Twizzler: A Data-centric OS for Non-volatile Memory

DANIEL BITTMAN and PETER ALVARO, UC Santa Cruz, USA
PANKA] MEHRA, IEEE Member, USA

DARRELL D. E. LONG, UC Santa Cruz, USA

ETHAN L. MILLER, UC Santa Cruz, USA and Pure Storage, USA

Byte-addressable, non-volatile memory (NVM) presents an opportunity to rethink the entire system stack.
We present Twizzler, an operating system redesign for this near-future. Twizzler removes the kernel from the
I/O path, provides programs with memory-style access to persistent data using small (64 bit), object-relative
cross-object pointers, and enables simple and efficient long-term sharing of data both between applications
and between runs of an application. Twizzler provides a clean-slate programming model for persistent data,
realizing the vision of UNIX in a world of persistent RAM.

We show that Twizzler is simpler, more extensible, and more secure than existing I/O models and imple-
mentations by building software for Twizzler and evaluating it on NVM DIMMs. Most persistent pointer
operations in Twizzler impose less than 0.5 ns added latency. Twizzler operations are up to 13X faster than
Un1x, and SQLite queries are up to 4.2X faster than on PMDK. YCSB workloads ran 1.1-2.9% faster on Twiz-
zler than on native and NVM-optimized SQLite backends.

CCS Concepts: « Software and its engineering — Operating systems; « Hardware — Memory and
dense storage; - Information systems — Storage class memory;

Additional Key Words and Phrases: Persistent memory, non-volatile memory, NVM, PMEM, single-level store,
global address space, memory hierarchy

ACM Reference format:

Daniel Bittman, Peter Alvaro, Pankaj Mehra, Darrell D. E. Long, and Ethan L. Miller. 2021. Twizzler: A Data-
centric OS for Non-volatile Memory. ACM Trans. Storage 17, 2, Article 11 (June 2021), 31 pages.
https://doi.org/10.1145/3454129

1 INTRODUCTION

Byte-addressable non-volatile memory (NVM) on the memory bus with DRAM-like latency [24,
40] will fundamentally shift the way that we program computers. The two-tier memory hierarchy
split between high-latency persistent storage and low latency volatile memory may evolve into a
single level of large, low latency, and directly addressable persistent memory. Mere incremental
change will leave dramatic improvements in programmability, performance, and simplicity on the

This work was supported in part by the National Science Foundation (grants IIP-1266400, IIP-1841545), a grant from Intel
Corporation, and the industrial members of the UCSC Center for Research in Storage Systems.

Authors’ addresses: D. Bittman and P. Alvaro, UC Santa Cruz, CSE, 1156 High Street, Santa Cruz, CA; emails: {dbittman,
palvaro}@ucsc.edu; P. Mehra, IEEE Member; emails: pankaj.mehra@ieee.org; D. D. E. Long, UC Santa Cruz, BSOE, 1156
High Street, Santa Cruz, CA; email: darrell@ucsc.edu; E. L. Miller, UC Santa Cruz, CSE, 1156 High Street, Santa Cruz, CA,
Pure Storage, CA; email: elm@ucsc.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1553-3077/2021/06-ART11 $15.00

https://doi.org/10.1145/3454129

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

11:2 D. Bittman et al.

table. It is essential that operating systems and system software evolve to make the best use of this
new technology.

These opportunities motivate us to revisit how programs operate on persistent data. The sep-
aration of volatile memory and high-latency persistent storage is a core OS design principle that
requires the OS to manage ephemeral copies of data and interpose itself on persistence operations,
a penalty that will consume an increasing fraction of time as NVM performance increases [65]. The
direct-access nature of NVM invites the use of load and store instructions to directly access persis-
tent data, simplifying applications by enabling persistent data manipulation without the need to
transform it between in-memory and on-storage data formats. Thus, the model that best exploits
the low latency nature of NVM is one in which persistent data is maintained as in-memory data
structures and not serialized or explicitly loaded or unloaded. To avoid serialization, this model
must support persistent pointers that are valid in any execution context, not just the one in which
they were created.

Trying to mold NVM into existing models will not enable its fullest potential, just as SSDs did
not reach their full potential until they transcended the disk paradigm. To explore a “clean-slate”
approach, we are building Twizzler, an OS designed to take full advantage of this new technology
by rethinking the abstractions OSes provide in the context of NVM. Twizzler divides NVM into
objects within a global object space, and pointers are interpreted in the context of the object in
which they reside. This decouples pointers from the address space of an individual thread, pro-
viding a data-centric programming model rather than a process-centric one. The result is a vastly
simpler environment in which the OS’s primary function is to support manipulating, sharing, and
protecting persistent data using few kernel interpositions.

We designed and implemented a simple, standalone kernel that supports a userspace for NVM-
based applications, with compatibility layers for legacy programs. We wrote a set of libraries and
portability layers that provide a rich environment for applications to access persistent data that
takes into account both semantics (persistent pointers) and safety (building crash-consistent data
structures). We then performed a case-study by writing software for Twizzler, taking into account
the new flexibility and power gained by our model and evaluating our software for complexity and
performance. We ported SQLite to Twizzler, showing how our approach can provide significant
performance gains on existing applications as well.

In a world where in-memory data can last forever, the context required to manipulate that data
is best coupled with the data rather than ephemeral constructs like the process. This key insight
manifests itself in the three primary contributions of this article:

e We discuss (Section 2) our vision for a data-centric OS and the requirements that it must
meet to provide low latency memory-style access to NVM with efficient data sharing and
simplified programming models.

e We present Twizzler (Section 3) and describe its mechanisms to meet those requirements,
including decoupling traditionally linked concerns, reducing kernel involvement in address
space management, and providing a rich model for constructing in-memory persistent data
structures that can be easily shared between programs and machines.

e We evaluate (Section 5) the ease-of-use, security advantages, and programmability offered
by our environment, for both new and existing, ported software (SQLite), along with per-
formance improvements (Section 6) on NVM DIMMs.

2 THE DATA-CENTRIC OS

Operating systems provide abstractions for data access that reflect the hardware for which they
were designed. Current I/O interfaces and abstractions reflect the structure of mutually exclusive

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

Twizzler: A Data-Centric OS for NVM 11:3

volatile and persistent domains, the hallmarks of which are heavy kernel involvement for persist-
ing data, a need for data serialization, and complexity in data sharing requiring the overhead of
pipes or the management cost of shared virtual memory. However, the introduction of low latency
and directly attached NVM into the memory hierarchy requires that we rethink key assumptions
such as the use of virtual addresses, the kernel’s involvement in persistent I/O, and the way that
programs operate on and share persistent data [31].

The first key characteristic of NVM is low latency: only 1.5-8% the latency of DRAM in most
cases [40]. Thus, the cost of a system call to access NVM dominates the latency of the access itself.
The second key characteristic is that the processor can directly access persistent storage using load
and store instructions. Direct, low latency access to NVM means that explicit serialization is a poor
fit—it adds complexity, as programmers must maintain different data formats and the transforma-
tions between them, and the overhead is intolerable due to NVM’s low latency. Hence, we should
design the semantics of the programming model around in-memory persistent data structures,
giving programs direct access to them without explicit persistence calls or serialization methods.

These characteristics imply two basic requirements for OSes to most effectively use NVM:

(R1) Remove the kernel from the persistence path. This addresses both characteristics.
System calls to persist data are costly; we must provide lightweight, direct, memory-style
access for programs to operate on persistent data.

(R2) Design for pointers that last forever. Long-lived data structures can directly reference
persistent data, so pointers must have the same lifetime as the data they point to. Virtual
memory mappings are, by contrast, ephemeral and so cannot effectively name persistent
data. Persistent data is, by definition, accessed by multiple actors, both simultaneously
and over time, and thus must be stored in a form that is conducive to sharing without
needing the ephemeral context associated with a particular actor.

We call an OS that meets both requirements R1 and R2 data-centric, as opposed to current OSes,
which are process-centric. Operations on persistent, in-memory data structures are the primary
functions of a data-centric OS, which tries to avoid interposing on such operations, preferring
instead to intervene only when necessary to ensure properties such as security and isolation. To
meet both of these requirements, a data-centric OS must provide effective abstractions for iden-
tifying data independent of data location, constructing persistent data relationships that do not
depend on ephemeral context, and facilitating sharing and protection of persistent data.

2.1 A Data-centric Approach

We cannot store virtual addresses in persistent data, so we need a new way to name a word of
persistent memory: a persistent pointer. The persistent pointer encodes a persistent identification of
data (Section 3.3) instead of an ephemeral address, allowing any thread to access the desired word
of memory regardless of address space. This approach dramatically improves programmability, as
programmers need not worry about the complexity of referring to persistent data with ephemeral
constructs, improving data sharing between programs and across runs of a program. Twizzler still
makes use of virtual memory hardware to provide isolation and translation, but persistent data
structures should not be written in terms of virtual addresses.

The Death of the Process. Processes as a first class OS abstraction are, like virtual addresses,
unnecessary; a traditional process couples threads of control to a virtual address space, a security
role, and kernel state. However, with the kernel removed from persistent data access, much of that
kernel state (e.g., file descriptors) is unnecessary, leading to a decoupling of mechanisms: Nothing
fundamentally connects a virtual address space (a piece of ephemeral context used to access data)

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

11:4 D. Bittman et al.

and a security context (what data threads may access). Instead, a data-centric OS can keep the good
parts of a process but separate virtual address translation and security roles, allowing threads to
select one of each as needed.

