performance comparable to the best profile.

Fig. 3: Performance achieved when running MySQL with the

Sysbench read only input, using BOLT to produce a binary

from the given profiling input or, with the all bar, from profiles

of all inputs combined.

B. Challenges of Changing Code Pointers

OCOLOS requires modification of code pointers at run time to

perform its optimizations. To better understand the challenges

of changing these code pointers, we first discuss the different

flavors of code pointers that arise in a running process. The

conventional compilation flow of offline PGO deals only with

static code, so many of the challenges we discuss below are

unique to OCOLOS’s run-time approach.

First, we distinguish between code pointers that refer to

the starting address of a function versus those that reference

a specific instruction within a function (e.g., the target of a

conditional branch). We discuss function starting addresses first.

Functions can call each other via direct calls, encoding the

callee function’s starting address as a PC-relative offset. There

may also be indirect calls via function pointers stored in a

v-table3, or programmer-created function pointers stored on the

stack, heap, or in global variables. As with other pointers

in C/C++, a function pointer might be cast to an integer,

obfuscated via arithmetic, then restored to the original value,

cast back to a pointer again, and dereferenced.

Code pointers that do not refer to the start of a function are

also commonplace. Jump and conditional branch instructions

within a function reference code locations via PC-relative off-

sets. Sometimes indirect jumps rely on compile-time constants

that are used to compute a code pointer at run time, e.g., in the

implementation of some switch statements. Return addresses

on the stack are code pointers to functions that are on the call

stack. The value of PC in each thread (the rip register in x86) is

a pointer to an instruction in the currently-running function in

each thread. A thread may be blocked doing a system call, in

which case its PC is effectively stored in the saved context held

by the operating system. libc’s setjmp/longjmp API can be used

to create programmer-managed code pointers to essentially

arbitrary code locations.

As is clear from the discussion above, the address space of

a typical process contains a large number of code pointers.

Keeping track of all of them so that they can be updated if a

piece of code moves is essentially impossible for any serious

program. Sometimes a code pointer of interest resides in kernel

space where it is inaccessible to user code. In a managed

language, the runtime can indeed track all code pointers and

update or invalidate them as needed. However, OCOLOS targets

complex unmanaged code so we have to be able to live with

code pointers that are outside our control. Even small code

changes can silently break such code pointers.

In the next section, we discuss how OCOLOS overcomes

these challenges by retaining the original code within a process,

adding optimized code at a new location, and patching up as

many code pointers as possible to steer execution towards the

optimized code in the common case.

IV. OCOLOS

In Figure 4a, we show a high-level overview of the steps

OCOLOS performs to optimize the code of a target process

at run time. First, we gather profiling information from the

target process �, then build the BOLTed binary �, pause the

target process �, inject code �, update pointers to refer to

the injected code �, and finally resume the process �. In

this section, we assume the presence of the BOLTed binary

and focus on the key components of OCOLOS’s online code

replacement mechanism: Steps �-�. Later, in Section V, we

discuss Steps � and �, which are conceptually simpler as they

leverage existing tools like Linux’s perf utility for performance

profiling and BOLT. Note that Steps � and �, which consume

the most time, are done concurrently in the background while

3A virtual function/method table (v-table) is used to implement dynamic
dispatch or virtual functions in object-oriented languages. The table itself
stores function pointers to the methods of a class.

533

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 16,2023 at 04:59:04 UTC from IEEE Xplore. Restrictions apply.

profile
1 build optimized

binary

2

pause
process

3 4
inject
code

5
update
pointers

run with
optimized code

6

target
process

Figure 4a: Main steps OCOLOS takes to optimize a target process

a0

b0

c0

v-table

stack

func ptr: b0

ret addr: c0

call: b0

call: b0

a0

b0

c0

v-table

stack

func ptr: b1

ret addr: c0

call: b0

call: b1

b1

c1 call: b1

C0

C1

Figure 4b: Starting state of the
address space (left) and state
after code replacement (right)

a0

b0

c0

v-table

stack

func ptr: bi+1

ret addr: bi,i+1

call: b0

call: bi+1

ci+1 call: bi+1

bi,i+1

bi+1 Ci+1

a0

b0

c0

v-table

stack

func ptr: bi

ret addr: bi

call: b0

call: bi

bi

ci call: bi

Figure 4c: Before (left) and after
(right) continuous optimization

the target process continues to run. Though operations like

running BOLT are CPU-intensive, they compete for cycles

with the target process for only a limited time. Steps �-� are

done synchronously while the target process is paused.

To better describe key operations within OCOLOS, we first

describe the important regions of the address space of the target

process, shown in the left part of Figure 4b. The code from the

original binary we refer to as C0, which consists of 3 functions

a0, b0 and c0. A v-table contains a pointer to b0. Finally, each

thread’s stack is also important as it contains return addresses

of currently-executing functions. In Figure 4b, c0 is on the call

stack.

OCOLOS takes as input an optimized binary, with modified

code for functions in C0 or code for entirely new functions.

While OCOLOS’s code replacement ultimately requires a short

stop-the-world period (Section IV-B) to modify code and update

code pointers, OCOLOS performs some bookkeeping in advance.

In particular, OCOLOS parses the original binary offline to

identify the locations of all direct call instructions. OCOLOS

patches these calls at run time, but identifying the call sites

in advance significantly shortens the stop-the-world period.

OCOLOS leverages the Linux ptrace API, which allows one

process (often a debugger like gdb) to control and inspect

another process. OCOLOS uses ptrace to stop the target process

and to inspect and adjust its register state.

A. Adding Code

As we describe in Section III-B, finding and updating all

code pointers is fraught with corner cases. This leads to the

first principle guiding OCOLOS’s design:

Design Principle #1: preserve addresses of C0 instructions

To enable significant performance gains by optimizing both

the function-level and basic block layout, while preserving

correctness, we design the following technique. Instead of

updating the code of a function in place, OCOLOS injects a

new version of the code C1 into the address space while leaving

the original code intact (see Figure 4b). OCOLOS then changes

a subset of code pointers within C0 to redirect execution to

the C1 code. Remaining code pointers are not perturbed and

continue to point to C0 code. This approach can also handle

thorny cases like setjmp/longjmp where a target instruction (not

function) address has been saved on the heap or stack at run

time.

B. Updating Code Pointers
When patching code pointers to make the C1 code reachable,

OCOLOS follows our second design principle:

Design Principle #2: run C1 code in the common case

OCOLOS executes code from C0 instead of C1 occasionally
to ensure correctness. However, the more frequently OCOLOS

executes code from C0, the more it reduces the potential

performance gains C1 can provide. Therefore, we seek to make

C1 the common case. Other OCOLOS use-cases such as profiling

are likely to also be amenable to this trade-off. For instance, if

we need to count function invocations then we can instrument

only the C1 code, ignoring the rare invocations of the old C0

version of a function. For security or debugging use-cases,

however, it may be necessary to redirect all invocations of C0

functions to their C1 counterparts instead, e.g., via trampoline

instructions [16] at the start of C0 functions and at call sites

within them.
Since our goal for the current version of OCOLOS is

minimizing (but not eliminating) time spent in C0, OCOLOS

updates as many code pointers to refer to C1 as it is worthwhile

to update. Note first of all that hot code gets optimized by

BOLT and resides in C1. Direct calls in C1 will already refer

to C1 (e.g., c1 calls b1) and do not require updating.
Figure 4b illustrates changes OCOLOS makes. We update

function pointers in v-tables and direct calls in C0 for functions

on the call stack (like c0). Recall that these C0 changes preserve

instruction addresses, honoring our first design principle. We

found that, in practice, updating direct calls in all functions (i.e.,
including those, like a0, not on the stack) does not improve

performance – because functions like a0 are cold – though it

does slow code replacement.
We could additionally seek out function pointers in regis-

ters and memory, though doing so would require expensive

always-on run-time instrumentation to track their propagation

throughout the program’s execution. This tracking would violate

OCOLOS’s “fixed-costs only” cost model:

Design Principle #3: code replacement can incur fixed costs,
but must avoid all possible recurring costs

534

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 16,2023 at 04:59:04 UTC from IEEE Xplore. Restrictions apply.

Our experiments show that leaving these remaining function

pointers (which our workloads do contain) pointing to C0 code

is fine, since C0 code does not execute very long before it

encounters a direct call or a virtual function call which steers

execution back to C1.

