
Evaluation of Distributed Recovery in Large-Scale Storage Systems

Qin Xin Ethan L. Miller
Storage Systems Research Center

University of California, Santa Cruz�
qxin, elm � @cs.ucsc.edu

Thomas J. E. Schwarz, S. J.
Computer Engineering Dept.

Santa Clara University
tjschwarz@scu.edu

Abstract

Storage clusters consisting of thousands of disk drives
are now being used both for their large capacity and high
throughput. However, their reliability is far worse than that
of smaller storage systems due to the increased number of
storage nodes. RAID technology is no longer sufficient to
guarantee the necessary high data reliability for such sys-
tems, because disk rebuild time lengthens as disk capacity
grows. In this paper, we present FAst Recovery Mechanism
(FARM), a distributed recovery approach that exploits ex-
cess disk capacity and reduces data recovery time. FARM
works in concert with replication and erasure-coding re-
dundancy schemes to dramatically lower the probability of
data loss in large-scale storage systems. We have exam-
ined essential factors that influence system reliability, per-
formance, and costs, such as failure detections, disk band-
width usage for recovery, disk space utilization, disk drive
replacement, and system scales, by simulating system be-
havior under disk failures. Our results show the reliability
improvement from FARM and demonstrate the impacts of
various factors on system reliability. Using our techniques,
system designers will be better able to build multi-petabyte
storage systems with much higher reliability at lower cost
than previously possible.

1. Introduction

Five exabytes (5 � 260 bytes) of new information were
generated in 2002, and new data is growing annually at the
rate of 30% [22]. System designers are building ever-larger
storage clusters to meet such rapidly increasing demand on
data capacity with high I/O performance. The national labs,
for instance, are planning to build a two petabyte storage
system for use in large-scale scientific simulations and ex-
periments. This application motivates our research.

Advances in storage technology have reduced cost and
improved performance and capacity; however, disk drive

reliability has only improved slowly. In a typical environ-
ment for large storage systems, such as supercomputing
systems, data loss is intolerable: losing just the data from
a single drive, while it might hold less than 0.1% of the to-
tal storage, can result in the loss of a large file spread over
thousands of drives. A failure in a single device might be
rare, but a system with thousands of devices will experi-
ence failures and even groups of almost simultaneous fail-
ures much more frequently. As an example, consider the
Internet Archive [19], a digital library that contains over
100 terabytes of compressed data and suffers about thirty
disk failures per month. To make matters worse, the time
to rebuild a single disk is becoming longer as increases in
disk capacity outpace increases in bandwidth [16]. These
phenomena make it challenging to ensure high reliability
for large-scale storage systems.

In this paper, we propose FARM (FAst Recovery Mech-
anism), which makes use of declustering [2, 23, 25] that
reduces the time to deal with a disk failure. RAID design-
ers have long recognized the benefits of declustering for
system performance. Declustering distributes the mirrored
copies or redundancy groups across the disk array, so that,
after a disk failure, the data needed to reconstruct the lost
data is distributed over a number of drives in the disk ar-
ray. Thus, declustering leads to good performance for stor-
age systems in degraded mode. FARM uses declustering
not only to improve performance during data recovery, but,
more importantly, to improve reliability. FARM deals with
the consequences of failures much faster and thus limits the
chance that additional failures lead to data loss during the
window of vulnerability. We examine distributed recovery
in a very large-scale system and show how FARM improves
reliability across a wide range of system characteristics.

To the best of our knowledge, no research yet has
been directed towards the architecture of such a high-
performance, large-scale system with such high reliabil-
ity demands. OceanStore [28] aims for a high availabil-
ity and high security world-wide peer-to-peer system, but
does not provide high bandwidth. FARSITE [1] stores data
in free disk space on workstations in a corporate network.

This paper appeared in the Proceedings of the 13th IEEE International Symposium on High Performance Distributed
Computing, Honolulu, HI, June 2004.

While both systems have concerns similar to ours, they
have less control over the individual storage devices and
they provide primarily read-only access at relatively low
bandwidths (megabytes per second). In principle, we are
close to the classical storage solutions such as RAID [6].
However, the size of our system is so much larger that sim-
ply using traditional RAID techniques alone will not pro-
vide sufficient reliability.

We studied FARM in a petabyte-scale storage system
with thousands of storage devices. Storage systems built
from Object-based Storage Devices (OSDs), which are ca-
pable of handling low-level storage allocation and manage-
ment, have shown great promise for superior scalability,
strong security, and high performance [13]. Our mech-
anisms not only provide high reliability for object-based
storage systems, but also are applicable to general large-
scale data storage systems built from block devices. We
use the term “disk drives” to refer to both OSDs and tradi-
tional block devices.

Our simulation results show that FARM is successful
across most data redundancy techniques. We also inves-
tigate the factors that influence system reliability, includ-
ing failure detection latency, data recovery bandwidth, disk
space utilization, disk drive replacement, and overall sys-
tem scales. With our reliability schemes and analysis for
related factors, system designers can choose the techniques
necessary to ensure that their storage system is sufficiently
reliable for their users.

2. FAst Recovery Mechanism

As the increase in capacity outpaces that of bandwidth,
disk rebuild time is increasing. During rebuilding, addi-
tional disk failures can lead to data loss. Traditional re-
covery schemes such as RAID that rebuild the data on a
failed drive onto a single replacement drive cannot guaran-
tee sufficient reliability in large storage systems, as we will
see in Section 3. We propose a FAst Recovery Mechanism
(FARM) that declusters redundancy groups to speed up re-
covery from disk failure and thus to achieve high reliability
for very large-scale storage systems. In FARM, failure and
recovery are transparent to users.