The process abstraction is just one example. Persistent data access plays a key role in OS ab-
straction design, and we need to avoid complexity arising from combining old and new interfaces.
Hence, we need to consider the wide-reaching effects of changing the persistence model on all as-
pects of the system, not just I/O interfaces. NVM gives us an opportunity to design an OS around
the requirements of the target programming model instead of trying to mold support libraries
around existing interfaces. While it is important that we provide support for legacy applications,
it is these applications that should be relegated to support libraries; new applications built for the
programming model should get first-class OS support.

Targeting These Constraints with Twizzler. The consequences of meeting the requirements of
these hardware trends define a bounded design space for data-centric OSes. We have chosen a point
in that space and built Twizzler, our approach to providing applications with efficient and effective
access to NVM. In the following section, we will discuss how our four primary abstractions—a low-
level persistent object model, a persistent pointer design, an address space mechanism called views,
and a security context mechanism—achieve these goals of removing the kernel from the persistent
data access path.

2.2 Existing Interfaces

Current OS techniques do not meet requirements R1 and R2 as we set out above—file read and
write interfaces, designed for sequential media and later expanded for block-based media, require
significant kernel involvement and serialization, violating both requirements. While support for
these interfaces can be useful for legacy applications, as we will demonstrate, providing the pro-
grammer with abstractions designed for NVM both reduces complexity and improves performance.

The mmap system call attempts to hide storage behind a memory interface through hidden data
copies. But, with NVM, these copies are wasteful, and mmap still has significant kernel involvement
and the need for explicit msync calls. “Direct Access” (DAX) tries to retrofit mmap for NVM by
removing the redundant copy, but this still fails to address requirement R2! Operating on persistent
data through mmap requires the programmer to use either fixed virtual addresses, which presents an
infeasible coordination problem as we scale across machines, or virtual addresses directly, which
are ephemeral and require the context of the process that created them.

Attempting to shoehorn NVM programming atop POSIX interfaces (including mmap) results in
complexity that arises from combining multiple partial solutions. Given some feature desired by
an application, the NVM framework can provide an integrated solution that meshes well with
the existing support for persistent data structure manipulation and access, or it can fall back to
POSIX, resulting in the programmer needing to understand two different “feature namespaces”
and their interactions. An example of this is naming, where a programmer may need to turn to the
filesystem to manage names in a completely orthogonal way to how the NVM frameworks handles
data references. For example, PMDK, an NVM programming library, relies on a filesystem for
naming and initial access to persistent memory objects, resulting in different kinds of references,
feature sets from filesystems being applied (like security) while others are not (data access), and the
complexity of understanding how the PMDK abstractions interact with the POSIX ones. Instead,
our model prefers to build legacy support atop new abstractions (Section 4) and avoid falling back
to legacy models for persistent data access. We will discuss another example, security, in our case
study (Section 5).

Additionally, models that layer NVM programming atop existing interfaces often fail to facilitate
effective persistent data sharing and protection. PMDK, for example, makes design choices that

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

Twizzler: A Data-Centric OS for NVM 11:5

direct access
(memory-style)

application

musl* (libc) !

POSIX access wix Linux syscall !

(read/write) emulation i

data ' :

. ¥ { .
object metadata & FOT . view managemgnt,
libtwz pointer translation,
management

y consistency primitives
A userspace

¥ kernelspace

object & thread
Twizzler kernel management, trusted
computing base

create, delete, etc.
physical mapping

* modified musl to change linux syscalls into function calls

Fig. 1. Twizzler system overview. Applications link to musl (a C library), twix (our Linux syscall emulation
library), and libtwz (our standard library). Through musl, they may act on persistent data with POSIX
interfaces, though we expect Twizzler applications to operate directly on persistent data with memory-style
semantics.

limit scalability, since its data objects are not self-contained and do not have a large enough ID
space, resulting in the need to coordinate object IDs across machines [11]. For the same reason,
although single-address space OSes [13] somewhat address requirement R1, they do not consider
both requirements at once, nor do they provide an effective and scalable solution to long-term data
references due to that same coordination complexity [10].

3 THE DESIGN OF TWIZZLER

Twizzler is a stand-alone kernel and userspace runtime that provides execution support for pro-
grams. It provides, as first-class abstractions, a notion of threads, address spaces, persistent objects,
and security contexts. A program typically executes as a number of threads in a single address
space (providing backwards compatibility with existing programming models), into which persis-
tent objects are mapped on-demand. Instead of providing a process abstraction, Twizzler provides
views (Section 3.2) of the object space, which formalizes the notion of ephemeral context within our
model by allowing programs to map objects for access, and security contexts (Section 3.4), which
define a thread’s access rights to objects in the system. Twizzler provides persistent pointers (Sec-
tion 3.3) for programs, as well as primitives to ensure crash-consistency (Section 4.2). The thread
abstraction is similar to modern OSes: The kernel provides scheduling, synchronization, and man-
agement primitives. Figure 1 shows an overview of the system organization and how different
parts of the system operate on data objects.

Twizzler’s kernel acts much like an Exokernel [29, 43], providing sufficient services for a
userspace library OS, called 1ibtwz, to provide an execution environment for applications. The
primary job of libtwz is to manage mappings of persistent objects into the address space (Sec-
tion 3.2) and deal with persistent pointers (Section 3.3). Twizzler also exposes a standard library
that provides higher-level interfaces beyond raw access to memory. For example, software that bet-
ter fits message-passing semantics can use library routines that implement message-passing atop
shared memory. Twizzler’s standard library provides additional higher-level interfaces, including
streams, logging, event notification, and many others. Applications use these to easily build com-
posable tools and pipelines for operating on in-memory data structures without the performance
loss and complexity of explicit I/O.

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

11:6 D. Bittman et al.

We provide POSIX support with twix, a library that emulates Linux syscalls. We modified
musl [1], a C library that all programs link to, replacing invocations of the syscall instruction
with calls into twix, which internally tracks Unix state-like file descriptors. This is handled en-
tirely in userspace; calls to read and write often reduce to calls to memcpy.

3.1 Object Management

Twizzler organizes data into objects, which may be persistent. Each object is identified by a unique
128 bit object ID (though larger IDs would be possible). Objects provide contiguous regions of
memory that organize semantically related data with similar lifetime and permissions. Applica-
tions access objects via mapping services (discussed in the next section) by mapping each object
into a contiguous range in the address space, though the address space itself may be densely or
sparsely mapped. Objects can be anywhere from 4 KiB (the size of a page) to 1 GiB; the upper
bound on object size is a prototype implementation choice and not fundamental to the design.

Twizzler uses objects as the unit of access control, building off a read/write/execute permissions
model that mirrors that of memory management units in modern processors. This is a direct con-
sequence of avoiding the kernel for persistent data access—it can set policy by programming the
MMU, but must leave enforcement up to the hardware, which, in turn, defines what protections
are possible.

An object, from the programmer’s perspective, is flexible in its contents—for example, it could
contain anywhere from a single B-tree node to the entire B-tree. Often, an object would contain
the entire tree, since the entire tree is typically subject to the same access semantics by programs,
and there are overheads associated with objects that can be amortized over larger spaces. Data and
data structures that are too large for one object or require different access permissions can span
multiple objects with references between them. We demonstrate the benefits of this flexibility in
Section 5.

The kernel provides services for object management, such as creating and deleting objects. Ob-
jects are created by the create system call, which returns an object ID. A program may also
optionally provide an existing object ID to the create call, stating that the new object should be
a copy of the existing one, for which Twizzler uses copy-on-write. The new ID is a number that is
unlikely to collide with existing IDs in the 128 bit ID space and can be assigned using a technique
that supports this requirement (random, hashing, etc.). Some forms of ID assignment support a
form of access control: A program can only access an object whose ID it knows. Twizzler provides
object naming as well, discussed in Section 3.3.

Objects may be be deleted via the delete system call. Like UN1X’s unlink, objects are reference
counted, where a reference refers to a mapping in an address space. Once the reference count
reaches zero, the object may be deleted. During deletion, an object may be optionally marked as
“hidden,” causing new mapping requests for this object to fail.

Object Types, Persistence, and Lifetime. Applications need to be able to specify what type of mem-
ory an object resides in. Currently, we are operating on systems that contain both persistent NVM
and volatile DRAM as main memory, and applications may want to make use of both of these mem-
ory types. Placing certain objects in DRAM, for example, can result in performance improvements
(e.g., caching read-only objects) or security improvements (e.g., making temporary key material
volatile). Twizzler exposes this choice to applications at object creation time, allowing them to
specify the type of the object. At least two types, volatile and persistent, are supported by default.
As additional types of physical memory are added to systems (e.g., different kinds of NVM with
different properties, high-bandwidth memory), applications may wish to have more fine-grained
control over where objects are placed, and Twizzler’s APIs allow such control. Objects can also be

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

Twizzler: A Data-Centric OS for NVM 11:7

moved between types of memory after creation, though this may be a time-consuming operation,
as it involves copying potentially large amounts of data.

By default, objects are persistent and live in kernel-managed NVM unless they are marked as
volatile. If an object is volatile, then it has a limited lifetime that is related to the power state of the
machine—as soon as power is lost (or the system is rebooted) all volatile objects disappear. Note
that Twizzler removes the distinction between volatile and persistent objects for how applications
access data, relying on higher-level language or library support and application support for dealing
with the limited lifetime of volatile objects.

