
Quota enforcement for high-performance

distributed storage systems

Kristal T. Pollack, Darrell D. E. Long, Richard A. Golding, Benjamin Reed, Ralph A. Becker-Szendy

IBM Almaden Research Center, San Jose, CA

Abstract

Storage systems manage quota to ensure that each user

gets the storage they need, and that no one user can—even

by accident—use up all available storage. This is diffi-

cult for large, distributed systems, especially those used

for high-performance computing applications, because re-

source allocation occurs on many nodes concurrently. We

present a scheme where quota is enforced asynchronously

by intelligent storage servers: storage clients contact a

shared management service to get vouchers, a capability-

like certificate that the clients can redeem at participating

storage servers to allocate storage space. This approach

produces low load on the shared management service,

promotes good scaling, and allows the client to make de-

cisions about which storage server(s) to use without com-

municating with the management service for further ap-

proval. Storage servers and the management service peri-

odically reconcile voucher usage to ensure that clients do

not cheat by spending the same voucher at multiple stor-

age servers. We report on a simulation study that shows

that this approach gives performance nearly as good as

not enforcing quota at all, and that the load on the shared

management server is remarkably low.

1 Introduction

Tracking and enforcing resource usage limits in a large

distributed system is difficult because it requires maintain-

ing a consistent view of total usage when consumption is

occurring in several places concurrently. In a file system,

for example, users must not use more than their storage

quota. Many scientific applications involve tens of thou-

sands of nodes all cooperating on a problem, all writing to

shared files and consuming from the same pool of quota.

The file system is typically built as a small cluster of meta-

data servers and a larger number of storage servers or disk

arrays. We concentrate here on systems that use storage

servers that provide intelligence similar to object storage,

and so can track local storage allocation and enforce ac-

cess control.

Existing quota systems trade off scalability and accu-

racy. A centralized quota tracking server can be byte-

accurate as long as each client informs the server on each

resource allocation, which inhibits scalable performance.

Other systems use a centralized server but relax accuracy,

either by tracking quota only in large granules or by us-

ing time-limited escrow mechanisms (which set aside a

certain amount of resource for a client for a limited du-

ration), both of which reduce the frequency with which a

client must interact with the quota tracking server.

The existing quota systems also provide for a sin-

gle quota-related policy for all clients. In a distributed

file system like SanFS [10], for example, the centralized

metadata server decides which logical disks in a storage

pool a client should be allocated when it needs storage.

This requires that the policy not only have an accurate

record of how much quota each user has consumed, but

also an accurate map of how much resource is available

on every server on which that resource could be allocated.

We propose an alternative approach to tracking and en-

forcing resource limits. This approach borrows from mi-

crocash mechanisms: there is a centralized server that

acts as a bank that issues vouchers to clients, which the

client can spend to allocate resources on whatever server

they want. The client can withdraw enough vouchers to

cover their needs for some period, during which time the

client does not need to contact the bank. Servers are able

to check the vouchers for authenticity. The vouchers are

valid for a limited time, in order to handle clients that fail,

and servers periodically reconcile their transactions with

the bank to check that clients have behaved correctly.

This approach provides a different tradeoff than other

quota servers. It provides excellent scalability—in most

cases indistinguishable from not tracking resource us-

age at all—while providing byte-accurate but temporally-

coarse accuracy similar to time-limited escrow. It reduces

load on the centralized tracking service well below that of

other mechanisms. It also decouples quota tracking from

allocation policy, so that the quota server only needs to

track how much quota a user has consumed, and does not

1

C l i e n t
D i s k D i s kS t o r a g es e r v e r sF i l em a n a g e m e n tc l u s t e rA u t h o r i z a t i o n A c c e s s

Figure 1: Basic distributed storage system architecture.

need to be concerned with where that consumption has

occurred, which reduces the load on the quota server and

makes it easier to partition the quota tracking work across

multiple servers. Further, each client can decide for itself

where to allocate resources based on its own needs which

allows a client to customize its allocation based, for ex-

ample, on how a particular file will be used.

2 System context

Figure 1 shows the architecture of the distributed storage

systems we are investigating. In these systems, clients act

on behalf of users. The clients communicate with a file

system management service cluster to locate files and au-

thorize actions. The authorization includes both checking

permission to access data and permission to consume re-

sources. The authorization is expressed using location-

independent capabilities [11] and vouchers, which en-

code the client’s rights to access files and to allocate re-

sources respectively. Once the client has the capabilities

and vouchers it needs, it communicates directly with stor-

age servers to read and write data and to create and delete

files. The storage server has the intelligence to manage

internal resource allocation and to check capabilities for

validity, similar to object store model [8, 5].

We are investigating quota management as part of the

K2 distributed storage system. For scalability reasons, K2

pushes decentralization as far as possible. Each node is

an autonomous agent, acting in its own interest as much

as possible while respecting community needs. We make

this possible by each node acting as an enlightened ra-

tional agent, with algorithms that work to meet the node’s

needs while avoiding the “tragedy of the commons,” [6] in

which the limits on shared resources are not considered.