2.1. Redundancy Groups

In order to achieve high reliability in large systems, user
data is stored redundantly using either replication or some
form of erasure correcting code such as storing the parity of
a group of blocks. We call a group of data blocks composed
of user data and their associated replicas or parity / erasure
code blocks a redundancy group. The size of a redundancy
group is the total user data in the group, not including the
replicas or parity blocks.

mapping (RUSH)

mapping (RUSH)

storage

disk1 disk2 disk3 disk4

files

construct w/ parity/replicas

collections of data blocks

redundany groups
(2−way mirroring)

disk5

...

A B

<A, 1><A, 0> <B, 0> <B, 1>

Figure 1. Redundancy group construction.

2.1.1. Data Distribution

Before discussing the configuration schemes for redun-
dancy groups, we give a brief illustration of our system: a
petabyte-scale storage system built from thousands of disk
drives. Files are broken up into fixed-size blocks; the de-
fault size of a block is 1 MB. A number of blocks are gath-
ered in a collection with the mapping of block to collec-
tion done by RUSH [17]. A collection is then assigned
to a redundancy group by redundancy schemes, such as
replication or adding parity blocks. Collections of blocks
enable efficient data management and redundancy groups
provide enhanced reliability. We use RUSH again to allo-
cate redundancy groups to storage devices. Figure 1 illus-
trates the construction process of redundancy group A and
B with two-way mirroring configuration. Each data block
is marked as � grp id � rep id � , where grp id is the identifier
of the group to which it belongs and rep id is its identifier
in the group. Data blocks that reside in the same redun-
dancy group are called “buddies;” they share one grp id
with various values of rep id.

2.1.2. Configuration of Redundancy Groups

No redundancy scheme is simpler than replication. An
n-way mirroring scheme maintains n copies of each user
data block, each residing on a different disk. Alternatively,
a parity scheme adds a block containing the (XOR) parity
of the user data blocks. For higher failure tolerance, we
can use an erasure correcting code (ECC) to generate more
than a single parity block. These generalized parity blocks
are made up of the check symbols of the code.

There are many good candidates for an ECC. Since disk
access times are comparatively long, time to compute an
ECC is relatively unimportant. A good ECC will create k
parity blocks of the same size as the m user data blocks.
It will be able to reconstruct the contents of any block
out of m parity or data blocks. Examples of such ECCs
are generalized Reed-Solomon schemes [21, 27] and Even-
Odd [4]. These are generically called m � n schemes, where
n � m � k. An m � n scheme gives us m-availability, but must

(b) Disk3 fails after a while.

(c) Traditional RAID replicates data to a spare disk. (d) FARM distributes data replicas.

(a) The system works normally initially.

<B, 0>

<D, 0>

<E, 0>

<C, 1>

<E, 1>

<D, 1>

<A, 1>

<C, 0>

<A, 0>

<B, 1>

disk0 disk1 disk2 disk3 disk4

disk5

<C, 2>

<B, 0>

<D, 0>

<E, 0>

<C, 1>

<E, 1>

<D, 1>

<A, 1>

<C, 0>

<A, 0>

<B, 1>

disk0 disk1 disk2 disk3 disk4

.........

...

... ...

<B, 0>

<D, 0>

<E, 0>

<C, 1>

<E, 1>

<D, 1>

<A, 1>

<C, 0>

<A, 0>

<B, 1>

disk0 disk1 disk2 disk3 disk4

<E, 2>

...

<B, 0>

<D, 0>

<E, 0>

<C, 1>

<E, 1>

<D, 1>

<A, 1>

<C, 0>

<A, 0>

<B, 1>

disk0 disk1 disk2 disk3 disk4

...

<E, 2>

... <C, 2>

Figure 2. Upon disk failure, different behaviors with and w/o FARM.

update all k parity blocks whenever a data block changes.
If only a single block changes, this can often be done as
in RAID 5 by calculating the difference between the new
and the old user data. The difference is then propagated
to all parity blocks, which are updated by processing the
difference and the old parity values.

The blocks in a redundancy group reside on different
disks, but each disk contains data that belongs to different
redundancy groups. We allocate redundancy groups to disk
drives in a fully distributed fashion using an algorithm [17]
that gives each disk statistically its fair share of user data
and parity data, so that read and write loads are well bal-
anced. A good data placement algorithm limits the amount
of data any disks contributes to the data recovery process;
the one we are using has this property.

The trade-offs between the different redundancy mecha-
nisms are ease of implementation, the complexity of parity
management and recovery operations, the bandwidth con-
sumed by recovery [36], and the storage efficiency, i. e., the
ratio between the amount of user data and the total amount
of storage used. Two-way mirroring is easy to implement
and simple to run, but only has a storage efficiency of 1/2.
An m � n scheme is more complex and write performance is
worse, but it has better storage efficiency of m � n. There are
some schemes that put a user data block into more than one
redundancy group [15] and mixed schemes that structure
a redundancy group by data blocks and an (XOR-)parity
block, and a mirror of the data blocks with parity.

The consequences for reliability of each scheme depend
greatly on the system in which they are deployed. For ex-
ample, the FARSITE implementers noticed that failure of
storage sites could no longer be considered independent for
a replication factor m 	 4 [9]. In a large storage system,
placement and support services to the disk introduce com-
mon failure causes such as a localized failure in the cooling
system.