C. Continuous Optimization

A natural use-case for OCOLOS is to perform continuous
optimization, whereby OCOLOS can replace C1 with C2, and Ci
with Ci+1 more generally. These subsequent code versions

Ci can be generated by periodic re-profiling of the target

process, to account for program phases, daily patterns in

workload behavior like working versus at-home hours, and

so on. OCOLOS can perform continuous optimization largely

through the same code replacement algorithm described above,

though functions on the stack and function pointers require

delicate handling as explained below.

The key challenge in continuous optimization is the need to

replace code, instead of just adding new code elsewhere in the

address space. If we continuously add code versions without

removing old versions, the code linearly grows over time,

wasting DRAM and hurting front-end performance. To address

this challenge, we introduce a garbage collection mechanism

for removing dead code. We define dead code as code that can

no longer be reached via any code pointers and hence is safe

to be removed.

Instead of waiting for code version Ci to naturally become

unreachable, as in conventional garbage collection, we can

proactively update code pointers to enforce the unreachability

of Ci. OCOLOS patches v-tables, direct calls from C0, return

addresses on the stack, and threads’ PCs to refer to the incoming

Ci+1 code instead, as described in Section IV-B and illustrated

in Figure 4c.

1) Return addresses: Code pointers in return addresses and

in threads’ PCs may reference Ci, so OCOLOS must update

these references to point to Ci+1. To update these references,

OCOLOS first crawls the stack of each thread via libunwind to

find all return addresses. OCOLOS examines RIP for each thread

via ptrace. Collectively, this examination provides OCOLOS

with the set of stack-live functions that are currently being

executed. If any stack-live function is in Ci (such as bi in

Figure 4c), OCOLOS must copy its code to Ci+1. While there

may be an optimized version bi+1 in Ci+1, it is challenging to

update the return address to refer to bi+1 because, in general,

the optimizations applied to produce bi+1 can have a significant

impact on the number and order of instructions within a

function.

Thus, OCOLOS makes a copy of bi in Ci+1, which we call

bi,i+1 to distinguish it from the more-optimized version bi+1.

bi,i+1 may need to have a different starting address than bi,

so OCOLOS updates PC-relative addressing within bi,i+1 to

accommodate its new location. OCOLOS must also update the

return address to refer to the appropriate instruction within

bi,i+1, but OCOLOS can treat the original return address into bi
as an offset from bi’s starting address, and then use this offset

into bi,i+1 to compute the new return address.

While copying bi to bi,i+1 is a key part of enabling continuous

optimization, it does not improve performance of the currently-

running call to bi since the code is the same. However,

subsequent calls are likely to reach bi+1 instead via other

code pointers, like the v-table in Figure 4c.

2) Function pointers: Apart from return addresses, function

pointers may also point to Ci. At any time during execution,

programs can create function pointers that may exist on the

stack, heap, or in registers and point to a function in Ci. Instead

of trying to track down and update these pointers while moving

from Ci to Ci+1, OCOLOS enforces a simpler invariant that

a program cannot create function pointers to Ci code in the

first place – rather, function pointers must always refer to C0.

This allows function pointers to propagate freely throughout

the program without the risk that they will be broken during

code replacement.

OCOLOS enforces this invariant via a simple LLVM compiler

pass that instruments function pointer creation sites with a

callback function: void* wrapFuncPtrCreation(void*)
This function takes as its argument the function pointer

being created (which may reference Ci code), and returns the

value that the program will actually use - a pointer to the

corresponding C0 function instead. OCOLOS maintains a map

from Ci to C0 addresses to enable this translation. If OCOLOS

has not yet replaced any code, or the function pointer being

created does not reference Ci (e.g., it references library code),

wrapFuncPtrCreation simply acts as the identity function.

Once a function pointer is created, it can freely propagate

through registers and memory without any instrumentation

- intervention is required only on function pointer creation.

This instrumentation has a negligible cost: MySQL running the

read only input creates just 45 function pointers per millisecond

on average. While we have not found the need to implement it

for our workloads, calls to setjmp could be similarly redirected

to C0.

Having avoided function pointers to Ci, OCOLOS is able to

update all other references to Ci code to refer to the incoming

Ci+1 code instead. Thus, OCOLOS can safely overwrite Ci code.

Due to technical limitations in the current version of BOLT,

BOLT assumes the presence of a single .text code section

and refuses to run on a BOLTed binary. Unfortunately, this

prevents us from evaluating continuous optimization because

our profiling data will refer to Ci code, and we need BOLT to

run optimizations on Ci to produce Ci+1. We plan to add this

feature to BOLT in the future.

D. Limitations

OCOLOS currently does not support jump tables, as they

rely on compile-time constants to compute the jump target,

and hence OCOLOS does not update these constants during

code replacement yet. Thus, OCOLOS currently requires that a

binary be compiled with the -fno-jump-tables flag. The binaries

for BOLT and the non-PGO baseline, however, can include

jump tables. This jump table restriction is not fundamental to

OCOLOS’s approach. With a little extra support from BOLT to

535

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 16,2023 at 04:59:04 UTC from IEEE Xplore. Restrictions apply.

identify these constants within the optimized binary, OCOLOS

can extract and update them as part of code replacement.

OCOLOS requires a pause time during code replacement,

during which the target process cannot respond to incoming

requests or do other useful work. This may hurt application

performance, especially in terms of tail latency. There is scope

to reduce the latency of OCOLOS’s code replacement: it requires

a few MiB of scattered writes throughout the address space,

all of which are currently done sequentially. If OCOLOS, say,

updated v-tables in parallel with patching direct calls that

should reduce the end-to-end replacement time further.

An additional approach to preserving tail latency during

code replacement is to leverage techniques proposed for

mitigating the effects of garbage collection pauses in distributed

systems [82, 103]. If the system includes a load-balancing

tier, as many modern web services do, then the load balancer

can be made aware of application pauses (like major garbage

collections, or OCOLOS code replacement) and can route traffic

to other nodes temporarily. Because code optimizations are

explicitly triggered by the operator, pause times are well known

and can be scheduled accordingly.

OCOLOS requires that the functionality and ABI of C1 is

unchanged with respect to C0, so that a function f0 in C0 has

equivalent application semantics to a function f1 in C1. f1

can, however, vary in non-semantic ways, such as having extra

instrumentation or different performance.

Global variables cannot change location in OCOLOS, since

C0 code often hard-codes a global variable’s original location

via RIP-relative addressing. C1 code thus needs to reference

those same global variables.

V. IMPLEMENTATION

In this section, we discuss some of OCOLOS’s implementa-

tion issues, including OCOLOS’s methodology to profile running

processes, steps to run BOLT, and mechanism to transform code.

Finally, we describe OCOLOS’s BAM mode for accelerating

batch workloads such as software builds.

Profiling. As Figure 4a shows, OCOLOS’s first step is to

profile the target process, to determine whether it suffers from

sufficient front-end stalls to merit OCOLOS’s optimizations.

OCOLOS uses the standard Linux perf utility to record hardware

performance counters for this purpose. perf can attach to an

already-running process, allowing OCOLOS to be deployed on

a new process or an existing one.

OCOLOS adopts a 2-stage approach for profiling. The first

stage follows the methodology proposed in DMon [49], which

itself is built on Intel’s TopDown microarchitectural bottleneck

analysis [109]. Note that in many data centers, systems such as

GWP [89] already continuously profile all applications in the

fleet. We have not integrated this analysis into OCOLOS yet

since it is not the primary focus of our work, but we perform

measurements to validate the feasibility of this approach in

Section VI-C4.

If this first-stage exploration reveals significant time spent in

the processor front-end, we continue with the second profiling

stage. Here we use perf to record the hot control-flow paths of

the target process via Intel’s LBR mechanism (Section II-A).

We feed this information into the BOLT optimizer, as discussed

next.

Running BOLT. We provide a quick summary of how BOLT

operates here to keep this paper self-contained. More details

can be found in the BOLT papers [76, 77].

First, we use the perf2bolt utility to extract the LBR

information recorded by perf into an internal format that BOLT

can consume more easily. Armed with the extracted LBR

information and the binary corresponding to the target process,

BOLT runs a series of optimization passes (most notably basic-

block and function reordering, see Section II) to produce a

new, optimized binary.

Efficient Code Copying. To provide direct copying of code

from the optimized binary into the target process, we launch the

target process with an LD PRELOAD library. LD PRELOAD
is a Linux feature that allows a user-specified shared library

to be loaded, alongside a program’s required shared libraries,

when a process is launched. We use LD PRELOAD to add

some functions for code replacement into the address space

of the target process. We then use ptrace to transfer control

to our code, which reads in the optimized binary and copies

its relevant contents into place. While ptrace can also perform

memory copies into the target process, they are prohibitively

slow since each copy requires a system call and several context

switches. Performing this memory copy from within the target

process is much more efficient and helps minimize the stop-

the-world time.