In concrete terms for a storage system, this means that

we want each client to be able to make its own allocation

decisions that give the best result for the application the

client is running (self-interest), while ensuring that users

do not go over quota and that storage resources are not

over-used (community interest).

Different files can have significantly different needs,

and so the system allows a different layout for each file.

One file may be located on a single storage server; another

may be mirrored and striped across many storage servers.

The client decides what the layout should be, based on

expected needs derived either from application hints or

inferred from file attributes. Peak file creation rates can

be high in some scientific applications, and so it is impor-

tant for good scalability to minimize the dependence on

the shared file management service during file creation.

Scientific applications have characteristics different

from what studies of end-user workstations have shown.

The absolute numbers are several orders of magnitude

larger: petabytes of data are being deployed now, with

aggregate transfer rates of gigabytes per second, files in

the terabytes, all being accessed by tens of thousands of

clients. The clients are cooperating to run one application,

and both read- and write-share files. The applications are

bursty, as the clients synchronize as they move through

phases of a computation and write out checkpoints con-

currently or read the results of previous phases. Some of

the files are only temporary, for communication between

computation phases, while others are results of days of

computation and must be carefully protected.

Because K2 is built for large distributed environments,

its design works to minimise the trust required in any one

component—in particular, the client. While many clients

may be part of a single homogeneous compute cluster,

some clients will be different and potentially not under

careful administrative care—for example, user worksta-

tions used for visualizing results. The system assumes

that clients authenticate the users that run on them, and

that the clients can provide evidence of that authentica-

tion when communicating with the file management ser-

vice and with storage server [9]. Our design assumes that

clients can crash-fail. While some clients can also be ma-

licious, we do not focus on them; for example, we do

not provide data access that can survive Byzantine behav-

ior [1]. However, for resource quota management we do

bound the effect that any client can have on the system.

3 Protocol operation

In this section we give an overview of the operation of the

voucher-based quota system. Figure 2 shows the general

flow of usage. A client first requests a voucher for storage

resources from the quota server for the user, then sends

IO requests to storage nodes, including the voucher when

2

fi l e m a n a g e m e n t(b a n k) c l i e n t(f o r u s e r) s t o r a g es e r v e r 1 s t o r a g es e r v e r 2r e q u e s t (u s e r i d , a m o u n t)v o u c h e r I O r e q u e s t (v o u c h e r)I O r e q u e s t (v o u c h e r)c h e c k u s a g e a l l o c a t er e s o u r c el e f t o v e r
Figure 2: Sequence of operations. A client begins by ob-

taining a voucher for a user from the quota server, then

spending that voucher during IO requests to different stor-

age nodes. Later, the quota server and storage nodes check

that the client did not overuse a voucher.

those requests may consume resources. If a client frees

resources on a storage server, the storage server gives the

client a “refund” voucher for the amount freed. The quota

server and storage nodes periodically reconcile the set of

vouchers that have been spent against those that have been

issued, in order to detect clients that overuse a voucher.

Vouchers. A voucher is a record of a decision to allow

a client to consume resources on behalf of a particular

user. It is represented as a cryptographically-protected se-

quence of bytes:

{epoch, expiry, user, amount, serial}auth

similar to capabilities used to authorize actions in

Amoeba [11] and the T10 OSD [8]. User and amount are

obvious. The voucher has a unique serial number, which

is used when storage servers reconcile voucher usage with

the management server. Each voucher also records when

it was issued (the epoch) and when it expires.

The voucher includes a signature or MAC generated

using a secret key known only to the management and

storage servers, which ensures that a client cannot forge

a voucher. However, it does not prevent one client from

eavesdropping on another, and so vouchers must be trans-

mitted only over private channels. Issues like avoiding re-

play attacks do not require special mechanisms in vouch-

ers if they are used in conjunction with authorization ca-

pabilities that provide defense against replay.

Each voucher is valid for only a limited duration,

as recorded in its expiry field. This is used in han-

dling failure—if a client crashes while holding an un-

used voucher, other clients can use that quota once the

voucher expires—and in reconciling storage and manage-

ment servers. These are discussed further below.

Getting vouchers. While a client could ask the man-

agement server for quota authorization on every I/O,

this would put an unreasonable load on the management

server. Instead, the client maintains a pool of vouchers,

and only periodically communicates with the manage-

ment server. The client tries to maintain enough vouchers

to cover any allocation it expects to do in the near future,

while allowing for other clients to share quota. This ap-

proach reduces load on the management server and im-

proves client response latency.

The client has to decide when to request vouchers and

how much resource to ask for; the management server

has to decide how much of that request to grant. The

management server must maintain the invariant that the

vouchers granted for a user to any client—which repre-

sent potentially-used resources—plus the amount actually

allocated do not go over the user’s quota.