The property of persistent versus volatile for objects differs from the concept of ephemeral data.
The “volatile” property places a physical restriction on the lifetime of an object (the machine’s
power state), while the “persistent” property indicates that the object will exist until explicitly
deleted. Objects can also be long-lived or ephemeral, independent of their persistence property,
since we use the term “ephemeral” to describe information, data, or state that has a finite lifetime
and is expected to “go away.” While all volatile objects are ephemeral, the reverse is not true—
we may place ephemeral data in a persistent object to allow for recovery after an unexpected
power cycle. The “persistent” property of an object is a recorded piece of information that the
kernel associates with an object, but there is no such information for ephemeral versus long-lived.
Instead, we provide a mechanism for specifying a logical lifetime of objects relative to one another
with a mechanism called ties, which we will discuss below.

Object Ties and Logical Lifetime. Applications in Twizzler also have some lifetime; an appli-
cation’s job is typically to operate on some persistent data while performing some computation
before eventually exiting. Such an application will likely use volatile objects to represent tempo-
rary computation state (e.g., the stack and heap, which are ephemeral). However, just assigning an
object as volatile is insufficient, because there is a lifetime mismatch: The volatile object will live
until the next reboot, while the application may exit before then or may even live and try to recover
after a power cycle. Simply manually deleting the volatile object when the application is done is
also insufficient, as it does not account for crashes where the application may be unable to clean
up its state. Furthermore, applications that wish to support recovery may make use of persistent
stacks and heaps, thus these objects would have to be persistent despite being ephemeral.

While we could provide a mechanism designed specifically for this “system-level” task, where
the kernel maintains a set of objects to automatically cleanup when an application exits, this would
require the kernel to have some understanding of what an “application” is. Furthermore, if we gen-
eralize a solution to automatic cleanup, then we can allow applications to make use of it for their
own purposes. For example, in UNIX, it is common for programs to create and immediately un-
link files to ensure the system frees those resources when the program exits. We would like to
reproduce similar semantics here that also solves the lower-level problem above of freeing appli-
cation state by assigning a lifetime to objects that is more expressive than simply “volatile” and
“persistent.”

In Twizzler, object lifetime is expressed through ties. An object can be tied to another by invoking
a system call that tells the kernel that object A is tied to object B, after which the lifetime of A is
guaranteed to be at least that of B. The kernel will not fully delete object A (even if the delete
system call is invoked on it) until after B is fully deleted. An object may be tied to a large (but
finite) number of other objects and may also be untied at any time. This model of specifying object
lifetime relative to others is similar to Rust [2], where reference lifetime can be named so the
programmer can express lifetimes of objects relative to each other. Note that object ties are not
related to persistent pointers (discussed in more detail in Section 3.3), and instead primarily provide
a way to formalize automatic cleanup.

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

11:8 D. Bittman et al.

Object ties provide a convenient mechanism for applications to build large data structures across
multiple objects without giving up easy cleanup if something goes wrong or if the “root” object
is deleted. Twizzler also uses ties internally: When an object is created as copy-from an existing
object, it uses copy-on-write semantics, and thus internally marks the source object as tied to the
new object. We also tie ephemeral program state objects to threads (which are also represented by
objects) such that they are automatically cleaned up when a program exits. It is our expectation that
application programmers will only rarely directly use ties. Instead, we expect that ties will provide
necessary features that higher-level programming language support for persistent memory can
use.

Note that object ties interact with the notion of volatile and persistent objects, because volatile
objects have an implicit maximum lifetime—that of the next machine restart or power loss. Tying
volatile objects to volatile objects and persistent objects to persistent objects both act as expected.
Tying a persistent object to a volatile object is also semantically simple (persistent objects already
have an “assumed lifetime” that is longer than a volatile object). Tying a volatile object to a per-
sistent object, however, may seem somewhat nonsensical. However, Twizzler does still allow this,
because it has useful semantics: If an application creates a data structure with some volatile compo-
nent,! then it may want to tie the lifetime of that volatile component to the persistent component
if the data structure is to be deleted. This use case (creating a persistent object that we expect to
delete) is not uncommon, particularly in applications designed to recover partial computation after
a crash. Note that, in this case, the maximum lifetime of the volatile object is still in play; after a
power cycle, that object will no longer be present, so tying a volatile object to a persistent object
is somewhat dangerous.

3.2 Ephemeral State Management with Views

Despite Twizzler’s focus on persistent data, many components of our hardware and applications
are built around ephemeral constructs. For example, threads are ephemeral “moments of computa-
tion” that act on persistent data, while the programs that they execute often expect some ephemeral
private data (e.g., the data segment and the stack). While virtual addresses are the wrong abstrac-
tion for persistent data access, modern hardware provides (and often requires) the use of virtual
address hardware that we can leverage for protection and isolation, adding additional ephemeral
state.

Twizzler defines objects called “views,” which coalesce the state and context necessary to sup-
port ephemeral constructs like threads and application instances into Twizzler objects. A signifi-
cant part of that state is ephemeral virtual address mappings; Twizzler provides access to persistent
objects by mapping them into the virtual address space behind-the-scenes (via 1ibtwz). The view
object contains structures to define the layout of the virtual address space that the kernel reads and
uses to program the MMU accordingly. Figure 2 shows how views “mesh” ephemeral threads with
persistent data by providing them a context to operate in. Since view objects are normal Twizzler
objects, they can be persisted, allowing us to recover application state after power cycles.

By coalescing this ephemeral state into an object, we make it possible for applications to manage
it directly with minimal kernel involvement. Avoiding the kernel is natural—all data access already
does this in Twizzler, so adding a separate kernel API to manage this state would add complexity—
and reduces the number of system calls needed when mapping objects. Additionally, avoiding

ISince Twizzler’s kernel is not involved in reference creation, it cannot prevent such a reference from being created. We
expect language support for persistent data structures to impose restrictions on applications in this regard, and the OS
should not prematurely restrict how applications use volatile and persistent objects. Access to a volatile object that no
longer exists after a reboot results in a simple access fault, mitigating security concerns.

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

Twizzler: A Data-Centric OS for NVM 11:9

@ Ephemeral state and

context management (view)

application ephemeral .
pp P . persistent
instance virtual
. data
state mappings

Fig. 2. View objects in Twizzler. Views manage ephemeral constructs and state, giving threads the necessary
context to execute and access persistent data.

slot object flags

0 A r-x Address Space
1 B rw- : A B \Y;
Lil v [rw- | (r=x) | (rw-) [™"] (rw-)

Fig. 3. Layout of a view object. The kernel consults the view object’s mapping on page-fault and maps in
the requested objects at the appropriate location in the virtual address space.

the kernel necessitates an increased address space management responsibility for userspace. For
example, executable loading and mapping is largely handled without the kernel.

Figure 3 shows how view objects lay out the address space of any threads running inside that
particular view. View objects are manipulated by userspace and interpreted by the kernel. When
applications map objects, they update the view to specify that that object should be addressable at
a specific location. On a page-fault, the kernel reads the view and maps the object at the requested
location. The view object is laid out like a page-table, where each entry in the table corresponds to
a slot in the virtual address space. Each table entry contains an object ID and requested protection
bits to further protect objects atop access control mechanisms (similar to PROT_* in mmap).

When a page-fault occurs, the fault handler tries to handle the fault by either doing copy-on-
write, checking permissions, or by trying to map an object into a slot if the view object requested
one. If it cannot handle the fault (due to a protection error or an empty entry in the view object),
then it elevates the fault to userspace where libtwz handles it, possibly by killing the thread,
or possibly by mapping an object if the slot is “on-demand.” This is similar to userspace paging
systems [3, 35]. When the kernel maps an object into a slot, it updates the address space’s page-
tables appropriately.

Applications can add objects to a view with the view_set function. The caller specifies a tar-
get object and a set of protections (see Section 3.3) and a slot in which to map the object. How-
ever, applications rarely invoke this function directly—instead, 1ibtwz provides a higher-level API
to allow applications to operate above the level of manually mapping objects. The standard library
also provides access to other utility functions for views (such as querying state, creating new
views, and copying views). These functions, by default, operate on a thread’s current view, but they
may also optionally operate on any other view object, which allows Twizzler to implement oper-
ations with semantics similar to fork and execve.

When threads add entries to a view object they need not inform the kernel—when a fault occurs,
the kernel will read the entry as needed. However, when changing or deleting an entry, threads
must inform the kernel so it can update existing page table entries. We provide two system calls
for views. The become system call allows a thread to change to a new view, which might be used
to execute a new program or jump across programs to, for example, accomplish a protected task.

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

11:10 D. Bittman et al.

Pointer Foreign Object Table
1 A flags ;
-:I offeet L | | | Object B
2 r B | flags
3| C | flags |

Fig. 4. Pointer translation via the FOT. The pointer and the FOT are both contained in the same object (not
shown). An FOT entry of 0 indicates an “internal” pointer.

Twizzler’s access control system prevents this from happening arbitrarily. The second system call
is invalidate_view, which lets a thread inform the kernel of changed or deleted entries.

View objects not only reduce kernel boundary crossings, but they also improve the resumability
of the system. After a power cycle, the OS now has information on which objects were mapped
and where, improving the ability of threads to pick up where they left off. Additionally, view
objects facilitate the sharing of address spaces between threads, since they can both synchronize
on modifying a given view object and need not duplicate information. Note that the particular
contents of a view object are system-specific. On virtual memory systems, one of their jobs is to
manage ephemeral virtual mappings, while on other architectures their jobs may be to manage,
e.g., segment tables. However, in all cases, views provide a mechanism for managing ephemeral
state while providing enough context for threads to execute.