A. BAM: Batch Accelerator Mode

For programs with short running times, OCOLOS’s fixed

optimization costs cannot be effectively amortized. If these

programs are executed frequently, as is common in data centers,

it may still be worthwhile to optimize them. To address this

problem, we have developed an alternative deployment mode

for OCOLOS called BATCH ACCELERATOR MODE or BAM.

As the name implies, BAM is focused on batch workloads

where the same binary is invoked repeatedly. Early invocations

of the binary can be profiled and fed into BOLT, so that

subsequent invocations can use the BOLTed binary instead

and see improved performance. BAM performs its optimization

online as the batch workload runs, so it does not suffer from

stale profiles, stale binary mapping issues, or require any profile

management – all of which can hinder the use of offline PGO

systems like BOLT.

BAM is a Linux shared library that is attached to a command,

e.g., with LD PRELOAD=bam.so make. BAM additionally

needs to be told, via a configuration file, the binary to optimize.

The BAM library makes use of another LD PRELOAD feature

which is transparent interception of calls to functions in any

shared library. In particular, BAM intercepts libc’s exec* calls

and, if it finds an invocation of the target binary, adjusts the exec
arguments to launch the binary with perf’s profiling enabled.

BAM also attaches its shared library to child processes to find

invocations of the target binary no matter where they occur in

the process tree.

536

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 16,2023 at 04:59:04 UTC from IEEE Xplore. Restrictions apply.

Once BAM has collected a (configurable) number of profiles

of the target binary’s execution, it runs BOLT in a background

process to produce the BOLTed binary. Once the BOLTed

binary is available, BAM rewrites exec calls to use the BOLTed

binary instead of the original binary, leading to an automatic

performance boost for the remainder of the batch workload.

Similarly to OCOLOS’s single-process mode (Section IV),

BAM automatically profiles a workload as it runs, avoiding

the challenges of stale profiling data and storing and retrieving

profiles at scale. BAM’s highly-compatible LD PRELOAD-

based design is also similar in spirit to OCOLOS, in that no

application changes are required to use BAM. In the make
example above, no changes are required to the Makefiles,

application source code, make program, or the compiler

toolchain.

One unique feature of BAM compared to OCOLOS is that

BAM does not replace the code of a running process; it requires

instead a subsequent exec call to allow the optimized binary

to run. There is thus no stop-the-world component to BAM,

and the overhead of switching from the original binary to the

optimized one is essentially zero.

We see BAM being especially useful for accelerating

Continuous Integration (CI) builds of large software projects.

These CI builds are always done from scratch to ensure the

software builds correctly on a fresh system [14]. So long as

the software build is long enough for BAM to obtain useful

profiling and run BOLT, BAM can transparently accelerate

compiler invocations for the latter part of the build. BAM is

complementary to build optimization techniques like distributed

build caches [19, 20, 30, 37, 83, 84]. While a build cache can

avoid some compiler invocations, BAM accelerates those

compiler invocations that remain. BAM is also simpler to deploy

than a build cache as BAM does not need any remote web

services to be provisioned – BAM is purely local to each build.

VI. EVALUATION

In our evaluation of OCOLOS, we set out to demonstrate that

OCOLOS can provide significant performance improvements

for programs that suffer from processor front-end bottlenecks.

To demonstrate OCOLOS’s robustness, we evaluate it across a

range of benchmarks, from complex, multithreaded programs

such as the MySQL relational database to compute-bound,

single-threaded workloads like the Verilator chip simulator and

batch workloads like building the Clang compiler.

A. Experimental Setup

We run our experiments on a 2-socket Intel Broadwell Xeon

E5-2620v4 server with 8 cores and 16 threads per socket (16

cores and 32 threads total) running at 2.1GHz. Each core

has a 64-entry iTLB, a 1536-entry L2 TLB, a 32KiB L1i,

a 32KiB L1d, a 256KiB L2 cache, and access to a shared

20MiB L3 cache and 128 GiB of RAM. The server runs Linux

version 4.18. We use commit 88c70afe of the Lightning

BOLT system [77] from its GitHub repository [21].

For our benchmarks, we use MySQL version 8.0.28,

driven by inputs from Sysbench version 1.1.0-ead2689.

We use MongoDB version 6.0.0-alpha-655-gea6cea6,

driven by inputs from YCSB. We use Memcached version

1.6.12, driven by inputs from memaslap version 1.0. For

MongoDB and Memcached the input names show the mix of

operations, e.g. read95 insert5 means 95% of operations are

reads and the other 5% are inserts. We use Verilator version

3.904, simulating an in-order rv64imafdc RISC-V single-core

processor generated from RocketChip [5], with the processor

running a set of RISC-V benchmarks [91]. All benchmarks are

compiled with their default optimization level: -O3 for MySQL

and Verilator, and -O2 for MongoDB and Memcached. We

measure Verilator’s performance as the throughput of iterations

of the main Dhrystone loop or iterations over the input array

for median and vvadd. We evaluate BAM on a build of Clang

version 14.0.

All performance measurements, unless otherwise noted,

show steady-state performance. For OCOLOS, we measure

performance after code replacement is complete, except in

Figure 7 where we show MySQL’s performance before, during,

and after code replacement. OCOLOS and BOLT results are

based on 60 seconds of profiling unless otherwise noted. Unless

otherwise noted, we show averages of 5 runs with error bars

indicating the standard deviation.

B. Performance and Characterization

Figure 5 shows the throughput improvement OCOLOS

provides across our set of benchmarks. We compare OCOLOS

to four baselines. Original is the performance of the original

binary, compiled with only static optimizations (nothing profile-

guided). BOLT oracle input is the performance offline BOLT

provides when profiling and running the same input; PGO
oracle input uses the same profiling file as BOLT oracle input
but feeds it to clang’s builtin PGO pass [62]. Finally, BOLT
average-case input is the performance offline BOLT achieves

when aggregating profiles from all inputs and then running on

the input shown on the y-axis. We show throughput normalized

to original.
Figure 5 shows that OCOLOS uniformly improves perfor-

mance over the original binary, by up to 1.41× on MySQL

read only, 1.29× on MongoDB read update, 1.05× on

Memcached and 2.20× on Verilator. Clang’s PGO generally

falls short of BOLT, similar to the results from the BOLT

paper [76] though our benchmarks are different, likely due to

the challenges of mapping PCs back to the source code [36].

Aggregating profiling information across inputs is worse than

using just the oracle profile of the input being run, as different

inputs tend to exhibit contradictory control-flow biases that

cancel each other out.

The results for BOLT oracle input represent an upper bound

for OCOLOS’s performance, since BOLT has access to the

oracle profiling data and ensures that all code pointers refer

to optimized code, not just a judicious subset of them as with

OCOLOS (Section IV-B). In some cases like MySQL delete
and write only, use of code pointers that continue to refer to

unoptimized C0 code results in a non-trivial performance gap

(18 and 13 percentage points, respectively).

537

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 16,2023 at 04:59:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Performance of OCOLOS (light blue bars) compared to BOLT using an oracle profile of the input being run (dark blue

bars), Clang PGO using the same oracle profile (purple bars) and BOLT using an average-case profiling input aggregated from

all inputs (pink bars). All bars are normalized to original non-PGO binaries (white bars).

However, on average OCOLOS is close to the BOLT oracle’s

performance with a slowdown of just 4.6 points. Compared

to offline BOLT with an average-case profile, OCOLOS is

8.9 points faster on average. This shows that OCOLOS’s

efficient design enables dynamic code optimizations with

almost the same performance gains as PGO while providing

additional benefits such as guaranteeing the accuracy of

profiling information and easy mapping to the target binary, and

a simple deployment model that avoids the need for profiles

to be stored and queried.

MongoDB scan95 insert5 is an odd case where conven-

tional static compilation outperforms all of the profile-guided

techniques (e.g., OCOLOS is 14% slower than original). To

understand this behavior better, we applied Intel’s TopDown

[109] performance measurement methodology which can

identify the root microarchitectural cause of low IPC. TopDown

classifies pipeline slots in each cycle to one of four top-level

cases: Retiring (useful work), Front-End Bound (L1i, iTLB, and

decoder bottlenecks), Back-End Bound (L1d or functional unit

bottlenecks) or Bad Speculation (branch or memory aliasing

mispredictions). With scan95 insert5, in all of the BOLT-based

configurations (OCOLOS, BOLT oracle and BOLT average-case)

the workload shifts from being front-end bound to back-end

bound, with many memory accesses in particular stalled waiting

for DRAM, suggesting that poor memory controller scheduling

may be the root cause of the slowdown. The PGO version of

scan95 insert5 has very similar TopDown metrics to original,

so the cause of its slowdown is unclear.

