Horus: Fine-Grained Encryption-Based Security for High
Performance Petascale Storage’

Ranjana Rajendran
ranjana@soe.ucsc.edu

Ethan L. Miller
elm@cs.ucsc.edu

Darrell D. E. Long
darrell@cs.ucsc.edu

Storage Systems Research Center & Computer Science Department
University of California, Santa Cruz
Santa Cruz, CA 95064

ABSTRACT

Data used in high-performance computing (HPC) applications is
often sensitive, necessitating protection against both physical com-
promise of the storage media and “rogue” computation nodes. Ex-
isting approaches to security may require trusting storage nodes and
are vulnerable to a single computation node gathering keys that can
unlock all of the data used in the entire computation. Our approach,
Horus, encrypts petabyte-scale files using a keyed hash tree to gen-
erate different keys for each region of the file, supporting much
finer-grained security. A client can only access a file region for
which it has a key, and the tree structure allows keys to be gener-
ated for large and small regions as needed. Horus can be integrated
into a file system or layered between applications and existing file
systems, simplifying deployment. Keys can be distributed in sev-
eral ways, including the use of a small stateless key cluster that
strongly limits the size of the system that must be secured against
attack. The system poses no added demand on the metadata cluster
or the storage devices, and little added demand on the clients be-
yond the unavoidable need to encrypt and decrypt data, making it
highly suitable for protecting data in HPC systems.

Categories and Subject Descriptors

D.4.3 [File Systems Management]: Distributed file systems; D.4.6
[Security and Protection]: Cryptographic controls

General Terms

Design, Security

1. INTRODUCTION

Many high performance computing (HPC) installations require
the storage and manipulation of terabyte- and petabyte-scale data

*This research was supported in part by the NSF under awards
[1P-0934401 and CCF-0937938, the Dept. of Energy under Award
number DE-FC02-10ER26017/DE-SC0005417, and by the Dept.
of Energy’s Petascale Data Storage Institute under award DE-
FC02-06ER25768. We also thank the industrial sponsors of the
Storage Systems Research Center and the Center for Research in
Intelligent Storage for their generous support.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PDSW’11, November 13, 2011, Seattle, Washington, USA.

Copyright 2011 ACM 978-1-4503-1103-8/11/11 ...$10.00.

sets, such as geographic and satellite data, molecular dynamics
simulation, nuclear reaction modeling, and structural simulation.
Often, these files contain sensitive data, such as simulations of nu-
clear explosions, molecular models of drug interactions, and maps
that include sensitive areas. Since HPC systems typically have hun-
dreds to thousands of users, many of whom require root access to
client nodes, approaches that rely on discretionary security are not
sufficient. However, providing confidentiality for this data is very
important, both for business and national security reasons.

Since HPC data must be protected against users with system-
level access to client nodes as well as against malicious storage
devices, it is clearly necessary to encrypt and decrypt data at the
client and carefully control key distribution, limiting the ability of
an intruder or malicious storage device to read protected data. Ex-
isting HPC file systems do not meet this challenge, providing (at
best) access control via capabilities or other mechanisms [13]. The
use of a single key to encrypt an entire file likewise fails because
compromise of a single node, an event that might go unnoticed in
a system with tens of thousands of nodes, would result in compro-
mise of the entire file. However, while existing approaches that
generate a key per block (or object) making up the file can limit
this compromise, they result in much higher overhead for both key
distribution and key storage.

Our approach, Horus, uses a tree of keyed hashes to generate
keys for different block ranges of an HPC file, allowing a client
with a range key to easily generate an encryption key for any blocks
“within” the range in the tree. Systems without the key for a par-
ticular block (e. g., disks and clients without an appropriate range
key) cannot decrypt the block; thus, Horus provides strong confi-
dentiality for file data. Each file only requires storage for a small
fixed number of root keys at the base of the keyed hash tree, and the
ability to utilize range keys reduces the number of keys that must
be distributed. While a client may trivially derive a block key for
a block within the range from a file range key, it cannot derive the
key for a block outside the range from the range key, preserving
the ability to restrict access at a fine granularity. The root keys may
be protected using a lockbox [11, 16], and may be distributed by
the metadata server; however, the use of a separate key distribu-
tion cluster can improve security and scalability. Horus can also
be implemented as an encryption library on the clients, simplifying
deployment on existing file systems.