2.2. Design Principles

The traditional recovery approach in RAID architectures
replicates data on a failed disk to one dedicated spare disk
upon disk failure. Such a scheme works properly in a small
system consisting of up to one hundred disk drives, but it
fails to provide sufficient reliability for systems with thou-
sands of disks.

Menon and Mattson [23] proposed the distribution of
a dedicated spare disk in a RAID 5 system among all the
disks in the disk array. Each disk then stores blocks for
user data, blocks for parity data, and blocks reserved for
data from the next disk to fail. Some time after a failure,
a replacement disk is rebuilt from the data distributed to
the storage array from the failed disk. Distributed sparing
results in better performance under normal conditions be-
cause the load is divided over one more disk, but has the
same performance in “degraded mode” (after a disk fail-
ure). In addition, reliability benefits greatly from reduced
data reconstruction time after a disk failure [33], because of
a smaller window of vulnerability to further drive losses.

The large storage systems that we envision do not dif-
fer only in scale from disk arrays; they are also dynamic:
batches of disk drives will be deployed to replace failed or
old disks and to provide additional capacity. Our proposal
for systems of this sort reduces recovery time by paral-
lelizing the data rebuild process and increases redundancy
adaptively when system load and capacity utilization allow.
We can characterize FARM as follows: A RAID is declus-
tered if parity data and spare space are evenly distributed
throughout the disk array. Declustering is motivated by per-
formance. FARM is declustering at a much higher scale,
with a primary focus on reliability, though performance
also benefits.

Figure 2 illustrates the principles of FARM in a small
storage system, compared with a traditional RAID. For
simplicity, we use two-way mirroring. With disk 3 fails,
FARM creates a new replica for each redundancy group
that had a replica on disk 3, blocks C and E in Figure 2(b).

Rather than creating all of the replicas on a spare disk, say
disk 5 shown in Figure 2(c), FARM distributes all new
replicas to different disks, as shown in Figure 2(d). In a
storage system with thousands of disks, replication can pro-
ceed in parallel, reducing the window of vulnerability from
the time needed to rebuild an entire disk to the time needed
to create one or two replicas of a redundancy group, greatly
reducing the probability of data loss.

Our data placement algorithm, RUSH [17] provides a
list of locations where replicated data blocks can go. Af-
ter a failure, we select the disk on which the new replica is
going to reside from these locations. We call the selected
disk the recovery target, and the locations of the buddies
that help to rebuild the recovery sources. The recovery tar-
get chosen from the candidate list (a) must be alive, (b)
should not contain already a buddy from the same group,
and (c) must have sufficient space. Additionally, it should
currently have sufficient bandwidth, though if there is no
better alternative, we will stick to it. If we use S.M.A.R.T.
(Self Monitoring and Reporting Technology) [18] or a sim-
ilar system to monitor the health of disks, we are able to
avoid unreliable disks. Unlike FARSITE [9], replicas are
not moved once placed.

Even with S.M.A.R.T., the possibility that a recovery
target fails during the data rebuild process remains. In this
case, we merely choose an alternative target. If a recovery
source fails, and there is no alternative, a data loss occurs.
Otherwise, we replace the failed source with an alternative
one. The occurrence of this problem, which we call recov-
ery redirection is rare. We found that, at worst, it happened
to fewer than 8.0% of our systems even once during simu-
lated six years.

2.3. Reliability Factors

The reliability of a large storage system employing
FARM depends on the size and structure of redundancy
groups, the size of the blocks, the latency of disk failure
detection, the bandwidth utilized for recovery, the amount
of data stored on disks, the number of disks in the system,
and the way we replace disks.

Two inherent factors affect the probability of data loss:
the total number of the redundancy groups across the sys-
tem and the size of a single redundancy group. Our previ-
ous study [37] showed that these two factors balance each
other out in the case of two-way mirroring, and that the data
loss probability is independent of the redundancy group
size under the idealizing assumption of zero failure detec-
tion time and independent redundancy groups.

Strategies for efficient failure detection are beyond the
scope of this paper; we merely measure the impact of fail-
ure detection latencies, which add to the rebuild times. The
speed of a rebuild depends also on the data transfer rate for

Table 1. Disk failure rate per 1000 hours [10].

Period (month) 0-3 3-6 6-12 12-72
failure rate 0.5% 0.35% 0.25% 0.2%

Table 2. Parameters for a petabyte-scale stor-
age system.

Parameter Base Value Examined Value
total data in the system 2 PB 0.1–5 PB
size of a redundancy group 10 GB, 50 GB 1–100 GB
group configuration two-way mirroring varied
latency to failure detection 300 sec. 0–3600 sec.
disk bandwidth for recovery 16 MB/sec 8–40 MB/sec

the rebuild. This recovery bandwidth is not fixed in a large
storage system. It fluctuates with the intensity of user re-
quests, especially if we exploit system idle time [14] and
adapt recovery to the workload.

Storage overhead in a large system is costly. At
$1/GB, the difference between two- and three-way mirror-
ing amounts to millions of dollars in a petabyte-scale stor-
age system. For this reason, we investigated disk space
utilization.

FARM is a general approach to combat disk failures
in large storage systems. As storage systems grow, rel-
atively rare failure types become statistically significant.
FARM might not make a difference for small systems, but
is needed for large-scale systems.

Finally, the batch size—the number of new disks intro-
duced into the system at any one time—has an effect on
reliability. When new disk drives are introduced to the sys-
tem, data should be migrated from old disks to the new
ones. The number of the replacement processes determines
the frequency of data reorganization and also affects system
reliability, because of the possible failures in a batch.