Table I shows characterization data for our benchmarks,

such as code size metrics, the average number (across inputs)

of functions that are reordered by BOLT, on the call stack

when code replacement occurs, and direct call sites that are

patched. We also report memory consumption in terms of

maximum resident set size, which is the peak amount of

physical memory allocated to a process, when running the

original binary, BOLT, and OCOLOS on MySQL oltp read only,

mongodb read update, Memcached set10 get90, and Verilator

dhrystone. OCOLOS requires a modest amount of extra memory,

only 208 MiB for mongodb and much less for other benchmarks.

OCOLOS’s memory consumption is affected primarily by binary

size, and does not scale up with larger or longer-running inputs.

Note also that OCOLOS’s memory consumption is not an

ongoing cost, but is incurred during code replacement and

can be deallocated afterwards.

OCOLOS’s storage requirements are under 200 MiB for each

benchmark, chiefly for profiling data and the optimized binary,

which does not produce a significant amount of disk I/O. Note

that these files are also transient: after the optimized binary is

produced they can be deleted.

MySQL Mongo Mem$ Verilator

functions 33,170 69,807 374 406
v-tables 3,812 6,165 0 10
.text section (MiB) 24.6 50.0 0.142 2.3

avg funcs reordered 963.6 2,364.2 74.2 83.2
avg funcs on stack 79 100.6 10 5
avg call sites changed 31,677.2 30,9297.8 496.6 251.2

max RSS (MiB)
original 397.4 1434.4 67.8 263.4
BOLT 398.0 1432.8 67.9 263.7
OCOLOS 438.5 1640.5 69.8 265.4

TABLE I: Benchmark characterization data

C. MySQL Case Study

Next we present an in-depth case study of MySQL, using it

to illustrate different aspects of OCOLOS’s performance. We

focus on MySQL because it is a complex workload and it has

the widest variety of inputs among our benchmarks.

538

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 16,2023 at 04:59:04 UTC from IEEE Xplore. Restrictions apply.

To see a small, concrete example of how OCOLOS can

improve performance, we used the perf report and perf annotate
utilities to examine the distribution of L1i misses in an

execution of MySQL oltp read only. Under both BOLT with

average-case input and Clang PGO, the MYSQLparse function

is a common source of L1i misses - with BOLT average-case it

actually has the most L1i misses of any function. MYSQLparse
is auto-generated by Bison as the main parsing function for SQL

queries, with over 176 KiB of binary code. perf reports frequent

L1i misses in basic blocks dealing with backtracking and

checking for additional tokens. It makes sense that the average-

case input has a difficult time, as it is unable to specialize the

parser code for the current query mix and oltp read only has

only select queries. It is less clear why PGO performs poorly

since it has the oracle profile, but it is likely due to problems

mapping low-level PCs back to source code and LLVM IR.

With both OCOLOS and BOLT oracle, MYSQLparse does not

even appear on perf’s radar as no L1i misses are sampled

within it.

Fig. 6: The impact of profile duration on speedup for MySQL

read only

1) Profiling Duration: The amount of time that OCOLOS

spends gathering profile information is configurable. While

we use a default of 60 seconds for our current experiments,

OCOLOS can still perform well with significantly less profiling

information. Figure 6 shows the speedup over the original

binary when varying the duration of profiling. The green

squares show OCOLOS, and the blue triangles show BOLT to

represent how well offline BOLT can optimize when given the

same profiling information as OCOLOS. BOLT again provides a

ceiling on OCOLOS’s expected performance. Figure 6 illustrates

that profiling for at least 1 second offers a good absolute

speedup over the original binary and also achieves most of

the benefits that offline BOLT does. Below 100 milliseconds,

profile quality suffers significantly for both OCOLOS and BOLT.
2) Code Replacement Costs: To better understand the per-

formance impact of OCOLOS’s code replacement mechanism,

Fig. 7: Throughput of MySQL read only before, during, and

after code replacement. 95% tail latency degrades from 1.00ms

to at most 1.55ms during code replacement.

we performed an experiment with MySQL read only with

Sysbench reporting the client’s transaction throughput every

second. Figure 7 shows the results. The first 20 seconds

(region 1 of the graph) are a warm-up period, showing the

performance of the original binary at around 4,200 transactions

per second (tps). After this, perf profiling begins collecting

LBR samples (region 2), reducing throughput to about 3,600

tps. In region 3, perf2bolt runs 4 background threads to translate

the LBR samples into a format that BOLT can use, and

then single-threaded BOLT generates the optimized binary.

BOLT, in particular, is quite CPU-intensive, causing a reduction

in throughput just after the 100-second mark. In region 4,

OCOLOS performs code replacement which entails a brief

single-threaded stop-the-world phase of 669 milliseconds (see

Table I for other benchmarks). After that, in region 5, MySQL’s

parallel execution resumes with the optimized code in place

lifting the performance to almost 6,000 tps. Sysbench also

reports 95th percentile tail latency for each 1-second window

of execution. Analyzing a single representative run, the average

95% transaction latency during region 1 is 1.00 milliseconds,

degrading to a worst-case of 1.55 ms during regions 3 and 4,

and improving to 0.73 ms on average in region 5.

Figure 7 shows that the performance impact of OCOLOS

is modest, even during code replacement. As we discussed in

Section VI-C1, OCOLOS can still perform well with as little

as 1 second of profiling. Although we are already using the

Lightning BOLT system [77] which has been optimized for

lower execution times, there likely exist further opportunities

to reduce region 3 costs by shifting some of BOLT’s work into

an offline phase. Such optimizations do not matter for BOLT’s

original offline setting, however, they would be beneficial

for OCOLOS. Finally, there is scope to reduce OCOLOS’s

pause time further by shifting more work to occur inside

539

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 16,2023 at 04:59:04 UTC from IEEE Xplore. Restrictions apply.

the target process via the OCOLOS LD PRELOAD library

and parallelizing the code replacement routines that currently

execute serially.

3) End-to-End Overheads: Table II shows OCOLOS’s over-

heads for code replacement. The intervals between code

replacements are configurable with OCOLOS; longer intervals

amortize code replacement costs better but are less sensitive

to application phases or input changes.

One way to evaluate OCOLOS’s overheads in an end-to-

end manner is to consider how long it takes OCOLOS to

“recover” the ground lost during code replacement. Considering

MySQL read only as an example (Figure 7), the steady state

throughput of the original program is about 4,200 transactions

per second, which OCOLOS boosts to 5,850 tps after code

replacement is complete. Taking the reduced throughput

during code replacement into account, at 30 seconds after

code replacement completes OCOLOS has processed as many

transactions as if we had run the original binary the entire time.

All execution after this point is a net gain for OCOLOS, so

running for several minutes before the next code replacement

is advisable in practice. With smaller speedups, OCOLOS must

run for longer before performing code replacement again. More

generally, if OCOLOS hurts performance by a factor of a during

code replacement which lasts for s seconds, and then boosts

performance by a factor of b after code replacement completes,

we should run the optimized code for at least as/b seconds to

recover the ground lost during code replacement.

MySQL Mongo Mem$ Verilator

perf2bolt time (sec) 28.186 26.624 12.918 4.181
llvm-bolt time (sec) 8.237 17.882 0.1404 1.935
replacement time (sec) 0.669 1.221 0.020 0.146

TABLE II: Fixed costs of code replacement

4) Microarchitectural Impacts: Next we investigate the

microarchitectural causes of OCOLOS’s performance benefits.

Figure 8 shows a variety of front-end performance counter

measurements, each represented as events per 1,000 instructions.

The MySQL inputs along the x-axis are sorted from highest

(left) to lowest (right) speedup with OCOLOS to match the order

in Figure 5. Moving from top to bottom in Figure 8, we see that

OCOLOS is able to achieve significant reductions in L1i and

iTLB MPKI. All MySQL inputs also show large reductions in

the number of taken branches; fewer taken branches means less

pressure on branch prediction resources which may reduces

mispredicted branches as well. Across all of these front-end

metrics, OCOLOS achieves results very similar to offline BOLT.