While there are many possible policies for deciding

when and how much to ask for, we focus on a client re-

questing quota from the management server on a regular

schedule. This generally makes the load on the manage-

ment server proportional to the number of clients, rather

than to the intensity of workload on those clients. The

client uses its history of recent resource consumption to

estimate how much it will likely use between the current

request and the next request, and asks the management

server for the difference between the estimated usage and

the vouchers it already has on hand.

If actual usage is higher than anticipated, then the client

will have to ask the management server for extra vouchers

before its next scheduled request. The client can estimate

the management server’s response time and the short-term

voucher usage rate to predict when to send a request to the

management server before the client runs out of vouchers.

The client may have extra vouchers when net consump-

tion is lower than anticipated—perhaps because it has

been freeing rather than allocating storage. In that case

the client can return some vouchers to the management

server, making the quota available for other clients. This

matters, for example, when one client is cleaning up old

files while other clients are writing new data.

The management server determines how much to grant

to a client based on its global information, including the

total amount of vouchers outstanding for a user and es-

timated demand from all clients consuming that user’s

quota. Granting more to a client can reduce the number of

request messages that the management server must pro-

cess, but giving too much to one client can inhibit sharing

across multiple clients. The management server must also

not issue enough vouchers that a user could go over quota.

One reasonable heuristic is for the management server

to give each client an amount proportional to its con-

3

sumption rate, while reserving some quota in case new

clients begin using quota. The client policy discussed

above makes requests approximately proportional to con-

sumption rate, and so the management server can give

each client the same fraction f of their requested amount.

When there is plenty of quota, f = 1. As the number of

clients increases or the amount of remaining quota de-

creases, each client gets a fraction f = r/((n + 1)r) of

their requests, where r is this client’s consumption rate, n

is the number of clients consuming from that quota, and r

is the average consumption rate over all active clients.

Using vouchers. Once a client has obtained a voucher,

it can use the voucher to consume resources. The client

picks which storage server it will use; the problem of se-

lecting the server is outside the scope of this paper.

In the simplest way of using vouchers, the client sends

its I/O request to the storage server, along with one or

more vouchers that will cover any resource allocations

the I/O request might require. The storage server keeps

track of how much resource was actually consumed by

the request, and may send the client a new voucher for

any balance in its reply. The storage server keeps track

of how much each user has consumed, plus any recently-

spent vouchers. The vouchers are periodically reconciled

with the management server in order to handle failure or

to catch cheaters, as discussed below.

Consider a simple scenario: a client is trying to write

1 MB of data into an existing file. The client obtains

a voucher for (say) 2 MB from the management server,

then sends a write request to the storage server along with

the voucher. The storage server determines how much re-

source is consumed. It might consume nothing, if the re-

quest only overwrites already-allocated blocks, or it might

consume a full 1 MB, or something in between. The stor-

age server will reply with a refund voucher for 2 MB mi-

nus the amount actually allocated.

Vouchers can also be used in a somewhat different

way to solve a long-standing problem in object storage

systems—ensuring that an operation will succeed when

multiple clients could be consuming resources in the stor-

age server. A client can use a voucher to reserve resources

at the storage server to ensure that its later operations will

have the resources to complete. This is particularly im-

portant for object stores because it is hard for a client to

predict how much resource any one operation will con-

sume.

Tracking and reconciling usage. The storage server

keeps track of how much a user has consumed, peri-

odically reconciles voucher usage with the management

server to catch cheaters and recover from failures.

R e c o n c i l e d 2 4 2 5 2 6 2 7
t i m e C u r r e n te p o c hU n r e c o n c i l e de p o c h s(j u s t t o t a l s) (t o t a l s a n d v o u c h e r sp e r e p o c h)2 3 Xu n e x p i r e de x p i r e d K

Figure 3: How the storage server maintains consumption

information over multiple epochs. X is the number of

epochs before vouchers expire; K is the number of epochs

in the past when reconciliation happens.

The system divides time into epochs, as illustrated in

Figure 3. Each voucher is associated with the epoch in

which it was issued, and the storage server keeps a list of

vouchers that it has received for each epoch. It also tracks

how much resource was consumed against those vouch-

ers in the epoch. At some point there can be no more

activity associated with an epoch—because all vouchers

from that epoch will have expired—and the storage server

can reconcile the list of vouchers used for that epoch with

the management server. After reconciliation, the storage

server can get rid of the list of vouchers and merge that

epoch’s consumption information into the record of over-

all reconciled consumption.

We summarize the formal model for tracking and rec-

onciling quota for a single user as follows. (The expo-

sition for a single user is clearer than for multiple users,

but the rules are the same.) The user has a quota Q, and

the management server has authorized some allocation A;

the system works to keep A ≤ Q. The allocation A is the

amount of storage used on all storage servers plus the

amount of any unredeemed vouchers: A = ∑∀d Sd +U ,

where Sd is the amount used on storage server d and U is

the amount of unredeemed vouchers.