3. Experimental Results

Since building a petabyte-scale real large system is
expensive, and running multi-year reliability tests is im-
practical at best, we ran our experiments using discrete
event-driven simulations built with the PARSEC simulation
tool [24].

3.1. System Assumptions

Our experiments explored the behavior of a two
petabyte (PB) storage system, except as noted. Depending
on the redundancy scheme employed, the system contains
up to 15,000 disk drives, each with an extrapolated capac-
ity of 1 TB and an extrapolated sustainable bandwidth of

redundancy schemes

1/2 1/3 2/3 4/5 4/6 8/10pr
ob

ab
ili

ty
 o

f d
at

a
lo

ss
 (%

)

0

20

40

60

80

100

2.3 0 2.3 3.8 0 0

25.7

0

60.9

93.5

0 0.2

with FARM
w/o FARM

(a) redundancy group size = 10 GB.

redundancy schemes

1/2 1/3 2/3 4/5 4/6 8/10pr
ob

ab
ili

ty
 o

f d
at

a
lo

ss
 (%

)

0

20

40

60

80

100

1.6 0 2.3 4.3 0 0
6.2

0

18

47.9

0 0.2

with FARM
w/o FARM

(b) redundancy group size = 50 GB.

Figure 3. Reliability comparisons of systems
with and without FARM data protection, as-
suming that latency to failure detection is
zero (1000 runs for each). m
 n schemes are
discussed in Section 2.1.2.

80 MB/sec (based on the 56 MB/sec of the current IBM
Deskstar [8]). We assume that recovery can use at most
20% of the available disk bandwidth, and that each device
reserves no more than 40% of its total capacity at system
initialization for recovered data. We define the size of a re-
dundancy group to be the amount user data stored in it, and
vary this amount from 1 GB to 100 GB.

It is well-known that disks do not fail at a constant rate;
the failure rates are initially high, then decrease gradually
until disks reach their End Of Design Life (EODL). The
industry has proposed a new standard for disk failure dis-
tribution [10, 35]. We assume our disk drives have a typi-
cal EODL of 6 years and follow Elerath [10] for the failure
rates enumerated in Table 1.

Table 2 lists the default values of the system parameters
together with the range of values that we used to quantify
the tradeoffs in the design of our system.

3.2. Reliability Improvement

We first measured the improvement in reliability gained
by using FARM in a large-scale storage system. We con-
structed redundancy groups with six types of configura-
tions: two-way mirroring (1
 2), three-way mirroring (1
 3),
two RAID 5 schemes (2
 3 and 4
 5), and two ECC configu-
rations (4
 6 and 8
 10). We then computed the probability
of data loss in a two petabyte system configured with the
base parameters listed in Table 2, both with and without

detection latency (minutes)
0 10 20 30 40 50 60

pr
ob

ab
ili

ty
 o

f d
at

a
lo

ss
 (%

)

0

10

20

30

40

50

60 1 GB
5 GB
10 GB
25 GB
50 GB
100 GB

(a) The effect of detection latency on the probability of data loss.

ratio of detection latency to recovery time
0 0.25 0.5 0.75 1

pr
ob

ab
ili

ty
 o

f d
at

a
lo

ss
 (%

)

0

2

4

6

8

10
1 GB
5 GB
10 GB
25 GB
50 GB
100 GB

(b) The effect of the ratio of detection latency to recovery time on
the probability of data loss.

Figure 4. The effect of latency to detect disk
failures on overall system reliability under
various redundancy group sizes.

FARM data protection, assuming the latency to failure de-
tection is zero. We further varied the size (usable capacity)
of the redundancy group between 10 GB and 50 GB. We
simulated our system for six years. At the end of six years,
the remaining disks would be near the end of their lives and
be ready to be replaced.

Our results, shown in Figure 3, demonstrate that FARM
always increases reliability. RAID 5-like parity without
FARM fails to provide sufficient reliability. With two-way
mirroring, FARM reduces probability of data loss down to
1–3%, as compared to 6–25% without FARM. 3-way mir-
roring limits the probability of data loss to less than 0.1%
during the first six years, similar to the probability of 4
 6
and 8
 10 with FARM.

Figures 3(a) and 3(b) show that the size of redundancy
groups has little impact on systems using FARM, but does
matter for systems without FARM. Our earlier study [37]
found that data loss probability is independent of group size
under two-way mirroring with FARM, if the latency of fail-
ure detection is zero. Without FARM, reconstruction re-
quests queue up at the single recovery target. Data loss oc-
curs if any of the recovery sources or their alternatives fail
before the block is reconstructed. With smaller redundancy
groups, there are more recovery sources that can fail during
that time, so that the probability of data loss increases.

disk bandwidth for recovery (MB/sec)
8 16 24 32 40

pr
ob

ab
ili

ty
 o

f d
at

a
lo

ss
 (%

)

0

10

20

30

40

50 w/o FARM, 10GB
w/o FARM, 50GB
with FARM, 10GB
with FARM, 50GB

Figure 5. System reliability at various levels
of recovery bandwidth with size of redun-
dancy groups varies as 10 GB and 50 GB, un-
der FARM and traditional recovery scheme,
respectively.