2. BACKGROUND

Most large parallel file systems [4, 19, 20, 22, 23] decouple data
control and data access paths, as shown in Figure 1, allowing man-
agement and security decisions to be centralized in a small meta-
data cluster. However, few, if any, HPC file systems implement any
security beyond the use of POSIX-style permissions to restrict ac-

Figure 1: Clients receive location information from the meta-
data server (MDS). Access control can be implemented by hav-
ing the MDS provide capabilities that are verified by the disk
when the client requests I/0 [13].

cess to files. Moreover, existing systems that rely upon the MDS
to provide security via capabilities must place complete trust in the
MDS cluster, providing a clear target for an attacker.

Recently, there have been several attempts to provide greater se-
curity for HPC file systems. Maat [13] provides scalable authoriza-
tion and authentication, albeit not data confidentiality, for the Ceph
file system [22]. Ceph breaks files up into objects, each of which
is stored and accessed individually; the Maat protocol allows the
restriction of access to individual objects on particular disks. How-
ever, permissions in Maat are granted at the file level, and Maat
was explicitly designed to limit the number of unique capabilities,
making it poorly suited for fine-grained access control. Moreover,
Maat only handles authorization—files handled by Maat are stored
unencrypted. Thus, under Maat, a single malicious client can cache
authorizations for an entire file, and someone who steals a disk
from this system can read data stored on the disk. There have also
been attempts to integrate stronger security into map-reduce frame-
works [9], but they are primarily limited to network authentication
protocols and encrypting data transfers, and do not support storing
encrypted data on disk. Airavat [10] further confines computations
on data in the map-reduce framework, but still operates on data
stored in the clear on storage nodes.

Actual encryption of portions of HPC files was first proposed
by Banachowski, et al. [3]. However, the approach they proposed
requires one entry in an s-node (security node) for each region to
be separately secured; this approach requires too much storage and
key distribution overhead for a file in which each 4 KB block must
be encrypted by a separate key with a separate set of permissions.
Moreover, their approach restricts access by user; we want to dy-
namically restrict access by client as well.

While strong security is rare in HPC file systems, there are many
approaches to providing strong security for smaller-scale file sys-
tems. Cepheus [8], SNAD [16], and Plutus [11] all facilitate en-
cryption at the client in a networked file system, preventing the
compromise of a disk from leaking confidential data. All use lock-
boxes to secure a symmetric data encryption key common to all
users by encrypting the symmetric key with each user’s key, and
storing one lockbox per user. The symmetric encryption key can
be generated per-file or per-block; per-file keys are more efficient,
but allow a malicious client to read an entire file with just one key.
Aguilera, et al. [1] introduced a capability-based approach that al-
lows access to be granted to ranges rather than simple blocks; as
with the approach proposed by Banachowski, et al. [3], this ap-
proach does not scale well to fine-grained protection of terabyte-

| K2,0 | K21 | Koo | Ko | Ko4 | Kos I

B L i AT IR

Figure 2: Basic keyed hash tree design. Keys at lower levels
of the tree control smaller regions of the file. The leaf nodes
(shaded in the figure) are the keys for individual file blocks.
While all regions at a given level are nominally the same size,
the region with K | is truncated because it is at the end of the
file.

scale files because of the overhead of key storage and capability
distribution.

Horus heavily leverages hash trees, which have long been used
for authentication and integrity checking. Merkle first proposed an
authentication method based on hash trees [15]. Fiat and Noar [7]
used a one-way function in a top-down fashion in their group key-
ing method for the purpose of reducing the storage requirements
for information theoretic key management. Chan and Chan [5] de-
scribe a key tree based method to negotiate subgroup keys. They
also describe a contributory key agreement protocol based on Diffie-
Hellman key exchange [6] and a computational number theoretic
approach based on the Chinese Remainder theorem. Even though
these methods are targeted at reducing the number of keys in a mul-
ticast group environment, they still assume too many keys to be
stored at each node and too many key negotiation messages be-
tween nodes for a petascale storage system consisting of millions
of file blocks stored on thousands of disks. Instead, we need a scal-
able method that allows a client to generate all the required keys
from a single key through local computations without the need for
contributory data from other nodes.