For the management server to know A accurately us-

ing this definition, it would need to be involved syn-

chronously on every resource allocation, which defeats

the intent of the voucher approach. Instead, the man-

agement server uses a conservative estimate of A: in-

stead of the actual current usage ∑Sd , it uses the us-

age determined at the last reconciliation, and instead of

the actual unredeemed vouchers, it uses all vouchers is-

sued since the last reconciliation. Formally, the manage-

ment server knows the amount of resource the user had

consumed as of the last reconciliation, which covered all

epochs up to and including epoch e: ∑∀d Se
d , where e de-

4

notes which epoch the reconciliation was for. V e is the

amount issued in vouchers in epoch e. The estimate is

then A ≈ ∑∀d Sc−K
d + ∑0≤i<K V c−i, where c is the current

epoch, and K is number of epochs in the past when rec-

onciliation occurs. (Note that reconciliation for an epoch

e cannot occur until all the vouchers issues for that epoch

have expired, so K > X , where X is the number of epochs

before a voucher expires.)

Cheating. Since the management server does not track

where a voucher is spent, and the storage servers do not

update the management server after each allocation, a

client can cheat by using a voucher more than once.

The protocol addresses this issue in two ways: first,

each storage server protects against a client using a

voucher twice at that server; and second, the management

server catches multiple usage across storage servers dur-

ing reconciliation. Since each voucher has a unique se-

rial number and the storage server records the vouchers

have been sent to it during the last K epochs, a server can

reject any I/O request that that reuses a voucher. Then,

during reconciliation for a particular epoch, each storage

server sends to the management server a list of all the

vouchers it received in that epoch, so that the manager can

cross-check for duplicate usage by serial number. Storage

servers can also send used vouchers to the management

server earlier in order to catch cheaters sooner.

The cross-checking is not strictly necessary for correct-

ness. If a client uses more than a user’s quota by using a

voucher from epoch e at multiple storage servers, the man-

agement server will detect that the user went over quota

in epoch e when that epoch is reconciled. Cross-checking

for voucher duplication, however, allows the management

server to determine which client (or clients) misbehaved.

Cheaters can be caught sooner if the storage servers send

their voucher information earlier.

Once cheating has been detected, the system must de-

cide how to respond. Several responses are possible—

notifying a human, disallowing further allocation, or au-

tomatically compressing or removing redundancy.

Failures. When one of the system components fails, the

quota management system must maintain its integrity. For

this paper, we treat management server failure as catas-

trophic, and so do not model recovery from it. In practice,

this can be addressed by clustering.

When a client fails, it may be holding unused vouch-

ers. The management server learns what vouchers were

actually used as it reconciles with storage servers.

When storage servers fail, all information about what

was allocated on them disappears. The management

server will reliably learn of the failures and exclude those

storage servers from its computation of the total autho-

rized allocation A, which will make additional quota avail-

able for clients to allocate (presumably for recovering the

data by rebuilding redundancy or restoring from backup).

Once all epochs are reconciled up to and including the

one when the failure occurred, the estimate will have de-

creased by exactly the amount that had been used on the

failed servers.

Optimizations. The discussion so far has assumed that

a client must use a voucher in its entirety, just as a per-

son cannot divide a high-denomination coin themselves.

However, it is possible to allow a client to split a voucher

by appending an indication of what fraction of the voucher

it is using on any one operation. This somewhat compli-

cates the reconciliation mechanism but does not change

the basic protocol design.

When there are multiple clients competing for a user’s

quota, and that quota is running low, the policy presented

above will work to give each client a fraction of the re-

maining quota. An alternative is to try to give one client

enough quota to get its work done, rather than spreading

the remainder too finely. This can be done by revocation:

the management server contacts the other clients who are

holding unexpired vouchers, and requests that they return

any unused vouchers. Revocation allows active clients to

quickly use any remaining quota, even when some other

clients have stopped their activity but still hold vouchers.

The cost is a possible burst of messages between the man-

agement server and clients to return the vouchers.

4 Experimental results

The voucher approach to maintaining quota is designed

to promote good scalability by minimizing the amount of

work that the shared management service should have to

do on behalf of clients, and so we have evaluated the per-

formance as various system scale factors increase. In ad-

dition, there are several design choices to be made, such as

the policy for how a client determines how large a voucher

to request. In this section we discuss how we evaluated

these comparisons, and the results.

4.1 Simulation

We implemented a discrete event simulation to evaluate

the voucher approach. We chose to use simulation for

two reasons: first, we wanted to evaluate different op-

tions quickly without the effort of implementing them in

our full storage system; and second, we wanted to eval-

uate performance at scale points far larger than we could

5

achieve with our actual testbed cluster. All of the I/O op-

erations a system would normally perform such as reads

and metadata-only requests were run in the system in ad-

dition to writes and voucher requests, in order to better

model the overall impact that quota enforcement would

have on a real system.