3.3 Persistent Pointers

Section 2 discussed the needs for references that outlive ephemeral actors. Twizzler provides cross-
object persistent pointers so a pointer refers not to a virtual address but to an offset within an object
by encoding an object-id:offset tuple. This enables a pointer to refer to persistent data, but it
also allows objects to have external pointers that refer to data in any object in the global object
space. We highlight cross-object pointers’ power and flexibility by demonstrating their ability to
express inter-object relationships in Section 5.

To efficiently encode this tuple, we use indirection through a per-object foreign object table
(FOT), located at a known offset within each object. The FOT is an array of entries that each stores
an object ID (or a name that resolves into an object ID, as we will see below) and flags. A cross-
object pointer is stored as a 64 bit FOT_idx:of fset value, where the FOT_idx is an index into the
FOT. This provides us with both large offsets and large object IDs, since the IDs are not stored
within the pointer itself. If an object wishes to point to data within itself (an intra-object pointer),
then it stores 0 in FOT_idx. When dereferencing, Twizzler uses the FOT_idx part of the pointer
as an index into the FOT, retrieving an object ID. The combination of a FOT and a cross-object
pointer logically forms an object-id:offset pair, as shown in Figure 4.

Our design (discussed in prior work [10, 11]) differs from existing frameworks [6, 7, 14, 19, 20,
59] because of the indirection. Frameworks like PMDK store entire object IDs within pointers,
increasing pointer size and reducing flexibility by removing the possibility of late-binding (dis-
cussed below). Additionally, Twizzler extends the namespace of data objects beyond one machine,
as machine-independent data references are a natural consequence of cross-object pointers. Exist-
ing solutions are limited in this scalability. They either limit the ID space (necessary for storing IDs
in pointers) and thus resort to complex coordination or serialization when sharing, or they require
additional state (e.g., per-process or per-machine ID tables) that must be shared along with the data,
forcing the receiving machine to “fix-up” references. Worse still, the fix-up is application-specific,
since the object IDs are within any pointer, not in a generically known location. Our per-object
FOT results in self-contained objects that are easier to share, thus interacting better with remote
shared memory systems.

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

Twizzler: A Data-Centric OS for NVM 11:11

Part of our motivation for indirecting pointers through the FOT was to allow a large ID space
without increasing pointer size. The density of NVM and the disaggregation of memory and appli-
cations means that we will be accessing data in a larger and larger address space, and it is vital that
our abstractions allow for a large enough ID space to cover these needs. Since our IDs are 128 bits
and our offsets need to support large objects, replacing pointers with a “fat pointer” style of just
object-id:of fset would mean more than doubling pointer size, which we found unacceptable.
Other frameworks like PMDK, by contrast, increase pointer size to 128 bits for each pointer by
encoding pointers as this tuple with 64 bit object IDs. The tradeoff is that our pointers take a little
more work to translate (as they require an FOT lookup), but in return, we keep pointers 64 bits
while supporting a truly global-scale address space. Thus, the overall space tradeoft is, for Twiz-
zler, no additional space overhead per pointer, but an added 32-byte overhead per FOT entry. The
number of FOT entries, however, is typically much smaller than the number of pointers, since
pointers to the same external object can all use the same FOT entry. As we will see in Section 6,
this has a dramatic benefit to performance.

FOT Entries and Late-binding. The FOT entry’s flags field has bits for read, write, and execute
protections. The protections are requests; Twizzler implements separate access control on objects.
This allows some pointers to refer to data with a read-only reference, while others can be used for
writing, reducing stray writes (a single ID can repeat in the FOT with different protections). The
FOT entries also enable atomic updates that apply to all pointers using that FOT entry.

Instead of requiring programmers to refer to objects via IDs only, we allow names in FOT entries.
These entries may contain a pointer to an in-object string table that contains a name. Names enable
late-binding [20], a vital aspect of systems, allowing references to objects that change over time,
e.g., shared library versions. Names are passed to a resolving function (specified in the FOT entry).
Allowing a program to specify how its names are resolved increases the flexibility of the system be-
yond supporting UNIx paths. Twizzler provides a default name resolver that uses UNnix-like paths.

The implementation of naming is orthogonal to Twizzler’s design. We allow a range of name
resolution methods within the system stack and allow objects to specify their own name resolution
functions for flexibility. For example, objects could be organized by both a relational database and
a hierarchical namer similar to conventional file systems. Non-hierarchical file systems are well
studied [4, 32, 33, 56, 57], but these systems do not easily cooperate atop a single data space.
Since Twizzler uses a flat namespace as its “native” object naming scheme, it enables the required
cooperation.

Pointer Translation. Current processors provide only a virtual memory abstraction, so applica-
tions must do some extra work to dereference a pointer, translating a pointer from its persistent
form into a virtual address. This does not affect the stored pointer, which is still persistent and in-
dependent of any translation or address space. Thus, multiple applications, possibly with different
address space layouts, can translate the same pointer at the same time without coordination.

Pointer translation occurs with the help of two libtwz functions: ptr_lea (load effective
address) and ptr_store. When a program dereferences a pointer, it first calls ptr_lea. The
pointer is resolved into an object-ID and offset pair through a lookup in the FOT, after which
libtwz determines if the referenced object is already mapped (by maintaining per-view metadata).
If not, then it picks an empty slot in the view and maps the object there (a cheap operation
that does not invoke the kernel). Once mapped, 1ibtwz combines the object’s temporary virtual
base address with the offset and returns the new pointer. The ptr_store function does the
opposite of ptr_lea—it turns a virtual pointer into a persistent one. While these are done
manually in our implementation, we plan to implement compiler support to emit these calls
automatically.

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

11:12 D. Bittman et al.

/N
é l ({ ~m

> m
= o >0me . . metadata
5 | & || contiguous || allocation region & FOT
Q D
a | = data
[0} B A

Fig. 5. Atypical object layout. The header, contiguous region, and allocation region are all optional; however,
most objects will have a header. This object contains a number of internal pointers between regions. The
metadata region (which includes the FOT) grows downward.

FOT management is handled by 1ibtwz. While a lookup in the FOT is a simple array-indexing
operation, a store may require adding to the FOT. To avoid duplicate entries, 1ibtwz walks the
FOT looking for a compatible entry. If one is not found, then it atomically reserves a new entry
and fills it (flushing cache-lines to persist it) before storing the pointer. The ptr_store operation
is less common than ptr_load, and in the future, we may include additional caching metadata
that would speed up the FOT walk (such as storing recent IDs).

Translating pointers has a small overhead (Section 6), and the result can be cached. Twizzler
improves performance via a per-object cache of prior translations. The common case, intra-object
pointers, does not require an external lookup and is implemented as a simple bitwise-or operation.

Object Allocation and Base Structures. Objects in Twizzler often have a header at the object’s base,
the contents of which depend on what the object contains. Often these headers have pointers to
other data in the object and describe the type of the object. For example, in our evaluation, we
implement a red-black tree in an object. The header contains some basic information about the
tree as well as a pointer to the root node. Placing headers at the object’s base gives applications
a “starting point” that they can use to start accessing object data. Twizzler provides a dedicated
function to get a pointer to an object’s header, called obj_base.

Note that the base address of an object is not at offset 0, but instead one page up, so we can
still trap NULL pointers. If this were not the case, then a pointer value of 0 would still be a valid
pointer, and we want to remain backwards-compatible with the assumption that a NULL pointer
has integer value 0. The bottom page of an object is unmapped by Twizzler, allowing NULL pointer
dereferences to be trapped by the kernel.

While objects are flat, contiguous regions of memory, different applications may want to or-
ganize that memory in different ways. Some objects, such as views, are largely interpreted as an
array, but sometimes applications need to explicitly allocate and deallocate memory within an
object. Twizzler provides an API to allocate and free units of memory from application-specified
regions within objects. We make use of this in our red-black tree code, where new nodes are allo-
cated out of the object using this API.

Figure 5 shows a typical object in Twizzler. The NULL page is always present to trap NULL
pointers and is followed by a header. The application setting up this object may have a region of
some contiguous data (such as some strings or an array) and may point to it from the header. The
object may have a region setup for allocation so a future application using this object can easily
allocate and free memory when manipulating the object. Finally, the FOT and metadata regions
start at the top of the object and grow downwards.

3.4 Security and Access Control

Twizzler’s focus on memory-based objects requires that we design the security model around
hardware-based enforcement, where the MMU checks each access. This design is inevitable in
a data-centric OS, since the kernel is not involved in every memory access. The kernel merely

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

Twizzler: A Data-Centric OS for NVM 11:13

specifies the access rights when mapping an object and then relies on the hardware to enforce
those rights with a low overhead.

A key design choice we make is late-binding on security. Applications request access to an object
with permissions that they desire; if they access the object in only allowed ways (e.g., only reading
a read-only object), then no fault occurs. This is because when we map an object (via a view), the
kernel is not immediately involved, and so cannot check access rights for a particular access at
the time the mapping is setup. Performing an access rights check on time of first access does not
make sense either, as it associates a specific access (that might be allowed) with a permissions
error. For example, if a program reads object A, and that program is allowed to read A, then it
should be allowed to perform the read even if it requested read-write access to the object. This
late-binding enables simpler programs that need not worry about elevating access rights through
remapping data objects. Programs can make progress without knowing in advance the permissions
of the objects they might access, thus enabling the reuse of the OS’s access control mechanism in
applications. We will show the flexibility of this in Section 5, wherein we add access control to a
program by changing only a few lines of code.