3. SYSTEM DESIGN

Horus uses a tree of keyed hashes to derive unique encryption
keys for individual blocks from a per-file root key K, which is the
only key that need be stored. The “block”™ size at each level of the
keyed hash tree (KHT) is a fixed size, with block size decreasing at
the lower levels of the tree. The keys at the leaf nodes of the KHT
are each used to encrypt individual data blocks; keys higher in the
tree, from which the lower-level keys can be derived, are used to
control access to larger regions of the file. A schematic view of a
sample KHT is shown in Figure 2.

While Kg must be stored by the file system, the key for region
y at level x > 1 is calculated by Ky, = KH(Kparens,|[y), where
Kparent 1s the key for K, ,’s parent region, KH(K,M) is a keyed
hash function of any text M with key K, and || is the concatenation
operator. Using the message x||y to generate each key ensures that
each K, , generated is unique, and using Kparenr as the key ensures
that anyone with the key for the parent region can generate keys
for regions or blocks below that point in the tree. For example,
for K> 1, Kparent = K10, s0 K».1 = KH(K] 0,2||1). This calcula-
tion can be applied recursively to derive a leaf key from any key
above it in the tree, as shown in Figure 3. It is important to note
that, given Ky, it must be impossible to derive either Kpgrens or
K.y, for any y' #y. Any implementation of keyed hash that satis-
fies this condition can be used, including the keyed hash used for

Require: 0 <start < end <d
for x = start + 1 to end do
k < keyed_hash(k,x|||5/Bx])
end for
return k

Figure 3: Algorithm to calculate a range encryption key. The
caller provides the starting region key k, the byte offset b, the
start and end levels, and block sizes By),...,B;_1, where d is the
number of levels in the tree, including the root key (at level
0) and leaf nodes (at level — 1). If the end level is d — 1, the

resulting key may be used for data encryption.

Hashed Message Authentication Codes (HMACs) [12]. Since Ho-
rus keys have constrained formats, a simpler hash function such
as KH(K,M) = SHAI(K||M) (folding the 160 bit SHA1 value into
128 bits) should suffice; the specific keyed hash function can be
easily changed if weaknesses are found in a particular algorithm.

In Horus, a client node can be given the keys for only the ranges
that it needs to access, preventing it from decrypting any parts of
the file outside its allowed region. For example, a client that needs
access to blocks 1-3 of the file in Figure 2 would be given K3 | and
K> 1; the latter key would allow the client to derive K37 and K3 3.
If a different client must access the first 8 blocks of the file, it only
needs to obtain K| o, from which it can derive K39, ..., K3 7.

The KHT can be adjusted to handle any level of granularity that
is a multiple of the size of a single encryption block (typically
16 bytes), even permitting branching factors that are not powers
of 2. However, there is a tradeoff between having a smaller “branch-
ing factor”—a small number of children for each node—and having
a more compact tree with fewer levels. While fewer children per in-
ternal node provides more options for reducing the number of keys
transmitted, it also results in longer key calculation times because
there are more internal nodes between a level of a given size and
the root. For example, in Figure 2, where the granularity of encryp-
tion is a key for every 4 KB block of data, level 1 of the tree only
covers 32 KB; a node that wanted access to a 1 MB region would
have to obtain 32 keys. For a terabyte-sized file, level 1 would
contain 32 million keys, leaving a large key distribution problem.
Instead, we expect that petabyte-scale file systems will have re-
gions of 16 MB-1 GB at level 1 of the KHT, with branching factors
of 4-8 for successively lower levels of the tree. Each node in the
tree can have as many children as the block size at its level di-
vided by the block size at the next level. With a level 1 block size
of 1 GB and a reduction of 8x for each successive level, a KHT
would require 5 additional levels between level 1 and the 4 KB leaf
nodes. Since keyed hash calculations on modern processors can be
done in microseconds, and the resulting keys will be used to access
4 KB blocks that must be encrypted or decrypted, we believe that
the small overhead for keyed hash calculation is reasonable. Also,
Horus need not use the same block sizes or tree depth for all files;
instead, it can maintain a separate block size list and tree depth for
each file, or (for storage efficiency) have files select from a set of
predetermined depths and block size lists.