Somewhat surprisingly, the front-end metrics in Figure 8

often do not correlate particularly well with the speedup that

OCOLOS provides. To overcome this, we again turned to Intel’s

TopDown [109] methodology. Using TopDown’s Front-End
Latency and Retiring percentages, a simple linear regression

Fig. 8: Microarchitectural events (per 1,000 instructions) for

MySQL inputs

can accurately determine workloads that will and won’t benefit

from OCOLOS (Figure 9). Moreover, with OCOLOS’s online

approach, even should identifying performance losses a priori

prove challenging, we can always revert to C0 code to at least

recover the original performance.

D. Batch Accelerator Mode

In this section, we examine the impact of BAM on a from-

scratch build of the Clang compiler. In a large software

build, BAM profiles the initial compiler executions to generate

an optimized compiler binary that is tuned to the source

program being compiled. A full Clang build contains 2,624

compiler executions in all. The dashed red line near the top

of Figure 10 illustrates the running time of the original Clang

build, executing parallel jobs via make -j. For the dashed orange

line at the bottom, we aggregate profiling information from

the entire build and feed it to BOLT, and then measure a fresh

build using the resulting BOLTed binary. This represents a

lower bound on the running time that BAM can achieve.

The green triangles (with a polynomial curve fit to them)

show the performance of BOLT when we profile only a limited

number of compiler executions (given on the x-axis), generating

an optimized binary while measuring the time of a fresh

build using this binary. The cost of collecting profiles and

running BOLT is excluded; the optimized binary is available

at the start of the build. These results show how well an ideal

540

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 16,2023 at 04:59:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: TopDown’s [109] Front-end Latency and Retire per-

centages allow us to accurately classify which workloads will

benefit from OCOLOS and which won’t.

BAM implementation can perform if it did not suffer from any

profiling and optimizations overheads, revealing the marginal

utility of extra profiling data.

Finally, the blue squares (and polynomial curve) show the

performance achieved by BAM. We first observe that, even

when profiling just one compiler execution, BAM provides a

speedup of 1.09× over the original build. At first, profiling

additional compiler executions leads to a speedup of up to

1.14×, as this profiling data is “worth the wait”. However,

after about 5 executions BAM suffers diminishing returns from

additional profiling for two reasons. First, the value of that

profiling data is relatively low as shown by the decreasing

slope of the green line. Second, as BAM waits for more profile

data, it starts the optimization process later, losing out on

opportunities to use the optimized binary. This opportunity

cost increases over time, causing the BAM running time to

eventually surpass that of the original build.

Ultimately, our BAM investigation demonstrates that the

amount of profiling data needed to run PGO effectively is

quite low, mirroring our results from Section VI-C1. BAM is

able to leverage this property to accelerate the Clang build,

without any changes to Clang or the build infrastructure.

VII. RELATED WORK

The performance implications of front-end stalls have

inspired computer architecture and compiler researchers to

propose numerous techniques for improving instruction locality.

We divide this work into three categories and qualitatively

compare these techniques against OCOLOS to describe how

OCOLOS addresses their shortcomings.

Instruction prefetching mechanisms. Computer architects

primarily aim to solve the front-end stall problem via instruction

prefetching [4, 24, 25, 28, 31, 33, 42, 46, 47, 57, 58, 59, 68, 70, 87,

88, 92, 93, 94, 96, 97]. A plethora of such techniques, ranging

Fig. 10: The running time of a Clang build with the original

compiler, and compilers optimized by BOLT and BAM.

from simpler next-line [97] and discontinuity [42, 81, 100, 101]

prefetchers to sophisticated temporal [24, 25, 46, 47] (or record-

and-replay [6]) prefetching, aim to strike a balance between

performance and high metadata storage overhead. Branch

predictor-guided prefetchers [87, 88] are extremely effective [40,

41, 58, 59] and consequently, have been adopted in many recent

processors [32, 78, 95, 102]. Nevertheless, these state-of-the-art

prefetchers fall short when applications contain a large number

of taken branch instructions that exhaust the capacity of the

branch predictor and BTB [25, 48, 58, 99]. OCOLOS can convert

taken branches into not-taken ones, easing pressure on the

branch predictor (Figure 8) and improving overall performance.

Profile-guided code layout optimizations. Compiler tech-

niques to address the front-end stall problem mainly fo-

cus on improving instruction locality via code layout opti-

mizations [10, 29, 34, 36, 61, 63, 65, 76, 77, 79, 86, 113]. These

techniques perform basic-block reordering [72, 80], function

reordering [75], and hot/warm/cold code splitting [12] (also

known as function splitting [76]) using profiles collected

from previous executions [27, 38]. While these techniques are

extremely effective at improving instruction locality [6] and

therefore widely adopted in today’s data centers [10, 76, 77],

profile quality limits their ability to achieve close-to-optimal

performance as we show in Section III-A. To address this

limitation, OCOLOS always uses the best-quality profile from

the current execution. Some managed language runtimes, like

the HotSpot JVM [39], also perform PGO at run time, profiling

the application running on the VM. While OCOLOS targets

unmanaged languages instead, OCOLOS could complement

a system like HotSpot by performing PGO on the running

HotSpot binary itself.

Other systems [17, 26, 60] have also proposed run-time code

optimization for unmanaged languages. ClangJIT [26] can

perform C++ template specialization at run time, improving

541

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 16,2023 at 04:59:04 UTC from IEEE Xplore. Restrictions apply.

performance and avoiding the latency and code bloat of

producing all template specializations at compile time. BinOpt

[17] can lift, at run time, the machine code of selected functions

to LLVM IR, perform optimizations and recompile to machine

code, and then replace the machine code with the optimized

code and resume execution of the program. BinOpt requires

application code changes to use its API to identify functions to

optimize, unlike OCOLOS which operates transparently to the

application. While BinOpt does not currently utilize profiling

information, it could do so in principle. However, BinOpt’s

use of LLVM IR as the optimization target would make it

challenging to map machine-code-level profiling information

to LLVM IR [36, 76], which is why tools like BOLT operate

at the machine code level instead.

Static code layout optimizations. Evidence-based static code

layout optimizations [7, 9, 15, 44, 66, 107] also aim to address

the profile-sensitivity problem of profile-guided code layout

optimizations. State-of-the-art static code layout optimizers

mainly use machine learning techniques (e.g., deep neural

networks [66, 69, 85] or decision trees [9, 15]) to find an optimal

code layout. Despite using sophisticated machine learning

techniques, such techniques fall far short of the profile-guided

techniques and provide only one-third of the speedups offered

by the profile-guided code layout optimizers [69]. Therefore,

in this work, we focus on improving the performance of these

profile-guided techniques by applying them in an online manner

with OCOLOS.

VIII. CONCLUSION

We have described the design and implementation of OCO-

LOS, the first online PGO system for unmanaged code. OCOLOS

provides the performance benefits of a classic offline PGO

compilation flow, however, applied to a running process. By

operating at run time, OCOLOS always profiles the most up-to-

date and relevant behavior of the program, and avoids problems

with mapping the profile to a target binary that can frustrate

offline PGO. We describe how OCOLOS’s design can perform

run-time code replacement safely for unmanaged programs,

with essentially only fixed costs paid at code replacement time.

We evaluate OCOLOS on a range of workloads, from large

multithreaded server applications to a single-threaded chip

simulator and a large software build. We show that OCOLOS

can provide speedups of up to 2.20×, all without requiring

any changes to the applications being accelerated by OCOLOS.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful sug-

gestions and feedback. This work was supported by generous

gifts from Intel Labs, NSF/Intel joint grants #2010810 and

#2011168, NSF #1942754, a Rackham Predoctoral Fellowship,

and the Applications Driving Architectures (ADA) Research

Center, a JUMP Center cosponsored by SRC and DARPA. Any

opinions, findings, conclusions, or recommendations expressed

in this material are those of the authors and do not necessarily

reflect the views of the funding agencies. We thank Maksim

Panchenko and Guilherme Ottoni from Meta Inc. for helpful

discussions about BOLT.

REFERENCES

[1] “Github - akopytov/sysbench: Scriptable database and system perfor-
mance benchmark,” https://github.com/akopytov/sysbench.

[2] José Nelson Amaral, Edson Borin, Dylan R Ashley, Caian Benedicto,
Elliot Colp, Joao Henrique Stange Hoffmam, Marcus Karpoff, Erick
Ochoa, Morgan Redshaw, and Raphael Ernani Rodrigues, “The alberta
workloads for the spec cpu 2017 benchmark suite,” in 2018 IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 2018, pp. 159–168.