Threads run in a security context [9, 26, 46], which contains a list of access rights for objects
and allows the kernel to determine the access rights of programs. Using these contexts, Twizzler
is able to provide analogues to groups and owners in UNIix while providing more fine-grained
access control if necessary. Unlike past exploration into security contexts, data-centric OSes
offer an advantage in simplicity. A security context abstraction in a UN1x-like OS needs to maintain
access rights to a set of fundamentally different things (such as paths, virtual memory locations,
and system calls). Instead, Twizzler’s security contexts specify access rights to an object via IDs
instead of virtual addresses. This also makes security contexts persistent, allowing us to use them
as the primary way we assign security roles to threads. Security contexts are implemented via
virtualization hardware (discussed in Section 4.1).

4 IMPLEMENTATION

Twizzler’s kernel is similar to many microkernels, providing a small set of key primitives. It is
5,500 lines of architecture-independent code and 5,700 lines of architecture-dependent CPU driver
code. The primary complexity in the system is implemented in userspace, as the design of the
programming model greatly simplifies the kernel. Twizzler is open-source; more information can
be found at https://twizzler.io.

4.1 Security Contexts and Page Tables

In Section 3.2, we discussed how view objects allow applications to specify what objects they want
mapped in, and with what protections. These are merely requests, however; of course, if the thread
does not have the appropriate permissions, then the kernel will program the address translation
hardware appropriately. This presents a problem: Since threads can attach to a number of different
security contexts, the number of different page-table structures that the kernel needs to manage
grows quickly.

Twizzler uses Intel’s Extended Page Table (EPT) technology,” which is part of the virtual-
ization extensions. The EPT allows a virtual address to be translated by two separate page tables
and is commonly used to virtualize the MMU in virtual machines. The first level, using normal
MMU page tables, translates a virtual address to an object-logical address (typically with second-
level address translation, this is referred to as the “guest-physical” address), and the second-level
translates this to a physical address. This two-level translation scheme is shown in Figure 6.

2 AMD has a similar system, but Twizzler does not support it yet.

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

11:14 D. Bittman et al.

view V1 view V2

MMU translation

Security
Context

.. EPT transla“on

Physical
Memory

Fig. 6. Two-level translation scheme. The top level maps objects in virtual memory (defined by view objects)
to those in object-logical space. The layout of the second level address space is managed by the kernel, since
it is not user-facing, and the permissions are derived from a security context object. The second level maps
to physical memory.

Two-level address translation via the EPT enables Twizzler to split protection requests and ac-
cess control permissions. At the top level, Twizzler applies the requested protections from the view
maps without restriction and programs the EPT to enforce access control derived from security
context. Splitting protection and access control is what allows applications to simply map objects
in for whatever access mode they would like without having to worry about first checking per-
missions. Furthermore, by separating out the permissions enforcement from ephemeral state and
location mapping, we reduce the number of page table structures the kernel needs to manage from
O (nm) to O (n + m), where n is the number of views and m is the number of security contexts.
Views and security contexts can also be switched out independently from each other, which more
closely fits the semantics of Twizzler.

Two-level mapping also greatly simplifies the design of the kernel. Since mapping objects to
physical memory is done at the second level, page eviction is easy—the kernel can simply modify
the shared page tables stored per-object, which updates the translation for all views and contexts
on the system (after appropriate coherence, of course). Moving objects between DRAM and NVM
is made easier, because objects reside in a given location within object-logical space regardless of
where they are mapped in virtual memory, so the kernel does not need to maintain back pointers
to update page table structures.

Virtualization Hardware. Twizzler’s use of virtualization hardware for normal operation is a lim-
itation of existing processors. Intel does not have a mechanism for using the EPT without switching
on the entire virtualization system and running in VMX-non-root mode. However, in practice, the
additional overhead from running with virtualization is negligible, because we do not need all the
protection of a traditional virtual machine and so we can switch much of it off. Because Twizzler’s
kernel is its own guest, we can avoid much of the overhead introduced by VM exits necessary in
lower-trust VM models. For example, Twizzler’s kernel is allowed to modify the EPT structures
itself, despite being virtualized, and modern processors contain extensions that allow the guest to
switch out EPTs itself and handle EPT faults without triggering a VM exit.

This pairs nicely with using the IOMMU as well—since EPT structures on Intel can be reused in
the IOMMU, we can apply security contexts to drivers as well, making driver code less of a special
case. For example, Twizzler provides a driver model for userspace drivers that allows driver code
to construct security contexts that explicitly map in only the necessary objects that a device might
need to access (e.g., command queues, data objects). As hardware devices grow in complexity and

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

Twizzler: A Data-Centric OS for NVM 11:15

increase their autonomy, treating them as additional computation resources and limiting access to
objects through mechanisms already in place for normal applications allows simpler programming
of advanced hardware devices.

4.2 Crash Consistency

Twizzler provides primitives for building crash-consistent data structures. At a low level, it pro-
vides mechanisms for writing back cache-lines, appropriate fences, and basic transactions. Appli-
cations use these primitives today outside of Twizzler to build up larger, more complex support
for crash-consistent data structures.

Our goal is to provide low-level primitives without restricting programs or prematurely pre-
scribing particular solutions. There is a wealth of research on crash-consistent data structures for
NVM [16, 17, 25, 48, 5255, 66], but it is still in flux. Of course, Twizzler manages system data
structures, such as FOT entries, views, and so on, in a crash-consistent manner using the afore-
mentioned primitives, locking, and fencing.

Twizzler also provides a transactional-persistent logging mechanism. Programmers can write
TXSTART-TXEND blocks to denote transactions and TXRECORD statements to record pre-changed val-
ues. This is similar to the mechanism provided by PMDK [59]. If applications need more complex
transactions using different logging mechanisms, then they can use libraries. Twizzler’s internal
data structures and 1ibtwz’s manipulation of object metadata is handled via a combination of
these transactions and cache-line writebacks.

Twizzler provides a mechanism for restarting threads when power is restored following a crash.
Since views are persistent objects, all objects mapped during a thread’s execution are known across
power cycles and are mapped back in. The thread is then started at a special _resume entry point,
allowing the program to handle the power failure in an application-specific manner. Of course,
volatile objects will be lost when power resumes, and thus any attempted access to these objects
will result in an exception. Thus, applications that wish to resume after power failure will need to
be aware of and handle this. We do not wish to prescribe any restrictions here—applications that
want to place their heap in volatile memory for performance or security reasons should be allowed
to. We expect higher-level support for applications to manage persistent data, such as language
support for persistent heaps, to make use of the features we provide, so applications that want to
resume can put resuming information in persistent objects.

The reason we choose to restart threads at a known, different entry point from normal appli-
cation startup is that in current systems, there is always volatile computation state (e.g., registers,
the cache) that is lost when power is lost. Of course, in the future, systems may be able to prevent
the loss of more and more ephemeral computation state (with the logical extreme being perfect
resumability). In this case, the _resume handler can be a simple stub that resumes the execution
exactly as left off. The more likely case, periodic checkpointing, can be similarly handled, with the
_resume handler selecting the most recent valid checkpoint to resume from. The _resume handler
enables all of these solutions, thus remaining applicable across hardware evolution.

4.3 Threading

Twizzler provides a set of threading primitives for applications. Threads in Twizzler are always
attached to a view and one or more security contexts. Threads may communicate with each other
using shared memory and can signal each other with a system call. Since everything in Twizzler
is an object, each thread has a state object associated with it. Signals can be raised assuming the
raiser has appropriate permissions on the state object, and the state object contains information
about the thread.

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

11:16 D. Bittman et al.

A key primitive in Twizzler is the thread-sync system call. This call operates similar to
futex(2) on Linux, except that it supports waiting on and waking up a number of different words
of memory simultaneously. Multi-word thread-sync is necessary to support select(2)-like or
poll(2)-like operations in a system where all data access is done with memory semantics. Twiz-
zler’s standard library exposes an API for event handling that uses multi-world thread-sync, where
objects may expose a set of “events” that can be triggered and waited for. This is used in numerous
places to implement event handling for multiple communications streams implemented in objects.

4.4 FreeBSD Prototype

We also built a prototype of Twizzler by modifying the FreeBSD 11.0 kernel before implementing
our standalone kernel. This was done both to more rapidly verify our design and to provide a
prototyping environment for developers to write code for Twizzler in a familiar environment. We
added Twizzler services to FreeBSD by adding system calls, modifying the fault-handling logic,
and distinguishing Twizzler threads from FreeBSD threads. This is also a testament to the simplic-
ity of the kernel in our model, since FreeBSD was relatively easy to modify to support the Twizzler
userspace. However, the FreeBSD prototype is limited by its need to coordinate with FreeBSD’s
Unix services, thus the standalone kernel is more efficient and simpler and provides a better en-
vironment for researching kernel design changes in the face of NVM.

5 EVALUATION

Our primary goals for evaluating Twizzler were:

(1) Show that Twizzler meets the needs of a data-centric OS in enabling programs to directly
access persistent data.

(2) Demonstrate that the programming model we defined provides sufficient power to easily
and effectively build real applications with NVM in mind.

(3) Measure the performance of our system to understand where we gain and lose
performance.