The simulator used simple models of the client, net-

work, and storage server. The client cache was repre-

sented by a uniform probability of a cache hit or miss

on I/O requests. The network was modeled as a constant

transfer time, without contention. The storage server in-

cluded a cache, modeled as a uniform hit/miss probability,

and a simple disk, with fixed seek time and transfer rate,

and queuing at the disk.

The simulator modeled several different approaches for

tracking quota. It included a centralized management ser-

vice for comparison, where all quota allocation decisions

are made at the management server cluster, and quota is

assigned for each I/O operation. The management server

tracks quota in a centralized database, and the simulation

models the overhead for processing transactions. Clients

stripe data sequentially across storage servers in 4 MB

stripes.

For the voucher approach, the simulator modeled

two different policies for how clients request vouchers.

The fixed request policy always requests the same fixed

amount of quota every time it must allocate more quota.

The fixed amount should be larger than the expected aver-

age request size in order to amortize interactions with the

management server over many I/O requests. We test fixed

amounts of 5 and 10 times the average request size. The

adaptive request policy requests the amount of quota they

predict a user will need for some window of time based

on a moving average of the user’s recent throughput.

The simulator also modeled two different policies for

how the management server should respond to voucher

requests. The revocation policy always grants every

voucher request until a user runs out of quota. If a re-

quest cannot be satisfied because the user does not have

enough quota left, the management server sends out revo-

cation messages to all of the clients asking that vouchers

be returned for the user that has run out of quota. The

request is satisfied as soon as the management server re-

ceives enough returned vouchers from the clients, and all

subsequent quota requests are queued at the server until

they can be satisfied, or they time out. The limiting policy

satisfies every quota request fully until a user begins to

come close to running out of quota. The amount granted

is capped to r/(n+1), where r is the remaining unautho-

rized quota and there are n active clients, defined as clients

that have requested quota for the user in the last X epochs

(meaning they may still hold valid vouchers). A minimum

amount of quota is set to the block size to minimize client

thrashing in requesting the final bytes.

4.2 Workloads

We evaluated the system using two different workloads.

The user workload provides a fairly steady flow of I/O

requests with low sharing, while the scientific workload

is highly bursty and involves significant write sharing.

We implemented both workloads using synthetic work-

load generators based on published measurements.

For our user workload, each user generated 10 IO re-

quests per second using the system call statistics taken

from a set of institutional machines with mounted home

directories for a few hundred (student) users [16]. This

workload was heavily dominated by stats and reads, with

only 2% of the total load being writes. The average re-

quest size used was 4 KB. Each user in this workload

spread its work over 10% of the available clients. This

workload can be scaled by increasing the number of users.

Our scientific workload was modeled after a physics

application [19] where each node has similar responsibili-

ties and alternates between a computation phase and large

write-intensive phases, in which it writes out a checkpoint

of intermediate results. This workload modeled a single

user using all clients to run the application. This workload

scales by increasing the I/O rate for the user.

For all tests, vouchers expired after two epochs and

epochs were 10 minutes long. Storage servers recon-

ciled allocation information with the management servers

within two epochs. Every test was run for an hour in sim-

ulated time to allow the system to stabilize, and measure-

ments were recorded over the last 10 minutes of the run.

4.3 System overhead

The first evaluation answers the the main question: which

approach gives the lowest overall latency for user I/O re-

quests while scaling to handle heavy loads? Figures 4

and 5 show the main results.

These experiments vary the I/O load on the system, and

measure the resulting I/O request latency. The load varies

from a low baseline to the point where the system sat-

urated. To ensure that the bottleneck causing saturation

comes from the quota mechanism, the number of clients

and storage servers are scaled with the I/O load, while the

number of management servers is held constant.

Figure 4 shows the overall results for the user work-

load. Performance is dominated by ordinary file metadata

traffic, including retrieving file layout for both reads and

writes and checking authorization, and by communicating

with the storage server. Since most files in this workload

are small, most quota-related operations can be combined

6

6.7

6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

0 2000 4000 6000 8000 10000 12000 14000 16000

I/Os per second

A
v
e
r
a
g

e
 R

e
q

u
e
s
t

L
a
te

n
c
y
 (

m
il
li
s
e
c
o

n
d

s
) Adaptive Requests

Fixed

Centralized

No Quota

Figure 4: Average I/O request latency for the user work-

load, under an increasing user load. The system can-

not support more than 1600 users using 10 quota servers

with or without quota enforcement, and for the centralized

method it is limited to 1500 users.

with these metadata operations. As a result, both cen-

tralized and voucher quota management schemes impose

only a small overhead compared to no quota management.

Figure 5 shows the results for the scientific workload.