[3] Sundaram Ananthanarayanan, Masoud Saeida Ardekani, Denis Haenikel,
Balaji Varadarajan, Simon Soriano, Dhaval Patel, and Ali-Reza Adl-
Tabatabai, “Keeping master green at scale,” in Proceedings of the
Fourteenth EuroSys Conference 2019, ser. EuroSys ’19. New York,
NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3302424.3303970

[4] Ali Ansari, Fatemeh Golshan, Pejman Lotfi-Kamran, and Hamid Sarbazi-
Azad, “Mana: Microarchitecting an instruction prefetcher,” The First
Instruction Prefetching Championship, 2020.

[5] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer,
David Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt,
John Hauser, Adam Izraelevitz, Sagar Karandikar, Ben Keller,
Donggyu Kim, John Koenig, Yunsup Lee, Eric Love, Martin
Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou,
David A. Patterson, Brian Richards, Colin Schmidt, Stephen
Twigg, Huy Vo, and Andrew Waterman, “The rocket chip
generator,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2016-17, Apr 2016. [Online]. Available: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[6] Grant Ayers, Nayana Prasad Nagendra, David I August, Hyoun Kyu Cho,
Svilen Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner
Litz, Tipp Moseley, and Parthasarathy Ranganathan, “Asmdb: under-
standing and mitigating front-end stalls in warehouse-scale computers,”
in Proceedings of the 46th International Symposium on Computer
Architecture. ACM, 2019, pp. 462–473.

[7] Thomas Ball and James R Larus, “Branch prediction for free,” ACM
SIGPLAN Notices, vol. 28, no. 6, pp. 300–313, 1993.

[8] Derek Bruening, Timothy Garnett, and Saman Amarasinghe, “An
infrastructure for adaptive dynamic optimization,” in International
Symposium on Code Generation and Optimization, 2003. CGO 2003.
IEEE, 2003, pp. 265–275.

[9] Brad Calder, Dirk Grunwald, Michael Jones, Donald Lindsay, James
Martin, Michael Mozer, and Benjamin Zorn, “Evidence-based static
branch prediction using machine learning,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 19, no. 1, pp.
188–222, 1997.

[10] Dehao Chen, David Xinliang Li, and Tipp Moseley, “Autofdo: Automatic
feedback-directed optimization for warehouse-scale applications,” in
Proceedings of the 2016 International Symposium on Code Generation
and Optimization. ACM, 2016, pp. 12–23.

[11] Hyoun Kyu Cho, Tipp Moseley, Richard Hank, Derek Bruening,
and Scott Mahlke, “Instant profiling: Instrumentation sampling for
profiling datacenter applications,” in Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).
IEEE, 2013, pp. 1–10.

[12] Robert Cohn and P Geoffrey Lowney, “Hot cold optimization of large
windows/nt applications,” in Proceedings of the 29th Annual IEEE/ACM
International Symposium on Microarchitecture. MICRO 29. IEEE,
1996, pp. 80–89.

[13] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upamanyu Sharma,
Ruoyu Wang, and Insu Yun, “{REPT}: Reverse debugging of failures
in deployed software,” in 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), 2018, pp. 17–32.

[14] Charlie Curtsinger and Daniel W. Barowy, “Riker: Always-Correct and
fast incremental builds from simple specifications,” in 2022 USENIX
Annual Technical Conference (USENIX ATC 22). Carlsbad, CA:
USENIX Association, Jul. 2022, pp. 885–898. [Online]. Available:
https://www.usenix.org/conference/atc22/presentation/curtsinger

542

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 16,2023 at 04:59:04 UTC from IEEE Xplore. Restrictions apply.

[15] Veerle Desmet, Lieven Eeckhout, and Koen De Bosschere, “Using
decision trees to improve program-based and profile-based static branch
prediction,” in Asia-Pacific Conference on Advances in Computer
Systems Architecture. Springer, 2005, pp. 336–352.

[16] Gregory J Duck, Xiang Gao, and Abhik Roychoudhury, “Binary
rewriting without control flow recovery,” in Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2020, pp. 151–163.

[17] Alexis Engelke and Martin Schulz, “Robust Practical Binary Optimiza-
tion at Run-time using LLVM,” in 2020 IEEE/ACM 6th Workshop on
the LLVM Compiler Infrastructure in HPC (LLVM-HPC) and Workshop
on Hierarchical Parallelism for Exascale Computing (HiPar), 2020, pp.
56–64.

[18] Walter Erquinigo, David Carrillo-Cisneros, and Alston Tang, “Reverse
debugging at scale,” https://engineering.fb.com/2021/04/27/developer-
tools/reverse-debugging/.

[19] Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan,
Erik Mavrinac, Wolfram Schulte, Newton Sanches, and Srikanth
Kandula, “Cloudbuild: Microsoft’s distributed and caching build service,”
in Proceedings of the 38th International Conference on Software
Engineering Companion, 2016, pp. 11–20.

[20] Facebook, “Buck: A high-performance build tool,” https://buck.build,
2021.

[21] Facebook BOLT team, “BOLT: Binary Optimization and Layout Tool,”
https://github.com/facebookincubator/BOLT.

[22] Facebook BOLT team, “How to use bolt to optimize bin continuously
in the production environment ,” https://github.com/facebookincubator/
BOLT/issues/94#issuecomment-668985872.

[23] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi, “Clearing the clouds:
a study of emerging scale-out workloads on modern hardware,” in ACM
SIGPLAN Notices, vol. 47, no. 4. ACM, 2012, pp. 37–48.

[24] Michael Ferdman, Cansu Kaynak, and Babak Falsafi, “Proactive
instruction fetch,” in International Symposium on Microarchitecture,
2011.

[25] Michael Ferdman, Thomas F Wenisch, Anastasia Ailamaki, Babak
Falsafi, and Andreas Moshovos, “Temporal instruction fetch streaming,”
in International Symposium on Microarchitecture, 2008.

[26] H. Finkel, D. Poliakoff, J. Camier, and D. F. Richards, “ClangJIT:
Enhancing C++ with Just-in-Time Compilation,” in 2019 IEEE/ACM
International Workshop on Performance, Portability and Productivity in
HPC (P3HPC). Los Alamitos, CA, USA: IEEE Computer Society, nov
2019, pp. 82–95. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/P3HPC49587.2019.00013

[27] Joseph A Fisher and Stefan M Freudenberger, “Predicting conditional
branch directions from previous runs of a program,” ACM SIGPLAN
Notices, vol. 27, no. 9, pp. 85–95, 1992.

[28] Nathan Gober, Gino Chacon, Daniel Jiménez, and Paul V Gratz, “The
temporal ancestry prefetcher.”

[29] Google, “Propeller: Profile guided optimizing large scale llvm-based
relinker,” https://github.com/google/llvm-propeller, 2020.

[30] Google, “Bazel,” https://bazel.build, 2022.

[31] Daniel A Jiménez Paul V Gratz and Gino Chacon Nathan Gober, “Barca:
Branch agnostic region searching algorithm,” The First Instruction
Prefetching Championship, 2020.

[32] Brian Grayson, Jeff Rupley, Gerald Zuraski Zuraski, Eric Quinnell,
Daniel A Jiménez, Tarun Nakra, Paul Kitchin, Ryan Hensley, Edward
Brekelbaum, Vikas Sinha et al., “Evolution of the samsung exynos
cpu microarchitecture,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2020, pp. 40–51.

[33] Vishal Gupta, Neelu Shivprakash Kalani, and Biswabandan Panda, “Run-
jump-run: Bouquet of instruction pointer jumpers for high performance
instruction prefetching,” The First Instruction Prefetching Championship,
2020.

[34] Stavros Harizopoulos and Anastassia Ailamaki, “Steps towards cache-
resident transaction processing,” in International conference on Very
large data bases, 2004.

[35] Byron Hawkins, Brian Demsky, Derek Bruening, and Qin Zhao,
“Optimizing Binary Translation of Dynamically Generated Code,” in
Proceedings of the 13th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, ser. CGO ’15. USA: IEEE
Computer Society, 2015, p. 68–78.

[36] Wenlei He, Julián Mestre, Sergey Pupyrev, Lei Wang, and Hongtao Yu,
“Profile inference revisited,” Proceedings of the ACM on Programming
Languages, vol. 6, no. POPL, pp. 1–24, 2022.

[37] Allan Heydon, Roy Levin, Timothy Mann, and Yuan Yu, The Vesta
approach to software configuration management. Compaq. Systems
Research Center [SRC], 2001.

[38] Urs Hölzle and David Ungar, “Optimizing dynamically-dispatched calls
with run-time type feedback,” in Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and implementation,
1994, pp. 326–336.

[39] HotSpot JVM team, “Jdk-6743900: frequency based block layout,”
https://bugs.java.com/bugdatabase/view bug.do?bug id=6743900.