We approached these goals two ways: porting existing software (SQLite) and writing new soft-
ware for Twizzler. The first demonstrates both the generality of the programming environment
(legacy software can be easily ported) and the potential performance gains to be had even for
legacy software. The second demonstrates the true power of Twizzler’s programming model and
allows us to explore the consequences of our design choices fully without being constrained by
legacy designs.

We built three pieces of new software: a hash-table based key-value store (KVS), a red-black
tree data structure, and a logging daemon. Each had different characteristics and goals, and to-
gether they demonstrate the flexibility that Twizzler offers in allowing simple implementation,
nearly free access control, and the ability to directly express complex relationships between ob-
jects. Using our KVS and red-black tree code, we ported SQLite (a widely used SQL implementa-
tion) to Twizzler along with a YCSB [18, 30] driver (a common benchmark), allowing us to explore
Twizzler’s model in a larger, existing program that would let us study the performance of Twizzler
in a complex system that stores and processes data. We present the performance of SQLite and our
new software, along with microbenchmarks, in Section 6.

5.1 Case Study: Key-value Store

We implemented a multi-threaded hash-table based key-value store (KVS), called twzkv, to study
cross-object pointers and our late-binding of access control. Our KVS supports insert, lookup, and
delete of values by key (both of arbitrary size) and hands out direct pointers to persistent data

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

Twizzler: A Data-Centric OS for NVM 11:17

manp —O

Index (/) Data (D)) Data (D)) Index (/,)

Fig. 7. Cross-object pointers in twzkv. The index object contains pointers to keys and values, which can
reside in any data object. We also support multiple indexes to enable additional indexing strategies and
access control on discovery. Because Twizzler provides native support for cross-object pointers, this kind of
construction is no more complex than keeping all keys and data within a single object.

during lookup. During insert, it copies data into a data region before indexing the inserted key and
value. We built twzkv in multiple phases to study how our system handles changing requirements.

We built twzkv in roughly 250 lines of C. Handing out direct pointers into data was trivial to
implement with cross-object pointers, requiring only a call to ptr_lea during lookup. The initial
implementation maintains two objects, one for data and one for the index. The complexity typically
involved when storing both index and data in a single, flat file is not justified in a programming
model where we can express inter-object relationships directly at near-zero cost in complexity or
performance. In our case, a pointer from the index object to the data object (such as an entry in
the hash table) can be written with a single call to ptr_store. This, combined with the simple re-
quirements for an in-memory NVM KVS, resulted in a small implementation that was nonetheless
a usable KVS.

Extending Requirements. Next, we added functionality to protect values with access control. We
wanted to keep handing out direct pointers to data during lookup and to keep twzkv a library
(as opposed to a service). Meeting these goals on an existing system would be difficult without
adding significant complexity, such as reimplementing a lot of Twizzler’s pointer framework or
implementing manual, redundant access control.

In Twizzler, implementing access control in twzkv involved having the index refer to data in
multiple data objects, assigning those objects different access rights, and allocating from those
objects depending on desired access rights. We were able to implement this while preserving the
original code due to the transparent nature of Twizzler’s cross-object pointers. Now, when insert-
ing, the application indicates the data object into which to copy the data, as shown in Figure 7.

By supporting multiple data objects, twzkv can leverage the OS’s access control, minimizing
complexity. Unrestricted data can go in D, (Figure 7), whereas restricted data can go in D;. Since
each object has distinct access control, a user can set the objects’ access rights, then decide where
to insert data according to policy. The indexes point to the correct locations regardless of the
access restrictions of the data objects, and twzkv still hands out direct pointers, but a user that is
restricted from accessing data in D; will not be able to dereference the pointer. A further extension
is to support secondary indices, as shown in Figure 7, enabling alternative lookup methods and
limiting data discovery with index object access control. This extension is easy to implement on
Twizzler.

Comparison to UN1x Implementation. To compare with existing techniques, we built a similar
KVS using only Un1x features (called unixkv). It also separates index and data, but it must manually
compute and construct pointers, requiring a significant amount of programmer time to get right.
Supporting multiple data objects was complex in unixkv, because we had to store and process
file paths in the index and store references to paths for pointers, increasing overhead and code
complexity by 36%—a lot for an implementation with relatively few pointers—just to reimplement

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

11:18 D. Bittman et al.

Twizzler’s support. The extra complexity also included code to manually open, map, and grow
files, much of which Twizzler handles internally. Development time was extended by bugs that
were not present when developing twzkv, due to the manual pointer processing. While twzkv
gains transparent access control, unixkv does not due to the lack of on-demand object mapping
and late-binding of security. Instead, unixkv needs to know object permissions before mapping, a
restriction that limits the ability to reuse OS access control, something that twzkv could leverage
through late-binding on security (Section 3.4).> Other frameworks like PMDK that do not integrate
access control and late-binding into their models have similar limitations.

5.2 Case Study: Red-black Tree

To evaluate the process of writing persistent, “pointer-heavy” data structures, we implemented a
red-black tree in C using normal pointers (ramrbt) in 100 lines of code and evolved it for persistent
memory in two ways: manually writing base+offset style pointers, as current systems require
(unixrbt), and using Twizzler (twzrbt). Porting existing data structure code to persistent memory
will be common during the adoption of NVM, and much of the complexity therein comes from
dealing with persisting virtual addresses [49].

In developing unixrbt, we found 83 locations where we had to perform pointer arithmetic
for converting between persistent and virtual addresses. Consider an expression such as root->
left->right = foo. Inserting calls to translate this directly results in L(L(root)->left)->
right = C(foo), where L converts to a virtual address and C converts back, which is heavily ob-
fuscated and took more development time than writing ramrbt in the first place due to debugging.

We built twzrbt like unixrbt, annotating pointer stores and dereferences. However, unixrbt
used an application-specific solution for pointer management; if other applications wanted to use
the data structures created by unixrbt, they would have to know the implementation details of
the pointer system (or share the implementation, thus reimplementing much of Twizzler’s library).
Additionally, due to Twizzler enabling improved system-wide support for cross-object pointers,
these transformations can be made automatic through compiler and linker support.

Unlike twzrbt, unixrbt’s tree is limited to a single persistent object; a limitation that prevents
the tree from growing arbitrarily, does not allow it to directly encode references to data outside
the tree object, and does not gain it the benefits of cross-object data references that were discussed
above for twzkv. Adding support for this to unixrbt would require modifying the core data struc-
tures to include paths and significantly altering the code, increasing its length by at least a factor
of 2, whereas twzrbt gets this functionality for free.

Another advantage of twzrbt is reduced support code compared to unixrbt; unixrbt needed
code to manage and grow files and mappings, while we implemented twzrbt as simple data struc-
ture code with Twizzler managing that complexity. The additional error handling code and pointer
validity checks in unixrbt (handled automatically in Twizzler) increased development time and
implementation complexity.

5.3 Porting SQLite

We ported SQLite to Twizzler to demonstrate our support for existing software and to evaluate the
performance of a SQLite backend designed for Twizzler. We used our POSIX support framework,
a combination of musl and our library twix, to support much of SQLite’s POSIX use. We took
a modified version of SQLite called SQLightning that replaced SQLite’s storage backend with a
memory-mapped KVS called LMDB [15]. We chose this port because LMDB is implemented with

3unixkv could trap segmentation faults to do this, but that would be application-specific, difficult, and would reimplement

Twizzler functionality.

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

Twizzler: A Data-Centric OS for NVM 11:19

mmap’d files as the primary access method and hands out direct pointers to data as one would
expect from an effectively designed NVM KVS.* Since LMDB’s SQLightning port already replaces
the storage backend with calls to LMDB, we ported SQLite to Twizzler by taking our KVS and red-
black tree code and implementing enough of the LMDB interface for SQLite to run using Twizzler
as a backend. Outside of the B-tree source file few changes were needed for SQLite to run on
Twizzler. We further ported our modified SQLite backend to PMDK to compare directly with a
commonly used NVM programming library that supports persistent pointers.

We also ported a C++ YCSB driver [30], which required porting the C++ standard template
library (STL). Since we had already ported a standard C library, the C++ STL was easily ported,
demonstrating the ease of porting software to Twizzler. We have also ported some existing UNIxX
utilities (such as bash and busybox), which largely require only recompiling to run on Twizzler.
Of course, to gain all of the benefits of Twizzler, programs will be need to be written with NVM
in mind (but this is true regardless of the target OS).

Our implementation of the LMDB interface corroborated our experience from the KVS case
study: Much of the complexity in storage interfaces and implementations comes from the separa-
tion between storage and memory. This has been studied before (as we will elucidate in Section 7),
but the advent of NVM changes the game significantly by allowing programmers to think directly
via in-memory data structures. The result is that interfaces like cursors in a KVS become redun-
dant. We implemented to this interface for LMDB, but the functions were largely wrappers around
storing a pointer to a B-tree node and traversing the tree directly without separate loads and copies.
The result was an extremely simple implementation (500 LoC) that still met the required interface.
Future software for NVM can use Twizzler’s programming model to more effectively write soft-
ware that eschews the need for complexity forced by the two-tier storage hierarchy.

5.4 Porting Additional Applications

In general, porting in Twizzler is straightforward. We have a collection of tools that provide a
framework for compiling software using the Twizzler toolchain against other ported software and
libraries. Since we have chosen musl as our standard C library, many applications work already
with minor changes. However, it is often the case that applications require some small tweaks to
get running—for example, configuration paths—an experience common for anyone who has ported
software to a new operating system.