Since files in petascale HPC file systems often expand dynami-
cally, with multiple clients writing to locations past the original end
of the file, Horus can generate a key for any region given the root
key for the file. This property allows Horus to pre-calculate keys
for regions that haven’t yet been written, and also ensures that any
two nodes can arrive at the same value for a block key without ex-
changing information beyond the root key. Thus, Horus can scale
to thousands of clients because there is little dependency, and hence
little need for synchronization, to generate block encryption keys.

| Ky I:_EE Root key

Range keys

HERNERC (*ZZZRENERANNRANN

E] A ' B 7] c b Clients

File blocks

Figure 4: Sample set of keys for ranges of blocks in a file.
Clients B and C can both access blocks 8 and 9.

An example scenario for our approach to partial file encryption is
shown in Figure 4. Client A accesses blocks 0-2, B accesses blocks
6-9, C accesses blocks 8-11, and D accesses block 14 and blocks
16-23. In this scenario, A, B, and D each receive two keys (albeit at
different levels of the KHT), and C receives a single key. Note that,
though B and C both can access blocks 8 and 9, they receive keys
from different levels of the KHT. However, the block keys derived
from the different keys are the same; in fact, B’s key for the 8-9
range can be derived from C’s key for the range 8—11.

4. DESIGN ISSUES

While the basic design of the KHT approach for encryption of
block ranges enables the use of thousands of keys to encrypt dif-
ferent regions of each file while requiring minimal storage require-
ment for a small fixed number of root keys per file and reducing
network bandwidth for key distribution, it still requires that the
root keys be stored and distributed securely. In addition, key re-
vocation is a potential issue. Since it may be impractical to rewrite
file systems to include Horus, we also describe techniques for im-
plementing Horus as a library layer on top of existing file systems
or other storage mechanisms such as HDF5 [21].

4.1 Protecting file root keys

File root keys in Horus must be protected carefully, since dis-
closure of a file root key compromises the entire file. Thus, Horus
uses lockboxes [11, 16] to secure file root keys. Lockboxes can
use either symmetric key encryption or public key encryption to
provide both confidentiality and integrity for the file root key; the
usual tradeoff of speed (symmetric) against flexibility (public key)
applies. Since the lockboxes are themselves encrypted using a key
unknown to the metadata servers and the rest of the file system,
they may be stored in the file system, either as metadata or as files.
If Horus is implemented as a client library (Section 4.4), file key
lockboxes could be stored in one of three ways: separate files, file
system-based metadata such as extended attributes (a POSIX stan-
dard), or metadata in a format such as HDF5.

4.2 Distributing block range keys

It may be unwise to trust the MDS to securely distribute block
range keys, since the MDS must maintain file system state and is a
likely target for attackers. Instead, range keys for Horus can be cal-
culated and distributed by an independent key distribution cluster
(KDC), implemented as a set of processes that can be run on one or
more stateless nodes. The KDC must have access to the lockboxes
for the access-controlled files and keys to decrypt the lockboxes,
and must also have a mechanism for determining which clients
need access to which parts of which files. The first two require-
ments are straightforward: the KDC can obtain lockboxes from the
MDS or from files in the file system, or it can have them supplied
by clients with key requests. Lockbox keys are then supplied by the

user. The third requirement is more challenging, and can be done
either by a model of the computation run on the KDC or by explicit
request from clients for the range keys that they need. These two
options map well to approaches used by HPC computing: the first
corresponds to a computation for which work is pre-assigned to
nodes, and the second approach could be implemented by integrat-
ing key distribution with whatever (typically centralized) system is
used to assign work to client nodes. Once the KDC has generated
the necessary range keys, it must supply them to clients. There
are many systems for securely providing keys to clients; Maat [13]
does so in an HPC environment, but any scheme that encrypts com-
munications (including SSL) will suffice.