This workload is bursty and involves large files, which

places more importance on the performance of quota man-

agement. At loads below saturation, the voucher ap-

proach gives performance essentially identical to no quota

enforcement, while centralized quota management im-

poses about 7% overhead. More important, using the

voucher approach saturates at the same load as does no

quota checking, while the centralized approach saturates

at about half the load. One contributing factors is that

the system using centralized quota tracking require more

quota-related messaging than the system using vouchers

because it must make quota requests for every I/O. In ad-

dition, the centralized management server takes longer to

satisfy quota requests since it must commit transactions to

a centralized database. Using the voucher approach very

few extra messages must be sent to request quota since

clients cache vouchers, and the management server only

needs to update a very small set of data for tracking quota.

4.4 Client adaptivity

Clients must determine how large a voucher to request

each time they request more quota from the manage-

ment server, using one of two policies: requesting a fixed

amount, or basing the request on recent usage. Clients

need to request large enough vouchers to cover multiple

I/O requests in order to effectively piggyback quota traf-

fic on regular metadata requests. Figure 6 shows the extra

27.5

28

28.5

29

29.5

30

30.5

31

0 1000 2000 3000 4000 5000 6000

I/Os per second

A
v
e
r
a
g

e
 R

e
q

u
e
s
t

L
a
te

n
c
y
 (

m
il
li
s
e
c
o

n
d

s
)

Adaptive Requests

No Quota

Centralized

Figure 5: Average I/O request latency for the scientific

workload, under increasing I/Os per second. The sys-

tem cannot support more than 5500 I/Os per second with

or without quota enforcement, and using the centralized

method it cannot support more than 1500 I/Os per second.

message overhead for quota enforcement using the fixed

and adaptive policies, defined as the number of voucher

requests that could not be combined with other necessary

metadata operations.

The fixed request policy is sensitive to its amount pa-

rameter, which can cause it to allocate too little for large

files. Using a larger fixed amount decreases the chances

that a client will need to request more quota before it is

finished with a file, but the tradeoff is that at the limit

large fixed requests inhibit sharing quota among multiple

clients. This problem is exacerbated when file size or I/O

request rates vary over time.

The adaptive request policy determines how much

quota it will request based on a moving average over a

recent window of requests; the window size is the param-

eter for this policy. This policy should cause the client to

go to the management server for quota at a constant rate.

However, the lag in the moving average can cause extra

requests when the workload changes. Figure 7 shows that

the adaptive policy is insensitive to its window size pa-

rameter for the workloads we tested. The figure shows

the result for the user workload; results for the bursty sci-

entific workload were similar.

4.5 Running out of quota

Quota systems behave differently when a user has plenty

of quota left and when they are running low. In the first

case, the system just has to keep track of usage, while in

the second, it has to actually enforce the quota limit.

7

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2000 4000 6000 8000 10000 12000 14000 16000

I/Os per second

N
u

m
b

e
r
 o

f
V

o
u

c
h

e
r
 R

e
q

u
e
s
t

M
e
s
s
a
g

e
s

Fixed Requests 40kB

Fixed Requests 20kB

Adaptive Requests 10 minutes

Adaptive Requests 5 minutes

Figure 6: Total number of messages clients make to the

management server to request vouchers.

6.7

6.8

6.9

7

7.1

7.2

7.3

0 5 10 15 20 25 30

Size of Window (minutes)

A
v
e
r
a
g

e
 R

e
q

u
e
s
t

L
a
te

n
c
y
 (

m
il

li
s
e
c
o

n
d

s
)

1 Quota Server

5 Quota Servers

10 Quota Servers

15 Quota Servers

20 Quota Servers

Figure 7: Average I/O request latency for the user work-

load under the adaptive request method where the window

of prediction time is varied.

In the voucher approach, the management server has to

determine how much of a client’s voucher request to grant

in order to maintain the invariant that authorized use is

bound by the user’s quota. The management server also

should ensure that one client does not starve another. Both

these goals are more difficult when there is little available

quota.

To compare the two policies we have proposed for the

management server, we simulated a scenario where one

user consumes all their quota. This scenario used the same

workload as in previous experiments, with 10 manage-

ment servers, 1000 users, and 100 clients (using adaptive

requests), and 100 storage servers. The quota for one user

is set so that it will run out after about 30 minutes. Af-

ter that user runs out of quota, it stops issuing writes that

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70

Running time (minutes)

A
v
e
r
a
g

e
 r

e
q

u
e
s
t

la
te

n
c
y
 (

m
il
li
s
e
c
o

n
d

s
)

Out-of-quota user

Other users

Figure 8: Average I/O request latency over time for the

user workload using the revocation server method, where

one user runs out of quota.

could consume space and continues with all other oper-

ations. Recall that each user’s activity is spread over 10

clients. We report the average I/O request latency taken at

30-second intervals, with the special user separated from

all other users.

Figure 8 shows the response when using the revoca-

tion policy. The user that runs out of quota suffers a large

increase in latency during its final write requests. This

occurs because the last writes wait for vouchers to be re-

voked from other clients, or time out. This is the worst

possible case for the revocation server, since all clients

are trying to consume resources steadily and so must all

contend for the last bits of quota.