3.3. Latency of Failure Detection

After a disk fails, we first need to identify the failed disk
and then reconstruct the data that was on it. The window
of vulnerability consists of the time to detect a failure and
the time to rebuild the data. Discovering failure in such
a large system is not trivial and we cannot neglect the la-
tency to failure detection. When we investigated its impact
on systems with redundancy group sizes ranging from 1 GB
to 100 GB under two-way mirroring plus FARM, we found
that systems with smaller group sizes are more sensitive
(Figure 4(a)). It takes less time to reconstruct smaller-sized
groups, so a constant failure detection latency makes up
a much larger relative portion of the window of vulnera-
bility. For example, it takes 64 seconds to reconstruct a
1 GB group, assuming reconstruction runs at a bandwidth
of 16 MB/sec, while it takes 6400 seconds for a 100 GB
group. If it takes 10 minutes to detect a failure, detection
latency represents 90.4% of the window of vulnerability for
the former, and only 0.86% for the latter. We hypothesized
that the ratio of failure detection latency to actual data re-
covery time determines the probability of data loss. Our
results, summarized in Figure 4(b), show that this is the
case.

3.4. Disk Bandwidth Usage for Recovery

Data rebuild time can be shortened by allocating a
higher portion of device bandwidth to recovery. To gauge
the impact of recovery on usable bandwidth, we examined
various disk bandwidths contributed to data recovery in a
2 PB storage system with two-way mirroring under the as-
sumption that failure detection latency is 300 seconds.

As expected, the probability of data loss decreases as
the recovery bandwidth increases (Figure 5). In all cases,

Disk IDs
0 1 2 3 4 5 6 7 8 9 10

ca
pa

ci
ty

 u
til

iz
at

io
n

(G
B

)

0

200

400

600

800

1000
initial state
after 6 years

(a) redundancy group size = 1 GB.

Disk IDs
0 1 2 3 4 5 6 7 8 9 10

ca
pa

ci
ty

 u
til

iz
at

io
n

(G
B

)

0

200

400

600

800

1000
initial state
after 6 years

(b) redundancy group size = 10 GB.

Disk IDs
0 1 2 3 4 5 6 7 8 9 10

ca
pa

ci
ty

 u
til

iz
at

io
n

(G
B

)

0

200

400

600

800

1000
initial state
after 6 years

(c) redundancy group size = 50 GB.

Figure 6. Disk utilization for ten randomly se-
lected disks. Utilization was measured at the
start of the simulation period and at the end
of the six year period. The size of redun-
dancy groups is varied as 1 GB, 10 GB and
50 GB.

we observed that the chance of data loss is higher for a
smaller group size, due to the impact of failure detection
latency. High recovery bandwidth improves system relia-
bility dramatically for the systems without FARM, but does
not have a pronounced effect when FARM is used. The ad-
vantage of higher recovery bandwidth is to reduce the data
rebuild time, but FARM has already cut recovery time dra-
matically, so that further reductions from higher bandwidth
utilization achieve little improvement. Without FARM, re-
covery time is quite long due to the single recovery target,
so high recovery bandwidth can greatly improve reliability.
In systems where disks are much less reliable, or storage
capacity exceeds petabytes, high recovery bandwidth can
be effective even when FARM is used.

3.5. Disk Space Utilization

FARM distributes both data and redundancy informa-
tion across the whole system. As disks fail, data stored on
them is redistributed to the rest of the system; it is never
recollected to a single disk. This approach has the potential

1 GB 10 GB 50 GBstatistical values
initial state six years later initial state six years later initial state six years later

mean 400 GB 442.33 GB 400 GB 442.33 GB 400 GB 442.33 GB
standard deviation 1.41 GB 6.44 GB 18.03 GB 26.41 GB 81.52 GB 92.53 GB

Table 3. Mean and standard deviation of disk utilization in the system initial state and after the end of
disk lifetime (six years). Redundancy groups are configured as 1 GB, 10 GB and 50 GB, respectively.

to introduce imbalances in the actual amount of data stored
on each individual drive. However, our technique does not
suffer from this problem, as demonstrated by an experiment
summarized in Figure 6. We first used our placement algo-
rithm to distribute data on 10,000 1 TB disks with an aver-
age utilization of 40%, including both primary and mirror
copies of data. We then simulated disk failures and data re-
construction for six years of simulated time; the mean and
standard deviation of capacity utilization are listed in Ta-
ble 3. Smaller-sized redundancy groups result in a lower
standard deviation on capacity, although the mean values
stay the same. Figure 6 shows the load for ten randomly-
chosen disk drives both before and after the six years of ser-
vice. Disk 3 failed during the service period so it does not
carry any load. The other nine disk drives have increased
their disk space usage due to the distributed redundancy
created by FARM. The unevenness in data distribution is
caused by the relatively large ratio of redundancy group
size to disk size. Reducing redundancy group size to 1 GB
would alleviate this problem and balance disk utilization
better, but at the cost of lower reliability, as described in
Section 3.2.

3.6. Disk Drive Replacement

Large-scale storage systems are always dynamic: old
disk drives are removed when they fail or retire, and new
disk drives are added to satisfy the demands of disk replace-
ment and data capacity growth. It is typically infeasible to
add disk drives one by one into large storage systems be-
cause doing so would require daily (if not more frequent)
drive replacement. Instead, a cluster of disk drives, called
a batch, is added. The choice of batch size determines the
replacement frequency and the amount of data that needs
to migrate onto new drives in order to keep the system in
balance.

The newly-added disks come from different disk vin-
tages and have various storage capacities. The reorganiza-
tion of data should be based on the weight of disks, deter-
mined by disk vintage, reliability properties, and capacity.
The determination of these weights is not within the scope
of the paper; currently, the weight of each disk is set to that
of the existing drives for simplicity.