[40] Yasuo Ishii, Jaekyu Lee, Krishnendra Nathella, and Dam Sunwoo,
“Rebasing instruction prefetching: An industry perspective,” IEEE
Computer Architecture Letters, 2020.

[41] Yasuo Ishii, Jaekyu Lee, Krishnendra Nathella, and Dam Sunwoo,
“Re-establishing fetch-directed instruction prefetching: An industry
perspective,” IEEE International Symposium on Performance Analysis
of Systems and Software, 2021.

[42] Quinn Jacobson, Eric Rotenberg, and James E Smith, “Path-based
next trace prediction,” in Proceedings of 30th Annual International
Symposium on Microarchitecture. IEEE, 1997, pp. 14–23.

[43] Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris Kasikci, and
Heiner Litz, “Apt-get: profile-guided timely software prefetching,” in
Proceedings of the Seventeenth European Conference on Computer
Systems, 2022, pp. 747–764.

[44] Bhargava Kalla, Nandakishore Santhi, Abdel-Hameed A Badawy,
Gopinath Chennupati, and Stephan Eidenbenz, “A probabilistic monte
carlo framework for branch prediction,” in 2017 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 2017, pp. 651–
652.

[45] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy
Ranganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks,
“Profiling a warehouse-scale computer,” in Proceedings of the 42Nd
Annual International Symposium on Computer Architecture, ser. ISCA
’15. New York, NY, USA: ACM, 2015, pp. 158–169. [Online].
Available: http://doi.acm.org/10.1145/2749469.2750392

[46] Cansu Kaynak, Boris Grot, and Babak Falsafi, “Shift: Shared history
instruction fetch for lean-core server processors,” in International
Symposium on Microarchitecture, 2013.

[47] Cansu Kaynak, Boris Grot, and Babak Falsafi, “Confluence: unified
instruction supply for scale-out servers,” in Proceedings of the 48th
International Symposium on Microarchitecture, 2015, pp. 166–177.

[48] Tanvir Ahmed Khan, Nathan Brown, Akshitha Sriraman, Niranjan K
Soundararajan, Rakesh Kumar, Joseph Devietti, Sreenivas Subramoney,
Gilles A Pokam, Heiner Litz, and Baris Kasikci, “Twig: Profile-guided
btb prefetching for data center applications,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, 2021, pp.
816–829.

[49] Tanvir Ahmed Khan, Ian Neal, Gilles Pokam, Barzan Mozafari, and
Baris Kasikci, “Dmon: Efficient detection and correction of data locality
problems using selective profiling,” in Proceedings of the 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
ser. OSDI 2021. USENIX Association, Jul. 2021.

[50] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles Pokam,
Heiner Litz, and Baris Kasikci, “I-spy: Context-driven conditional in-
struction prefetching with coalescing,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2020,
pp. 146–159.

[51] Tanvir Ahmed Khan, Muhammed Ugur, Krishnendra Nathella, Dam
Sunwoo, Heiner Litz, Daniel A Jiménez, and Baris Kasikci, “Whis-
per: Profile-guided branch misprediction elimination for data center
applications,” in Proceedings of the 55th International Symposium on
Microarchitecture (MICRO), Oct. 2022.

[52] Tanvir Ahmed Khan, Dexin Zhang, Akshitha Sriraman, Joseph Devietti,
Gilles Pokam, Heiner Litz, and Baris Kasikci, “Ripple: Profile-guided
instruction cache replacement for data center applications,” in Proceed-
ings of the 48th International Symposium on Computer Architecture
(ISCA), ser. ISCA 2021, Jun. 2021.

[53] Tanvir Ahmed Khan, Yifan Zhao, Gilles Pokam, Barzan Mozafari, and
Baris Kasikci, “Huron: hybrid false sharing detection and repair,” in
Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2019, pp. 453–468.

543

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 16,2023 at 04:59:04 UTC from IEEE Xplore. Restrictions apply.

[54] Hyesoon Kim, M Aater Suleman, Onur Mutlu, and Yale N Patt, “2d-
profiling: Detecting input-dependent branches with a single input data
set,” in International Symposium on Code Generation and Optimization
(CGO’06). IEEE, 2006, pp. 11–pp.

[55] Andi Kleen and Beeman Strong, “Intel processor trace on linux,” Tracing
Summit, 2015.

[56] Andy Kleen, “An introduction to last branch records,”
https://lwn.net/Articles/680985/.

[57] Aasheesh Kolli, Ali Saidi, and Thomas F Wenisch, “Rdip: return-
address-stack directed instruction prefetching,” in 2013 46th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2013, pp. 260–271.

[58] Rakesh Kumar, Boris Grot, and Vijay Nagarajan, “Blasting through the
front-end bottleneck with shotgun,” ACM SIGPLAN Notices, vol. 53,
no. 2, pp. 30–42, 2018.

[59] Rakesh Kumar, Cheng-Chieh Huang, Boris Grot, and Vijay Nagarajan,
“Boomerang: A metadata-free architecture for control flow delivery,” in
2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2017, pp. 493–504.

[60] Michael A Laurenzano, Yunqi Zhang, Lingjia Tang, and Jason Mars,
“Protean code: Achieving near-free online code transformations for ware-
house scale computers,” in 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE, 2014, pp. 558–570.

[61] David Xinliang Li, Raksit Ashok, and Robert Hundt, “Lightweight
feedback-directed cross-module optimization,” in Proceedings of the
8th annual IEEE/ACM international symposium on Code generation
and optimization. ACM, 2010, pp. 53–61.

[62] LLVM Team, “How To Build Clang and LLVM with Profile-Guided
Optimizations,” https://llvm.org/docs/HowToBuildWithPGO.html.

[63] C-K Luk, Robert Muth, Harish Patil, Robert Cohn, and Geoff Lowney,
“Ispike: a post-link optimizer for the intel/spl reg/itanium/spl reg/architec-
ture,” in International Symposium on Code Generation and Optimization,
2004. CGO 2004. IEEE, 2004, pp. 15–26.

[64] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood, “Pin: Building customized program analysis tools
with dynamic instrumentation,” in Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’05. New York, NY, USA: Association
for Computing Machinery, 2005, p. 190–200. [Online]. Available:
https://doi.org/10.1145/1065010.1065034

[65] Chi-Keung Luk and Todd C Mowry, “Cooperative prefetching: Compiler
and hardware support for effective instruction prefetching in modern
processors,” in International Symposium on Microarchitecture, 1998.

[66] Yonghua Mao, Junjie Shen, and Xiaolin Gui, “A study on deep belief
net for branch prediction,” IEEE Access, vol. 6, pp. 10 779–10 786,
2017.

[67] Gabriel Marin, Alexey Alexandrov, and Tipp James Moseley, “Break
dancing: low overhead, architecture agnostic software branch tracing,” in
22nd ACM SIGPLAN/SIGBED International Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES ’21), 2021.

[68] Pierre Michaud, “Pips: Prefetching instructions with probabilistic scouts,”
in The First Instruction Prefetching Championship, 2020.

[69] Angélica Aparecida Moreira, Guilherme Ottoni, and Fernando Magno
Quintão Pereira, “Vespa: static profiling for binary optimization,”
Proceedings of the ACM on Programming Languages, vol. 5, no.
OOPSLA, pp. 1–28, 2021.

[70] Tomoki Nakamura, Toru Koizumi, Yuya Degawa, Hidetsugu Irie,
Shuichi Sakai, and Ryota Shioya, “D-jolt: Distant jolt prefetcher,” The
First Instruction Prefetching Championship, 2020.

[71] Nicholas Nethercote and Julian Seward, “Valgrind: A framework for
heavyweight dynamic binary instrumentation,” in Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 89–100. [Online]. Available:
https://doi.org/10.1145/1250734.1250746

[72] Andy Newell and Sergey Pupyrev, “Improved basic block reordering,”
IEEE Transactions on Computers, vol. 69, no. 12, pp. 1784–1794, 2020.

[73] Guilherme Ottoni, “Hhvm jit: A profile-guided, region-based compiler
for php and hack,” in Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation.
ACM, 2018, pp. 151–165.

[74] Guilherme Ottoni and Bin Liu, “Hhvm jump-start: Boosting both
warmup and steady-state performance at scale,” in 2021 IEEE/ACM

International Symposium on Code Generation and Optimization (CGO).
IEEE, 2021, pp. 340–350.

[75] Guilherme Ottoni and Bertrand Maher, “Optimizing function placement
for large-scale data-center applications,” in Proceedings of the 2017
International Symposium on Code Generation and Optimization. IEEE
Press, 2017, pp. 233–244.