Since key generation is fast (a few microseconds per keyed hash),
a single KDC node can generate tens of thousands of range keys
per second; the performance-limiting factor for the KDC is more
likely to be network communication or access control decisions.
If the KDC becomes a bottleneck, it can be scaled out by adding
more nodes; the only information that must be shared in the KDC
is lockboxes, lockbox keys and access control policy. Only access
control policy requires synchronization, and it only requires syn-
chronization if individual KDC nodes can’t each arrive at the same
decision by independently running (potentially the same) code.

4.3 Key revocation

Encryption keys can be revoked only at the granularity of an en-
tire file by modifying the root key for the file and then reading,
re-encrypting, and rewriting all of the data. It is possible to support
multiple versions of the root key, with different parts of the file us-
ing different root keys. However, doing so would require that the
system maintain a copy of all of the root keys (or provide a mech-
anism for deriving them, as in Plutus [11]), and also provide a way
for determining which root key to use for which regions. If revo-
cation is infrequent, a range key could include a key derived from
each version of the root key; the client could then either use hints
stored with the file or try each version in turn to see which one is
valid for the given range.

4.4 Using Horus as an encryption layer

While Horus provides strong protection for petascale storage, it
may be impractical to integrate it into existing file systems. In ad-
dition, users of file formats such as HDF5 [21] may wish to apply
Horus to some (or all) of the data sets, rather than applying it on
a file block basis. Fortunately, Horus can easily be implemented
as an encryption layer, since it only requires a mechanism for dis-
tributing keys to clients and support for encryption on the client. A
KDC may be implemented separately from the rest of the file and
computation system, as described above, and it is straightforward
to support encryption in user-level libraries. If Horus is layered on
top of a file format library such as HDFS5, Horus can even use the
logical data set offsets rather than offsets in the actual file, poten-
tially making ranges more contiguous and reducing the number of
range keys that must be distributed to clients.

S. SECURITY ANALYSIS

Using a keyed hash tree to generate the encryption keys for each
block of a file with millions or even billions of blocks greatly im-
proves the security of HPC file systems. This section discusses the
ability of Horus to resist a range of attacks [18], and shows that
it can be used to thwart many attacks on data confidentiality and
integrity.

Data in Horus is never stored in the clear on a disk. Thus, a
subverted disk cannot yield data in the clear. The only way that a

subverted disk can give up cleartext data is with the necessary key
to decrypt it, and the disk has no way to gain such a key.

In many systems, the metadata server (MDS) must be trusted
with the confidentiality of data stored in the file system; however,
Horus removes this need and prevents the MDS from being able to
expose data stored in a file system it manages by using lockboxes.
Unless the MDS gains the key needed to open a lockbox, it cannot
obtain a file’s root key and is thus unable to generate any of the
block keys.

While an MDS cannot expose data, however, it can execute a
denial of service attack by refusing to provide a requested lockbox.
Of course, the MDS could also refuse to provide location informa-
tion for a file; in general, there is little that can be done to prevent a
compromised MDS from denying access to files in any file system.

While the MDS and the disk cannot decrypt data stored on disk,
clients must be able to do so in order to use the data. Thus, at least
some clients need to be able to read and write data. The goal, then,
is to ensure that clients can only access data they need, without
allowing them to access other data in a file.

As noted above, each client is only given the key(s) that allow it
to generate the block keys for data to which it has access. Because
a client cannot derive the parent key for any keys it has, and cannot
“extend” a key to neighboring ranges at the same level, it cannot
“escape” out of the ranges to which it has keys. This is particularly
effective in large-scale HPC clusters with thousands of nodes, since
there may be tens of thousands of nodes, each of which may only
need access to 0.1% of the entire file. If a node in such a system
is compromised, the intruder only gets a small fraction of the data;
while revealing any data is harmful, 0.1% is far less dangerous than
an entire file.