Large batch sizes can have a negative impact on system

replacement percent
2% 4% 6% 8%

pr
ob

ab
ili

ty
 o

f d
at

a
lo

ss
 (%

)

0

2

4

6

8

10

Figure 7. Effect of disk drive replacement
timing on system reliability, with 95% con-
fidence intervals. New disks are added in the
system after losing 2%, 4%, 6%, and 8% of the
total disks. The size of redundancy groups
is 10 GB.

reliability because they introduce a large number of new,
and hence more failure-prone, disks into the system. We
call this the cohort effect. We experimented by replacing
failed disk drives once the system has lost 2%, 4%, 6%,
and 8% of the total number of disk drives. As Figure 7
reports, the cohort effect is not visible using a redundancy
group size of 10 GB, in large part because only about 10%
of the disks fail during the first six years. As a result, disk
replacement happens about five times at the batch size of
2% and about once at 8%, assuming that total data capacity
remains unchanged. The number of disks in each replace-
ment batch is 200 for 2% and 800 for 8%, so that only 2%
and 8% of the data objects migrate to newly-added disks.
This number is too small for the cohort effect, so batch
size and replacement frequency does not significantly af-
fect system reliability. Thus, there is little benefit beyond
delaying some cost to just-in-time replacement.

3.7. System Scale

Our findings apply not only to a 2 PB system, but to any
large-scale storage system. As expected, the probability
of data loss, shown in Figure 8(a), tends to increase ap-
proximately at a linear rate as system scales from 0.1 PB
to 5 PB. For a 5 PB storage system, FARM plus two-way
mirroring achieves a data loss probability as low as 6.6%.

total data capacity (PB)
0 1 2 3 4 5

pr
no

ba
bi

lit
y

of
 d

at
a

lo
ss

 (%
)

0

10

20

30

40
4/5
2/3
1/2
1/3
4/6
8/10

(a) Disks with the failure rate listed in Table 1.

total data capacity (PB)
0 1 2 3 4 5

pr
ob

ab
ili

ty
 o

f d
at

a
lo

ss
 (%

)

0

20

40

60

80
4/5
2/3
1/2
1/3
4/6
8/10

(b) Disks with a failure rate twice that listed in Table 1.

Figure 8. The probability of data loss in a stor-
age system under FARM is approximately lin-
ear in the size of the storage system. The size
of redundancy groups is 10 GB.

However, RAID 5-like parity cannot provide enough relia-
bility even with FARM. Using a 3-way mirroring, 6 out of
8, or 8 out of 10 scheme with FARM, the probability of data
loss is less than 0.1%. This result is not unexpected—it is
well-known that a system with twice as many disks is ap-
proximately twice as likely to fail given otherwise identical
parameters.

Disk vintage [10] is an important aspect in system re-
liability. Disk drives with various vintages differ in fail-
ure rates and even failure modes. We set up disk drives
with failure rates as twice high as the disk vintage listed
in Table 1 and vary the system scale. We observed a sim-
ilar trend in increase of data loss probability from the re-
sults shown in Figure 8(b). As the failure rate of individ-
ual drives doubled and the rest of the configuration stayed
the same, the probability of data loss more than doubled.
This is due to several factors, including an increased likeli-
hood of failure when one or both disks are new. We believe
that keeping disk failure rates low is a critical factor in en-
suring overall system reliability because system reliability
decreases at a rate faster than individual disk reliability de-
creases.

4. Related Work

System designers have long tried to build more reliable
storage systems. Techniques such as disk mirroring [3] and
RAID (Redundant Arrays of Independent Disks) [6] have
been used for many years to improve both system reliability
and performance. The use of more powerful erasure codes
for RAID [5, 27, 32] can improve reliability to the point
where it may be sufficient for a multi-petabyte file system,
but the overhead of using such erasure codes will likely
reduce system performance.

Traditionally, system designers were more concerned
with system performance during recovery than they were
with reliability, since smaller systems can be highly reli-
able even with relatively simple redundancy mechanisms.
To address the problem of reduced performance during re-
covery from a failure, Menon and Mattson [23] proposed
“distributed sparing,” in which the spare disk is broken up
and distributed through the array. In such an array, the reads
for a data rebuild are distributed to all disks, and the disk
itself is “rebuilt” onto the spare space available in the ar-
ray, distributing the recovery load to all of the disks in the
system and reducing the performance penalty of recovery.
Muntz and Lui [25] proposed that a disk array of n disks
be declustered by grouping the blocks in the disk array into
reliability sets of size g. Later, Alvarez, et al. [2] devel-
oped DATUM, a method that can tolerate multiple failures
by spreading reconstruction accesses uniformly over disks
based on information dispersal as a coding technique. DA-
TUM accommodates distributed sparing as well. The prin-
ciple of these ideas comes close to the spirit of fast recov-
ery schemes. However, our fast recovery mechanisms are
not only used for avoiding performance degradation under
disk drive failures but also, more importantly, for improv-
ing reliability. In addition, the previous studies did not use
a bathtub curve for disk failure rates, reducing the accuracy
of their experiments.