Figure 9 shows the response obtained using the limit-

ing management server policy. This policy does not show

any noticeable performance difference as the user runs out

of quota. All the user’s clients run out of quota together

gradually as their requests are tapered down by the man-

agement server.

Note that in both cases traffic from other users is not

much affected.

4.6 Balanced deletes and writes

We expected the voucher approach to cause a notable re-

duction in quota-related traffic between clients and man-

agement server when a client’s consumption is approx-

imately balanced by the resources it frees, because the

client can use the vouchers it gets from storage servers

when deleting one file to allocate for another file. Fig-

ure 10 shows that, as expected, the requests to the quota

server are near zero when consumption and deletion are

balanced. For comparison, a second curve shows the num-

8

6.2

6.4

6.6

6.8

7

7.2

7.4

0 10 20 30 40 50 60 70

running time (minutes)

A
v
e
r
a
g

e
 r

e
q

u
e
s
t

la
te

n
c
y
 (

m
il

li
s
e
c
o

n
d

s
)

Out-of-quota user

Other users

Figure 9: Average I/O request latency over time for the

user workload using the limiting server method, where

one user runs out of quota.

0

1000

2000

3000

4000

5000

6000

7000

0 2000 4000 6000 8000 10000 12000 14000 16000

I/Os per second

N
u

m
b

e
r
 o

f
V

o
u

c
h

e
r
 R

e
q

u
e
s
t

M
e
s
s
a
g

e
s

Balanced Writes/Deletes

No Deletes

Figure 10: Total number of messages clients make to the

management server to request vouchers.

ber of voucher requests for clients that are only consuming

storage.

5 Related work

The voucher approach to quota management is obviously

inspired by the extensive literature on digital cash systems

[14]. The voucher approach is considerably simpler than

those systems, however, because vouchers do not provide

anonymity. Vouchers only require that a storage server

can verify that they have not been forged or corrupted.

Vouchers are also similar to capabilities. In par-

ticular, they are similar to the kinds of capabilities

used in Amoeba [11], which implemented capabilities

as cryptographically-protected sequences of bytes. This

model was taken up for the NASD [5] and T10 OSD [8]

object storage model, which added the notion of expira-

tion.

Many file or storage systems implement quotas. They

can be divided into three classes: those that perform file

management in band with I/O request processing; those

that perform file management out of band but have file

management decide which resources are to be allocated;

and those where file management and resource consump-

tion are completely separated.

Most network-oriented file systems perform file man-

agement in band, including NFS [18] and CIFS [15]. AFS

[7] would appear to have a more complex quota manage-

ment scheme, but in reality, quota management is done

on a volume group granularity, which allows quotas to be

managed with the storage allocation.

Several more recent file systems allow clients to per-

form I/O directly to storage devices, while dealing with

file management out of band. GPFS [17] and SanFS [10]

are two examples of file systems that perform block al-

location in the file management path. Object-based file

systems derived from the NASD [5] model, including the

Panasas [12] file system, determine how much resource on

which OSD a client should be able to use. Although the

clients can make requests directly to the storage devices,

quota enforcement is still done at the storage manager.

Capabilities are for specific devices and are created with

offset and size limitations to restrict the storage clients

from exceeding their quotas.

Peer-to-Peer storage systems have much more difficult

problem because they are not able to manage quota and al-

location together. PAST [3], for example, uses smart cards

to manage storage quotas. These cards are trusted by the

peer storage devices to reliably keep track of the alloca-

tions and quotas of their owners. As storage is used the

cards will increment the allocated storage. The cards are

also able to process reclaim receipts that will decrement

the allocated storage. The use of smart cards in PAST

binds the storage user to a single client machine. Such an

architecture is not well suited for storage users that use

multiple machines concurrently.

Samsara [2] and SHARP [4] provide a way to ensure

that users of a peer-to-peer storage system contribute as

much storage as they use. Both systems use cryptographic

signature chains to enable peers that contribute storage to

use storage on other peers. In peer-to-peer systems this is

roughly analogous to quota enforcement; however, in sys-

tems with trusted central servers quota enforcement can

be done in a simpler and more efficient manner allowing

centralized control for changing and viewing quotas and

current usage.

9

Another peer-to-peer system [13] focuses on fair shar-

ing by performing random audits of resource usage. Each

peer lists the storage available, the storage it is using, and

the storage used by other peers. The information is struc-

tured in such a way that a peer can check claims of storage

usage for random peers that it is using storage from or pro-

viding storage to. If lying is detected, appropriate action

can be used to eject the peer from the system.

6 Conclusions

We have presented a system for scalable tracking and en-

forcing quota in distributed storage systems. This system

minimizes the load on a central management server by is-

suing clients vouchers that the clients can use to consume

storage on whichever storage server is appropriate. The

storage servers periodically reconcile actual usage with

the management server in order to verify that all clients

have behaved properly. The vouchers can be used any

time after issued until they expire, thus trading temporal

granularity for performance.