For read access to a disk, Horus eliminates the need for an au-
thentication mechanism because a client who reads the data can-
not decrypt the data without having the corresponding key. For
write access, however, an authentication mechanism such as that in
Maat [13] has to be in place to avoid unauthorized clients from writ-
ing garbage into the storage disks. Mechanisms such as Quota [17]
can also be adopted to prevent a client from writing to more storage
space at a storage device than its allocated quota.

While a disk cannot decrypt data stored on it, a subverted disk
could provide fabricated data to clients. There are several tech-
niques for preventing this, including the use of cryptographic hashes
encrypted with the block key along with the data [16] and public-
key signature of the data blocks [11]. The latter approach is more
secure, and may leverage techniques from the Plutus file system [11]
to ensure that data is only written by authorized writers. However,
writers in Plutus must generate a new block key when a block is
written, and must then sign the root of the tree that contains that
block. Since our approach uses only a single root key, the Plutus
approach cannot verify that individual block keys are valid. How-
ever, it can be used by a writer to sign the hash for an individual
block, though this may be too slow for use in an HPC system.

Simply storing a cryptographic hash of a block encrypted along
with the block data is sufficient to ensure that only authorized clients
have modified the data, though it cannot distinguish between read-
ers and writers. It is also vulnerable to attacks in which a disk pro-
vides old versions of a data block; while systems such as SUNDR [14]
guard against this, the high overhead of such systems, particularly
for petabytes of data, make such a high level of security impracti-
cal.

The KDC distributes range keys to individual clients, allowing
them access only to the portions of the file permitted by the KDC.
Since the KDC is stateless, it is more secure than having the MDS
manage key distribution [2] because it can be totally wiped between

computations. Key distribution must also be done securely; how-
ever, there are many schemes such as Maat [13] that can securely
distribute keys to many clients. Moreover, if a small number of
messages are compromised, yielding a few range keys, only a small
amount of data is leaked.

As with other encrypted file systems, data in Horus is vulnerable
to threats such as brute-force attacks on ciphertext and weaknesses
in encryption algorithms. Horus is also vulnerable to attacks that
rely upon stolen keys; again, these attacks are common to all en-
crypted storage systems.

6. CONCLUSIONS

Large-scale file systems for high-performance computing must
store very large files with sensitive data that are shared by thou-
sands of compute nodes in environments that are increasingly sub-
ject to attack. To address this problem, we developed Horus, which
encrypts data to prevent compromised storage devices and mali-
cious metadata servers from accessing any file data in the clear, and
also limits data leakage from a compromised client to only the parts
of a file that the client is authorized to access. Horus provides this
security using a keyed-hash tree, allowing it to efficiently provide
file range keys to individual clients while limiting the overall key
storage overhead and using minimal CPU time in key generation.
The Horus mechanism can be used both to confine the accesses
made by individual clients, and to hide sensitive parts of a large file
from public view.

Since computation of block keys depends only on a file’s root
key and per-access information, computation of range keys and
block encryption keys is highly parallelizable, making it ideal for
use in HPC systems. Horus only requires a set of processes to dis-
tribute keys to clients to encrypt and decrypt data; thus, Horus can
not only be integrated into the file system, but can also run as a
client library operating either on file blocks or on higher-level con-
structs such as HDF5 data sets. Because Horus can run as a client
library or integrated into the file system while providing signifi-
cantly stronger confidentiality guarantees than currently-available
approaches to HPC storage, it is ideally suited for use in increasing
the security of data stored on very large-scale storage systems.

7. REFERENCES

[1] M. K. Aguilera, M. Ji, M. Lillibridge, J. MacCormick,
E. Oertli, D. Andersen, M. Burrows, T. Mann, and C. A.
Thekkath. Block-level security for network-attached disks. In
Proceedings of the 2nd USENIX Conference on File and
Storage Technologies (FAST '03), pages 159-174, Mar. 2003.

[2] R. Anane, S. Dhillon, and B. Bordbar. Stateless Data
Concealment for Distributed Systems. Journal of Computer
and System Sciences, 74(2):243-254, Mar. 2008.