To date, we have ported a number of tools one would expect to find on a Unix system, such
as busybox (providing numerous command-line utilities), bash, vim, gcc, binutils, and others.
Many of these programs required little or no modification. Of course, this means that they do not
gain some of the benefits Twizzler’s model provides, since they still operate on persistent data with
a POSIX model, however our goal in porting these tools was not to improve their performance, it
was to provide a somewhat familiar environment for users.

Of course, perfect emulation of a Linux kernel is a huge effort, and it is not the primary goal of
our research. As a result, not all system calls are implemented and Linux features like procf's are
lacking. This means that some programs may require features that are not yet implemented, and
therefore require modifications to twix to run. However, as we continue to port software, twix’s
coverage of Linux features grows, making future porting easier. We will continue to implement
more support in twix for applications as needs arise. Note that many applications (even complex
applications like gcc) often boil down to reading and writing files and managing processes, all of
which is implemented.

“These are not persistent pointers, however, unlike Twizzler’s.

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

11:20 D. Bittman et al.

5.5 Discussion

Although these implementations were simple, they represent the applications and data structures
we expect in a data-centric system. Persistent pointers we can directly use in our programming
languages make computing over persistent data almost transparent, allowing simple implementa-
tions that are nevertheless easy to evolve as requirements change.

Not only does twzkv have strong support for access control, it enables concurrent use of
databases via cross-object pointers. Applications can load indexes for multiple databases without
needing to worry about address space layout and without writing complex pointer management
code that would be required by an implementation using mmap. We were able to provide access
control without a single line of code in twzkv dedicated to checking or enforcing access rights.
Instead, we relied on Twizzler’s built-in access control, something not possible with other frame-
works that do not support late-binding of access rights and do not consider security as part of their
programming model. Twizzler thus removes the need for applications to enforce and implement
their own access control, which increases the security of the system by divesting programmers
from the responsibility of getting the enforcement right. Similar functionality for current systems
would traditionally require separation of the library and application into a client-server model,
but that additional overhead is unneeded here and inappropriate on a persistent memory system.

Although twzrbt and twzkv had different densities of pointer operations, twzrbt being
“pointer-heavy” and twzkv being “pointer-light,” Twizzler improved the complexity of both over
manual implementation and improved flexibility over existing persistent pointer methods. Us-
ing a system-wide standardized approach to pointer translations not only enables better com-
piler and hardware support, but it also improves interoperability; because they share a common
framework, twzkv could use the red-black tree code and data with ease, and even interact with
the SQLite database even though they were written separately without that goal in mind. The
position-independence afforded by this model enables both composability and concurrency, while
also simplifying programming on persistent data to a natural expression of data structures.

Non-shared-memory Programs. To push the limits of our model and show that Twizzler does
not constrain programmers into a shared-memory model, we implemented a logging framework
(similar to syslogd). The logging daemon, logboi, receives logging requests through a shared
stream object (an API provided by Twizzler). This connection is setup via our security mechanism
that allows for threads to switch security contexts, enabling the construction of secure calls to set
up private communication channels.

Once a private channel is set up, the application can stream logging events to logboi, which
collects them as any logging daemon would. The implementation of logboi must be able to han-
dle multiple clients and clients crashing unexpectedly. This demonstrates the flexibility of our
model: Despite being completely in userspace, this communication stream implements a message-
passing style model. When handling multiple clients, logboi uses the multi-word thread-sync
system call that we discussed earlier to wait for one of a number of possible events. When a
thread exits, the kernel updates the information in the thread’s state object and performs a thread-
sync wakeup on that word, allowing logboi to detect when a thread has exited even if it does so
unexpectedly.

6 PERFORMANCE

Our evaluation’s primary focus is on the benefits of the programming model, showing new func-
tionality with reduced complexity at an acceptable overhead. Nevertheless, there are many cases
where we see significant improvement (such as SQLite), because the programming model has less
overhead, and our pointer design is spac-efficient and fast to translate.

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

Twizzler: A Data-Centric OS for NVM 11:21

Table 1. Latency of Common Twizzler Operations, Including
Pointer Loading and Storing, and Object Mapping

Pointer Resolution Action | Average Latency (ns)
Uncached FOT translation 27.9 £0.1
Cached FOT translation 32+0.1
Intra-object translation 0.4 +0.1
Inter-object pointer store 17.2 £ 0.6
Intra-object pointer store 23+0.1
Mapping object overhead 494 +£0.2

We measured the performance of our KVS and red-black tree, performed microbenchmarks,
and evaluated the Twizzler port of SQLite against Linux (Ubuntu 19.10) instances of SQLite, SQ-
Lightning, and our port of SQLite to PMDK. Tests ran on an Intel Xeon Gold 5218 CPU running at
2.30 GHz with 192 GB of DRAM and 128 GB of Intel Persistent DIMMs. We compiled all tests
against the musl C library instead of glibc, because Twizzler uses mus1 to support UNIX programs.

All Linux tests used the NOVA filesystem [69] (a filesystem optimized for NVM) on the
NVDIMMs, mounted in DAX mode. This enabled direct access to the persistent memory with-
out a page-cache interposing on accesses.

6.1 Microbenchmarks

Table 1 shows common Twizzler functions’ latencies, including pointer translation (loading and
storing) and mapping overhead. The overhead shown for resolving pointers does not include deref-
erencing the final result, since that is required regardless of how a pointer is resolved. The first
row shows the latency for resolving pointers to objects the first time. Twizzler makes a further
optimization by caching the results of translations for a given FOT entry. Each successive time
that FOT entry is used to resolve a pointer, the result of the original translation is returned imme-
diately, improving the latency as shown on the “cached” row of Table 1. Note that the low latency
of these results is expected; the performance critical case of these functions’ use is repeated calls,
and, since these operations are simple, they fit within the processor cache.

Twizzler translates intra-object pointers by first checking if the pointer is internal and, if so,
adding the object’s base address to it—the same operation required for application-specific persis-
tent pointers. The expanded programming model offered by Twizzler makes this overhead minor
relative to the high costs for persistent data access on current systems, which have high-latency
for equivalent operations.

The pointer store operations shown in Table 1 measure the latency of the ptr_store opera-
tion that is used to construct persistent data references in Twizzler. While these operations are
less common than pointer loads, their overhead directly affects applications that perform many
updates to data structures. The most common pointer store operation applications perform is in-
ternal (intra-object) pointer stores, in which the overhead is minimal. Pointer store operations for
external (inter-object) references have slightly more overhead, since they need to perform an FOT
scan to allow FOT entry reuse.

We compared our pointer translation to Unix functions. Resolving an external pointer with
an ID corresponds roughly to a call to open(‘“id’’), which has a latency of 1,036 + 15 ns. The
comparison is not exact, of course; the pointer resolution also maps objects, and the call to open
must handle file system semantics. However, the direct-access nature of NVM results in pointer
translation achieving the same goal as opening a file does today. The pointer operations in Twizzler

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

11:22 D. Bittman et al.

N
o
1

ESQL-Native ESQL-PMDK
BISQL-LMDB BSQL-Twizzler

oy =
o »
1 1

o
o
1

Transaction Rate
(normalized)

o
o
1

A B C D E F
YCSB Workload Specification

Fig. 8. YCSB throughput, normalized (higher is better). Twizzler outperforms all other variants in all tests.

BSQL-Native BSQL-PMDK
NSQL-LMDB BSQL-Twizzler

w »
1 1

Query Latency
(normalized)
N
1

Sort Mean Median Index Find Probe
Query Operation

Fig. 9. Query latency, normalized (lower is better). Twizzler maintains a similar level of performance with
the native and LMDB variants, despite comparing Twizzler’s simplistic red-black tree index implementa-
tion with highly optimized B-trees. Twizzler also significantly outperforms PMDK despite sharing a similar
implementation for the index structures.

accomplish much of the same functionality as the heavier-weight I/O system calls on Unix with
more utility and less overhead.

A more direct comparison is object mapping, which has low latency compared to mmap (658.7 +
12.7 ns—a 13.3X speedup) though the two have similar functionality. Since mapping occurs entirely
in userspace, cache pollution is reduced. While both mmap and Twizzler’s mapping require page-
faults to occur before the data is actually mapped, this overhead is similar in Twizzler and UNIx,
and so is not shown.

6.2 SAQLite

We ran four variants of SQLite—three on Linux and one on Twizzler—and compared their per-
formance: “SQL-Native” (unmodified SQLite), “SQL-LMDB” (SQLite using LMDB as the storage
backend), “SQL-PMDK” (SQLite using our red-black tree on PMDK), and “SQL-Twizzler” (our port
of SQLite running on Twizzler). SQL-Native was run in mmap mode so both it and SQL-LMDB used
mmap to access data. We ran each on the same hardware and normalized the results.

Figure 8 shows the three variants’ throughput under standard YCSB workloads. The perfor-
mance improvement of the LMDB and Twizzler variants over SQL-Native is likely due to handing
SQLite direct pointers to data. However, in the Twizzler case, we get an additional benefit of op-
erating on data structures directly while LMDB has an abstraction cost.

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

Twizzler: A Data-Centric OS for NVM 11:23

750 Bunixkv Btwzkv
500
250 .

0

Insert Lookup Insert (m Lookup (m

Nanoseconds

Fig. 10. Latency of insert and lookup in twzkv and unixkv. An “(m)” indicates support for multiple data
objects. Both unixkv and twzkv have similar latencies.