The simulation we have conducted indicates that this

approach will work well. For workloads characterized by

low I/O rates per user and small files, in which ordinary

metadata operations like checking file permissions and

getting file layout dominate, the voucher approach gives

performance essentially as good as not checking quota at

all. In a workload with larger files, there are more I/O re-

quests for each metadata operation and so the difference

between a centralized quota system and the voucher ap-

proach is more pronounced. For one class of workload,

where there a client frees resource at about the same rate

that it consumes, the client can use the “refund” vouchers

it gets for its allocations and thus needs to get new vouch-

ers from the management server only rarely.

There are several design options, and this study ex-

plored a few of them. The storage client has a policy

for when it will request vouchers, and how much it will

request. We found that an adaptive policy, which uses a

moving average of recent consumption to predict near fu-

ture consumption, works well and is insensitive to a broad

range of moving average windows. In the future we intend

to look at other ways to predict near future consumption,

especially ways that can react quickly when scientific ap-

plications finish an I/O phase.

The management server also has a policy for how much

of clients’ reqeusts to grant. We found that the revocation

policy induces a large burst of traffic when a user runs out

of quota, while the limiting policy produced a smoother

result. Finding policies that predict changes to the degree

of sharing are future work.

References

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter,

and J. J. Wylie. Fault-scalable Byzantine fault-tolerant services. In

ACM Symposium on Operating Systems Principles (SOSP), Oct.

2005.

[2] L. Cox and B. Noble. Samsara: Honor among thieves in peer-to-

peer storage. In ACM Symposium on Operating Systems Principles

(SOSP), October 2003.

[3] P. Druschel and A. Rowstron. PAST: A large-scale, persistent peer-

to-peer storage utility. In Hot Topics in Operating Systems (HotOS)

VIII, May 2001.

[4] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP: An

architecture for secure resource peering. In 19th ACM Symposium

on Operating Systems Principles (SOSP). October 2003.

[5] G. Gibson, D. Nagle, K. Amiri, F. Chang, H. Gobioff, E. Riedel,

D. Rochberg, and J. Zelenka. Filesystems for network-attached se-

cure disks. Technical Report CMU-CS-97-118, CMU SCS, 1997.

[6] G. Hardin. The tragedy of the commons. Science, (162):1243–

1248, 1968.

[7] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satya-

narayanan, R. N. Sidebotham, and M. J. West. Scale and perfor-

mance in a distributed file system. In ACM Transactions on Com-

puter Systems, volume 6, pp. 51–81, February 1988.

[8] INCITS Technical Committee. Information technology - SCSI

object-based storage device commands - 2 (OSD-2). http://www.

t10.org/ftp/t10/drafts/osd2/osd2r00.pdf.

[9] J. Kohl and C. Neuman. The Kerberos network authentication ser-

vice (V5). RFC 1510, September 1993.

[10] J. Menon, D. Pease, B. Rees, L. Duyanovich, and B. Hillsberg.

IBM StorageTank—a heterogeneous scalable SAN file system.

IBM Systems Journal, 4(2):250, 2003.

[11] S. J. Mullender, G. van Rossum, A. S. Tanenbaum, R. van Renesse,

and H. van Staveren. Amoeba: A distributed operating system for

the 1990s. Computer, 23(5):44–53, 1990.

[12] D. Nagle, D. Serenyi, and A. Matthews. The Panasas ActiveScale

storage cluster—Delivering scalable high bandwidth storage. In

ACM/IEEE Conference on Supercomputing, Nov. 2004.

[13] T.-W. Ngan, D. Wallach, and P. Druschel. Enforcing fair sharing of

peer-to-peer resources. In International Peer to Peer Symposium,

February 2003.

[14] T. Okamoto and K. Ohta. Universal electronic cash. In CRYPTO

’91: Proceedings of the 11th Annual International Cryptology

Conference on Advances in Cryptology, pp. 324–337, London,

UK, 1992.

[15] The Open Group. Protocols for X/Open PC Internetworking:

SMB, Version 2, September 1992.

[16] D. Roselli, J. Lorch, and T. Anderson. A comparison of file system

workloads. In USENIX Annual Conference, June 2000.

[17] F. Schmuck and R. Haskin. GPFS: a shared-disk file system for

large computing clusters. In Usenix File and Storage Technologies

Conference (FAST), pp. 231–44, Jan. 2002.

[18] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame,

M. Eisler, and D. Noveck. NFS version 4 protocol. RFC 3010,

December 2000.

[19] F. Wang, B. Hong, S. Brandt, E. Miller, and D. Long. File system

workload analysis for large scale scientific computing applications.

In 21st IEEE/12th NASA Goddard Conference on Mass Storage

Systems and Technologies, Apr. 2004.

10