[3] S. A. Banachowski, Z. N. J. Peterson, E. L. Miller, and S. A.
Brandt. Intra-file security for a distributed file system. In
Proceedings of the 19th IEEE Symposium on Mass Storage
Systems and Technologies, pages 153-163, Apr. 2002.

[4] P.J. Braam. The Lustre storage architecture.
http://www.lustre.org/documentation.html, Cluster File
Systems, Inc., Aug. 2004.

[5] K.-C. Chan and S.-H. G. Chan. Key management approaches
to offer data confidentiality for secure multicast. /[EEE
Network, 17(5):30-39, Sept. 2003.

[6] W. Diffie and M. E. Hellman. New directions in
cryptography. ACM Transactions on Internet Technology,
IT-22(6):644-654, Nov. 1976.

[7] A.Fiatand M. Naor. Broadcast encryption. In Proceedings
of CRYPTO ’93, pages 480491, 1993.

[8] K. Fu. Group sharing and random access in cryptographic
storage file systems. Master’s thesis, MIT, June 1999.

[9] HDES users guide. http://hadoop.apache.org/
common/docs/current/hdfs_user_guide.html, Aug.
2011. Version 0.20.204.0.

[10] R. Indrajit, S. T. V. Setty, A. Kilzer, V. Schmatikov, and
E. Witchel. Airavat: Security and privacy for MapReduce. In
Proceedings of the 7th Symposium on Networked Systems
Design and Implementation (NSDI ’10), Apr. 2010.

[11] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu. Plutus: scalable secure file sharing on untrusted
storage. In Proc. of the 2nd USENIX Conference on File and
Storage Technologies (FAST '03), pages 29—42, Mar. 2003.

[12] H. Krawczyk, M. Bellare, and R. Canetti. HMAC:
Keyed-hashing for message authentication, Feb. 1997.

[13] A. W. Leung, E. L. Miller, and S. Jones. Scalable security for
petascale parallel file systems. In Proceedings of SCO7, Nov.
2007.

[14] J. Li, M. Krohn, D. Maziéres, and D. Shasha. Secure
untrusted data repository (SUNDR). In Proceedings of the
6th Symposium on Operating Systems Design and
Implementation (OSDI), Dec. 2004.

[15] R. C. Merkle. Secrecy, authentication, and public key
systems. PhD thesis, Stanford University, 1979.

[16] E. L. Miller, D. D. E. Long, W. E. Freeman, and B. C. Reed.
Strong security for network-attached storage. In Proceedings
of the Conference on File and Storage Technologies (FAST),
pages 1-13, Jan. 2002.

[17] K. T. Pollack, D. D. E. Long, R. Golding, R. Becker-Szendy,
and B. C. Reed. Quota enforcement for high-performance
distributed storage systems. In Proceedings of the 24th IEEE
Conference on Mass Storage Systems and Technologies,
pages 72-84, Sept. 2007.

[18] E. Riedel, M. Kallahalla, and R. Swaminathan. A framework
for evaluating storage system security. In Proceedings of the
Conference on File and Storage Technologies (FAST), 2002.

[19] F. Schmuck and R. Haskin. GPFS: A shared-disk file system
for large computing clusters. In Proceedings of the
Conference on File and Storage Technologies (FAST), pages
231-244, Jan. 2002.

[20] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
Hadoop distributed file system. In Proceedings of the 26th
IEEE Conference on Mass Storage Systems and
Technologies, May 2010.

[21] The HDF Group. HDFS5 user’s guide.
http://www.hdfgroup.org/HDF5/doc/PSandPDF/
HDF5_UG_r187.pdf, May 2011. Release 1.8.7.

[22] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn. Ceph: A scalable, high-performance distributed
file system. In Proc. of the 7th Symposium on Operating
Systems Design and Implementation (OSDI), Nov. 2006.

[23] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller,

J. Small, J. Zelenka, and B. Zhou. Scalable performance of
the Panasas parallel file system. In Proceedings of the 6th
USENIX Conference on File and Storage Technologies
(FAST), pages 17-33, Feb. 2008.