There has been some research beyond RAID in relia-
bility and recovery for large-scale systems, though most
has focused on the use of storage in wide-area systems.
OceanStore [28] is an infrastructure that provides high
availability, locality, and security by supporting nomadic
data. It uses erasure coding to provide redundancy without
the overhead of strict replication and is designed to have
a very long mean time to data loss. An analysis of the
reliability of OceanStore [36] showed that erasure codes
had higher reliability than pure redundancy for a given
amount of storage overhead; however, the study did not
explore general characteristics of large-scale storage sys-
tems. Other peer-to-peer systems, such as Pangaea [31],
PAST [30], CFS [7], and Gnutella [29] were designed with
high replication since they are limited to read-only data.
However, in read/write file systems, very large replication

factors would not be practical because of both storage ef-
ficiency and overhead necessary to maintain data consis-
tency. Ivy [26], a read/write peer-to-peer system, does not
address replication issues.

In the Google file system [12], a single master makes
decisions on data chunk placement and replications. A
data chuck is re-replicated when its number of replicas
falls below a limit specified by users. Grid DataFarm [34]
stores files as replicated fragments in distributed storage
resources. We consider more general redundancy schemes
like erasure coding. In FARSITE [1], a directory group en-
sures that the files they store are never lost, again restricting
replication for a given block to a particular group of ma-
chines. FARSITE assumes that recovery is sufficiently fast
that data is never lost; in a multi-petabyte file system, this
assumption may simply not hold.

Petal [20], a distributed storage system that is highly
available and easy to manage, uses chained-declustering
data placement scheme and provides high failure tolerance.
Recently, FAB (Federated Array of Bricks) [11] extended
Petal with better replication and load balancing algorithms.
FAB provides reliability by grouping data segments to-
gether and replicating the groups over several bricks. The
management of groups in FAB comes close to that of re-
dundancy groups in our system. However, they did not ad-
dress the various issues in dynamic storage systems such as
failure detection latency and disk bandwidth utilization.

5. Conclusions

Traditional redundancy schemes can not guarantee suffi-
cient reliability for petabyte-scale storage systems. Simply
increasing the number of replicas is cumbersome and costly
for read/write systems, and using m out of n schemes, while
cheaper, is also more complex. In response, we devel-
oped FARM, a fast recovery scheme that distributes redun-
dancy on demand effectively to improve reliability. Data
objects are clustered into redundancy groups that may use
various replication and erasure-coding schemes. We have
demonstrated that FARM provides much higher reliability
for large-scale storage systems. Our results show that fail-
ure detection latency affects reliability greatly for small re-
dundancy groups, and that the ratio of recovery time to fail-
ure detection latency is crucial. We found that allocating
a higher portion of bandwidth to recovery does not have a
pronounced influence for FARM because data rebuild times
have already been greatly reduced by FARM. We have vali-
dated FARM for general large-scale storage systems of dif-
ferent sizes.

Our work offers a more effective redundancy mecha-
nism for designers of large-scale storage systems, espe-
cially those that must provide high data reliability. By de-
veloping more effective redundancy techniques for large-

scale storage systems and quantifying the effects of dif-
ferent parameters on the reliability of such systems, we
have provided designers of petabyte-scale systems the tech-
niques they need to build the high-performance, high-
capacity systems demanded by scientific computation and
“computing utilities.” By applying these techniques, de-
signers can ensure that their systems feature high reliability
as well as high performance.

Acknowledgments

We would like to thank the members of the Storage Sys-
tems Research Center for their help and guidance. Qin
Xin and Ethan Miller were supported in part by Lawrence
Livermore National Laboratory, Los Alamos National Lab-
oratory, and Sandia National Laboratory under contract
B520714. Thomas Schwarz was supported in part by IBM
Research Grant 41102-COEN-RSCH-IG-IG09.

References

[1] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cer-
mak, J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer,
and R. Wattenhofer. FARSITE: Federated, available, and
reliable storage for an incompletely trusted environment. In
Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (OSDI), Boston, MA, Dec.
2002. USENIX.

[2] G. A. Alvarez, W. A. Burkhard, and F. Cristian. Tolerating
multiple failures in RAID architectures with optimal stor-
age and uniform declustering. In Proceedings of the 24th
International Symposium on Computer Architecture, pages
62–72, Denver, CO, June 1997. ACM.

[3] D. Bitton and J. Gray. Disk shadowing. In Proceedings
of the 14th Conference on Very Large Databases (VLDB),
pages 331–338, 1988.

[4] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD:
An efficient scheme for tolerating double disk failures in
RAID architectures. IEEE Transactions on Computers,
44(2):192–202, 1995.

[5] W. A. Burkhard and J. Menon. Disk array storage system
reliability. In Proceedings of the 23rd International Sympo-
sium on Fault-Tolerant Computing (FTCS ’93), pages 432–
441, June 1993.

[6] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson. RAID: High-performance, reliable secondary
storage. ACM Computing Surveys, 26(2), June 1994.

[7] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. In Proceed-
ings of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), pages 202–215, Banff, Canada, Oct.
2001. ACM.

[8] Disk drive specification: IBM Deskstar T M 180GXP hard
disk drives.

[9] J. R. Douceur and R. P. Wattenhofer. Large-scale simula-
tion of replica placement algorithms for a serverless dis-
tributed file system. In Proceedings of the 9th Interna-
tional Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS
’01), pages 311–319, Cincinnati, OH, Aug. 2001. IEEE.

[10] J. G. Elerath. Specifying reliability in the disk drive in-
dustry: No more MTBF’s. In Proceedings of the 2000 An-
nual Reliability and Maintainability, pages 194–199. IEEE,
2000.