[76] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni,
“Bolt: a practical binary optimizer for data centers and beyond,” in
Proceedings of the 2019 IEEE/ACM International Symposium on Code
Generation and Optimization. IEEE Press, 2019, pp. 2–14.

[77] Maksim Panchenko, Rafael Auler, Laith Sakka, and Guilherme Ottoni,
“Lightning bolt: powerful, fast, and scalable binary optimization,” in
Proceedings of the 30th ACM SIGPLAN International Conference on
Compiler Construction, 2021, pp. 119–130.

[78] Andrea Pellegrini, Nigel Stephens, Magnus Bruce, Yasuo Ishii, Joseph
Pusdesris, Abhishek Raja, Chris Abernathy, Jinson Koppanalil, Tushar
Ringe, Ashok Tummala et al., “The arm neoverse n1 platform: Building
blocks for the next-gen cloud-to-edge infrastructure soc,” IEEE Micro,
vol. 40, no. 2, pp. 53–62, 2020.

[79] Larry L Peterson, “Architectural and compiler support for effective
instruction prefetching: a cooperative approach,” ACM Transactions on
Computer Systems, 2001.

[80] Karl Pettis and Robert C Hansen, “Profile guided code positioning,” in
Proceedings of the ACM SIGPLAN 1990 conference on Programming
language design and implementation, 1990, pp. 16–27.

[81] Jim Pierce and Trevor Mudge, “Wrong-path instruction prefetching,” in
International Symposium on Microarchitecture, 1996.

[82] A. Omar Portillo-Dominguez, Philip Perry, Damien Magoni, Miao
Wang, and John Murphy, “Trini: An adaptive load balancing strategy
based on garbage collection for clustered java systems,” Softw. Pract.
Exper., vol. 46, no. 12, p. 1705–1733, dec 2016. [Online]. Available:
https://doi.org/10.1002/spe.2391

[83] GNU Project, “Gnu autoconf,” https://www.gnu.org/software/autoconf/,
2021.

[84] GNU Project, “Gnu automake,” https://www.gnu.org/software/
automake/, 2021.

[85] Easwaran Raman and Xinliang David Li, “Learning branch prob-
abilities in compiler from datacenter workloads,” arXiv preprint
arXiv:2202.06728, 2022.

[86] Alex Ramirez, Luiz André Barroso, Kourosh Gharachorloo, Robert
Cohn, Josep Larriba-Pey, P Geoffrey Lowney, and Mateo Valero,
“Code layout optimizations for transaction processing workloads,” ACM
SIGARCH Computer Architecture News, 2001.

[87] Glenn Reinman, Todd Austin, and Brad Calder, “A scalable front-end
architecture for fast instruction delivery,” ACM SIGARCH Computer
Architecture News, vol. 27, no. 2, pp. 234–245, 1999.

[88] Glenn Reinman, Brad Calder, and Todd Austin, “Fetch directed
instruction prefetching,” in MICRO-32. Proceedings of the 32nd Annual
ACM/IEEE International Symposium on Microarchitecture. IEEE,
1999, pp. 16–27.

[89] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert
Hundt, “Google-wide profiling: A continuous profiling infrastructure
for data centers,” IEEE micro, vol. 30, no. 4, pp. 65–79, 2010.

[90] Manman Ren and Shane Nay, “Improving iOS Startup Performance with
Binary Layout Optimizations,” 2019, [Online; accessed 25-Oct-2019].
[Online]. Available: https://www.facebook.com/atscaleevents/videos/
664302790740440/

[91] RISCV Team, “riscv-tests,” https://github.com/riscv-software-src/riscv-
tests.

[92] Alberto Ros and Alexandra Jimborean, “The entangling instruction
prefetcher,” IEEE Computer Architecture Letters, vol. 19, no. 2, pp.
84–87, 2020.

[93] Alberto Ros and Alexandra Jimborean, “A cost-effective entangling
prefetcher for instructions,” in 2021 ACM/IEEE 48th Annual Interna-
tional Symposium on Computer Architecture (ISCA). IEEE, 2021, pp.
99–111.

[94] Eric Rotenberg, Steve Bennett, and James E Smith, “Trace cache:
a low latency approach to high bandwidth instruction fetching,” in
Proceedings of the 29th Annual IEEE/ACM International Symposium
on Microarchitecture. MICRO 29. IEEE, 1996, pp. 24–34.

[95] J Rupley, “Samsung exynos m3 processor,” IEEE Hot Chips, vol. 30,
2018.

[96] André Seznec, “The fnl+ mma instruction cache prefetcher,” in The
First Instruction Prefetching Championship, 2020.

544

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 16,2023 at 04:59:04 UTC from IEEE Xplore. Restrictions apply.

[97] Alan Jay Smith, “Sequential program prefetching in memory hierarchies,”
Computer, no. 12, pp. 7–21, 1978.

[98] Shixin Song, Tanvir Ahmed Khan, Sara Mahdizadeh Shahri, Akshitha
Sriraman, Niranjan K Soundararajan, Sreenivas Subramoney, Daniel A
Jiménez, Heiner Litz, and Baris Kasikci, “Thermometer: profile-guided
btb replacement for data center applications,” in Proceedings of the
49th Annual International Symposium on Computer Architecture, 2022,
pp. 742–756.

[99] Niranjan K Soundararajan, Peter Braun, Tanvir Ahmed Khan, Baris
Kasikci, Heiner Litz, and Sreenivas Subramoney, “Pdede: Partitioned,
deduplicated, delta branch target buffer,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, 2021, pp.
779–791.

[100] Lawrence Spracklen, Yuan Chou, and Santosh G Abraham, “Effective
instruction prefetching in chip multiprocessors for modern commer-
cial applications,” in International Symposium on High-Performance
Computer Architecture, 2005.

[101] Viji Srinivasan, Edward S Davidson, Gary S Tyson, Mark J Charney, and
Thomas R Puzak, “Branch history guided instruction prefetching,” in
International Symposium on High-Performance Computer Architecture,
2001.

[102] David Suggs, Mahesh Subramony, and Dan Bouvier, “The amd “zen 2”
processor,” IEEE Micro, vol. 40, no. 2, pp. 45–52, 2020.

[103] David Terei and Amit Levy, “Blade: A data center garbage collector,”
2015. [Online]. Available: https://arxiv.org/abs/1504.02578

[104] Muhammed Ugur, Cheng Jiang, Alex Erf, Tanvir Ahmed Khan,
and Baris Kasikci, “One profile fits all: Profile-guided linux kernel
optimizations for data center applications,” ACM SIGOPS Operating
Systems Review, vol. 56, no. 1, pp. 26–33, Jun. 2022.

[105] April W Wade, Prasad A Kulkarni, and Michael R Jantz, “Aot vs. jit:

impact of profile data on code quality,” in Proceedings of the 18th ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems, 2017, pp. 1–10.

[106] David W Wall, “Predicting program behavior using real or estimated
profiles,” ACM SIGPLAN Notices, vol. 26, no. 6, pp. 59–70, 1991.

[107] Youfeng Wu and James R Larus, “Static branch frequency and program
profile analysis,” in Proceedings of the 27th annual international
symposium on Microarchitecture, 1994, pp. 1–11.

[108] Hao Xu, Qingsen Wang, Shuang Song, Lizy Kurian John, and Xu Liu,
“Can we trust profiling results? understanding and fixing the inaccu-
racy in modern profilers,” in Proceedings of the ACM International
Conference on Supercomputing, 2019, pp. 284–295.

[109] Ahmad Yasin, “A top-down method for performance analysis and
counters architecture,” in 2014 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 2014,
pp. 35–44.

[110] Jifei Yi, Benchao Dong, Mingkai Dong, and Haibo Chen, “On the
precision of precise event based sampling,” in Proceedings of the 11th
ACM SIGOPS Asia-Pacific Workshop on Systems, 2020, pp. 98–105.

[111] Siavash Zangeneh, Stephen Pruett, Sangkug Lym, and Yale N Patt,
“Branchnet: A convolutional neural network to predict hard-to-predict
branches,” in 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2020, pp. 118–130.

[112] Stephen Zekany, Daniel Rings, Nathan Harada, Michael A Laurenzano,
Lingjia Tang, and Jason Mars, “Crystalball: Statically analyzing runtime
behavior via deep sequence learning,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2016.

[113] Jingren Zhou and Kenneth A Ross, “Buffering databse operations for
enhanced instruction cache performance,” in International conference
on Management of data, 2004.

545

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on February 16,2023 at 04:59:04 UTC from IEEE Xplore. Restrictions apply.