[11] S. Frølund, A. Merchant, Y. Saito, S. Spence, and A. Veitch.
FAB: Enterprise storage systems on a shoestring. In Pro-
ceedings of the 9th Workshop on Hot Topics in Operating
Systems (HotOS-IX), Kauai, HI, May 2003.

[12] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP ’03), Bolton Landing,
NY, Oct. 2003. ACM.

[13] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang,
H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and J. Ze-
lenka. A cost-effective, high-bandwidth storage architec-
ture. In Proceedings of the 8th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 92–103, San Jose, CA,
Oct. 1998.

[14] R. Golding, P. Bosch, C. Staelin, T. Sullivan, and J. Wilkes.
Idleness is not sloth. In Proceedings of the Winter 1995
USENIX Technical Conference, pages 201–212, New Or-
leans, LA, Jan. 1995. USENIX.

[15] L. Hellerstein, G. A. Gibson, R. M. Karp, R. H. Katz, and
D. A. Patterson. Coding techniques for handling failures in
large disk arrays. Algorithmica, 12:182–208, 1994.

[16] J. L. Hennessy and D. A. Patterson. Computer
Architecture—A Quantitative Approach. Morgan Kauf-
mann Publishers, 3rd edition, 2003.

[17] R. J. Honicky and E. L. Miller. Replication under scal-
able hashing: A family of algorithms for scalable decen-
tralized data distribution. In Proceedings of the 18th In-
ternational Parallel & Distributed Processing Symposium
(IPDPS 2004), Santa Fe, NM, Apr. 2004. IEEE.

[18] G. Hughes, J. Murray, K. Kreutz-Delgado, C. Elkan, and
W. Tran. Improved disk-drive failure warnings. In IEEE
Transactions on Reliability, 2000.

[19] http://www.archive.org/web/researcher/data available.php.
[20] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual

disks. In Proceedings of the 7th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 84–92, Cambridge,
MA, 1996.

[21] W. Litwin and T. Schwarz. LH*RS: A high-availability scal-
able distributed data structure using Reed Solomon codes.
In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, pages 237–248, Dal-
las, TX, May 2000. ACM.

[22] P. Lyman, H. R. Varian, P. Charles, N. Good, L. L.
Jordan, and J. Pal. How much information? 2003.
http://www.sims.berkeley.edu/research/projects/how-
much-info-2003/.

[23] J. Menon and R. L. Mattson. Distributed sparing in disk
arrays. In Proceedings of Compcon ’92, pages 410–416,
Feb. 1992.

[24] R. A. Meyer and R. Bagrodia. PARSEC user manual, re-
lease 1.1. http://pcl.cs.ucla.edu/projects/parsec/.

[25] R. R. Muntz and J. C. S. Lui. Performance analysis of disk
arrays under failure. In Proceedings of the 16th Conference
on Very Large Databases (VLDB), pages 162–173, 1990.

[26] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy:
A read/write peer-to-peer file system. In Proceedings of the
5th Symposium on Operating Systems Design and Imple-
mentation (OSDI), Boston, MA, Dec. 2002.

[27] J. S. Plank. A tutorial on Reed-Solomon coding for fault-
tolerance in RAID-like systems. Software—Practice and
Experience (SPE), 27(9):995–1012, Sept. 1997. Correction
in James S. Plank and Ying Ding, Technical Report UT-CS-
03-504, U Tennessee, 2003.

[28] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao,
and J. Kubiatowicz. Pond: the OceanStore prototype. In
Proceedings of the 2003 Conference on File and Storage
Technologies (FAST), pages 1–14, Mar. 2003.

[29] M. Ripeanu, A. Iamnitchi, and I. Foster. Mapping the
Gnutella network. IEEE Internet Computing, 6(1):50–57,
Aug. 2002.

[30] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer stor-
age utility. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP ’01), pages 188–201,
Banff, Canada, Oct. 2001. ACM.

[31] Y. Saito, C. Karamanolis, M. Karlsson, and M. Ma-
halingam. Taming aggressive replication in the Pangaea
wide-area file system. In Proceedings of the 5th Symposium
on Operating Systems Design and Implementation (OSDI).
USENIX, Dec. 2002.

[32] T. J. Schwarz. Generalized Reed Solomon codes for erasure
correction in SDDS. In Workshop on Distributed Data and
Structures (WDAS 2002), Paris, Mar. 2002.

[33] T. J. Schwarz and W. A. Burkhard. Reliability and per-
formance of RAIDs. IEEE Transactions on Magnetics,
31(2):1161–1166, 1995.

[34] A. Takefusa, O. Tatebe, S. Matsuoka, and Y. Morita. Per-
formance analysis of scheduling and replication algorithms
on grid datafarm architecture for high energy physics ap-
plications. In Proceedings of the 12th IEEE International
Symposium on High Performance Distributed Computing
(HPDC), pages 34–43, Seattle, WA, June 2003. IEEE.

[35] The International Disk Drive Equipment & Materials Asso-
ciation (IDEMA). R2-98: Specification of hard disk drive
reliability.

[36] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs.
replication: A quantitative comparison. In Proceedings of
the First International Workshop on Peer-to-Peer Systems
(IPTPS 2002), Cambridge, Massachusetts, Mar. 2002.

[37] Q. Xin, E. L. Miller, T. J. Schwarz, D. D. E. Long, S. A.
Brandt, and W. Litwin. Reliability mechanisms for very
large storage systems. In Proceedings of the 20th IEEE /
11th NASA Goddard Conference on Mass Storage Systems
and Technologies, pages 146–156, Apr. 2003.