Figure 9 shows the latency of queries on a 1M row table. This is common data processing—
loading and then examining data in a variety of ways. We measured the performance of calculat-
ing the mean and median, sorting rows, finding a specific row, building an index, and probing the
index. SQL-Twizzler had similar performance to SQL-LMDB and SQL-Native despite comparing
its extremely simple storage backend to optimized B-tree backends (that benefit from scan opera-
tions). As a more direct comparison, SQL-Twizzler significantly out-performed SQL-PMDK in most
tests. PMDK’s pointer operations are more expensive than Twizzler’s, requiring up to two hash
table lookups per translation [6]. Additionally, PMDK’s pointers are 128 bits, while Twizzler does
not increase pointer size. Increased pointer size results in significantly worse cache performance,
especially in a pointer-heavy data structure like a persistent red-black tree.

6.3 Key Value Store

We compared twzkv to unixkv by inserting 1M distinct key-value pairs, followed by looking up
each in order. The inserted items were 32-bit keys and 32-bit values, chosen to reduce the overhead
of data copying, since we were focusing on pointer translation overhead. Both were compared
under two modes: single-data-object and multiple-data-objects. Both KVSes translated between
virtual and persistent addresses when storing and retrieving data, but for multiple-data-objects,
we allow for storing the data in an arbitrary object.

Figure 10 shows the latency of lookup and insert, demonstrating that not only is the memory-
based index and data object structure that can hand out direct data pointers sufficiently low la-
tency to take advantage of NVM, but the additional overhead of cross-object pointers is minimal.
Compared to unixkyv, twzkv has minimal overhead in the single-object case and improves lookup
performance in the multiple-object case. The minor overhead in other cases comes with improved
flexibility, simplicity, and access control support (unixkv does not support access control). Finally,
multithreaded access on twzkv and unixkv did not improve performance; despite the pointer trans-
lations, they ran at memory bandwidth (for NVM).

6.4 Red-black Tree

We measured the latency of insert and lookup of 1M 32-bit integers on both unixrbt and twzrbt.
The insert and lookup latency of twzrbt was 528 +3 ns and 251.8 + 0.5 ns, while insert and
lookup latency of unixrbt was 515 + 2 ns and 213 + 1 ns. The modest overhead comes with sig-
nificantly improved flexibility, as unixrbt does not support cross-object trees, and less support
code (unixrbt manually implements mapping and pointer translations). Note that even though
there is lookup overhead in twzrbt, this overhead did not predict the results of a larger program—
the SQL-Twizzler port used this red-black tree and saw performance benefits over block-based
implementations.

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

11:24 D. Bittman et al.

Table 2. Latency of Selected twix System Calls
Compared to Linux System Calls

System Call | OS | Average Latency (ns)

getpid Linux 98.7+2.3
Twizzler 10.2 £ 0.2

read Linux 321.4+£0.2
Twizzler 554 +0.2

6.5 Twix System Call Overhead

Our UNix emulation layer, twix, is meant to provide compatibility for legacy applications. While
we expect that applications will wish to take full advantage of NVM and Twizzler’s improvements
in programmability and performance, we can still provide a small benefit for applications that rely
on twix to provide POSIX-like I/O. Access to twix is done by musl, the C library we use, when it
would normally perform a system call to a Linux kernel. We replaced all instances of the syscall
instruction in C and assembly code in musl with a call instruction to an entry point in twix. This
entry point, despite being a function call, obeys the Linux system call ABI (e.g., which registers
hold parameters). Thus, while it has significantly less overhead than a full system call and context
switch, it does still have higher overhead than a normal function call, since it must back up and
restore all registers.

Table 2 shows the latency of some selected system calls on both Linux and Twizzler (imple-
mented via twix). As expected, getpid’s overhead is small on both systems, but on Twizzler it is
significantly lower. The difference, in this case, comes largely from the kernel entry overhead. A
small amount of additional overhead comes from twix matching the Linux system call ABI and
having to call its getpid implementation through a lookup table.

We also measured the latency of a call to read for a file. We chose to do reads on cached files for
a small number of (already cached) bytes to avoid device transfer overhead. Performing a file read
on Twizzler often amounts to a call to memcpy, so applications that perform large numbers of small
reads could see some benefit. In contrast, on Linux, the kernel needs to traverse internal file struc-
tures, the page-cache, and possibly file system structures. However, as we said, twix is intended
for legacy support, not performance improvement, despite the lower system call overhead.

7 RELATED WORK

Twizzler’s design is shaped by fundamental OS research [13, 19, 27-29, 43, 44], which, while ap-
proaching similar topics described in Section 2, often did not consider both design requirements
simultaneously, resulting in an incomplete picture for NVM. Recent research on building NVM
data structures [16, 17, 23, 39, 47, 66] often focuses on building data structures that provide fail-
ure atomicity and consistency. In contrast, we explore how NVM affects programming models
while potentially improving performance. We draw from recent work on providing OS support
for NVM systems [12] and work providing recommendations for NVM systems [50], integrating
object-oriented techniques and simplified kernel design to provide high-performance OS support
for applications running on a single-level store [5, 62].

Memory and Object Model. Multics was one of the first systems to use segments to partition
memory and support relocation [7, 20]. It used segments to support location independence, but
still stored them in a file system, requiring manual linkage rather than the automated linkage in
Twizzler. Nonetheless, Multics demonstrated that the use of segmenting for memory management
can be a viable approach, though its symbolic addresses were slow.

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

Twizzler: A Data-Centric OS for NVM 11:25

The core of Twizzler’s object space design uses concepts from Opal [13], which used a single vir-
tual address space for all processes on a system, making it easier to share data between programs.
However, Opal was a single-address space OS, which is insufficient for NVM [10, 11], and, while
it resulted in a speedup of data transfer and sharing as well as interfacing with devices, it did not
address issues of file storage and name resolution. It also still required a file system, since there
was no way to have a pointer refer to an object with changing identity, whereas our approach of
late-binding for pointers removes the need for an explicit file system. Other single-address space
OSes, such as Mungi [36], Nemesis [58], and Sombrero [64], show that single address spaces have
merit, but, like Opal, did not consider how the use of NVM would alter their design choices; in par-
ticular, how the use of fixed addresses results in a great deal of coordination that is unnecessary
in our approach. OSes such as HYDRA [68] provide functionality similar to cross-object pointers;
however, in Twizzler, we extend their use from procedures-referencing-data to a more general ap-
proach. Furthermore, they required heavy kernel involvement, an approach incompatible with our
design goals.

Single-level stores [22, 61, 63] remove the memory versus persistent storage distinction, using
a single model for data at all levels. While well-known, “little has appeared about them in the
public literature” [61], even since the EROS paper. Our work is partially inspired by Grasshop-
per [22], AS/400, and orthogonal persistence systems, but while these are designed to provide an
illusion of persistent memory, Twizzler is built for real NVM and focuses on providing a truly
global object space with global references without cross-machine coordination. Clouds [21] im-
plemented a distributed object store in which objects contained code, persistent data, and both
volatile and persistent heaps. Our approach uses lighter-weight objects, allowing direct access to
objects from outside, unlike Clouds. Software persistent memory [34], designed to operate within
the constraints of existing systems, built a persistent pointer system using explicit serialization
without cross-object references, in contrast to Twizzler. Meza [51] suggested hardware manage a
hybrid persistent-volatile store with fine-grained movement to and from persistent storage. Since
persistence in Twizzler is to NVM, we need not interpose on movement between storage and mem-
ory, instead simply managing memory mappings of persistent objects, reducing OS overhead.

Recently, several projects have considered the impact of non-volatile memories on OS struc-
ture. Bailey et al. [5] suggest a single-level store design. Faraboschi et al. [31] discuss challenges
and inevitable system organization arising from large NVM, and we follow many of their recom-
mendations. The Moneta project [12] noted that removing the heavyweight OS stack dramatically
improved performance. While Moneta focused on I/O performance, not on rethinking the system
stack, we leverage their approach to reduce OS overhead as much as possible, even when the OS
must intervene. Lee and Won [45] considered the impact of NVM on system initialization by ad-
dressing the issue of system boot as a way to restore the system to a known state; we may need to
include similar techniques to address the problem of system corruption. Our work evolved from
some earlier work where we laid the groundwork for abstraction requirements for both hardware
and software for NVM [10] and a discussion on the implications of system-wide persistent data
references [11].

Object Model. IBM’s K42 [44] inspired the high-level design of Twizzler. The object-oriented
approach to designing a micro or exokernel used in K42 is an efficient design for implementing
modular OS components. Like K42, Twizzler lazily maps in only the resources that an application
needs to execute. Similar techniques for faulting-in objects at runtime have been studied [38]. Com-
munication between objects in Twizzler is, in part, implemented as protected calls, similar to K42.

Emerald [41, 42] and Mesos [37] implemented networked object mobility, which we can also
support. Emerald implemented a kernel, language, and compiler to allow objects mobility using

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

11:26 D. Bittman et al.

wrapper data structures to track metadata and presenting objects in an object-oriented language,
impacting performance via added indirection for even simple operations.

The Twizzler object model was shaped by NV-heaps [16], which provides memory-safe per-
sistent objects suitable for NVM and describes safety pitfalls in providing direct access to NVM.
While they have language primitives to enable persistent structures, Twizzler provides a lower-
level and uninhibited view of objects like Mnemosyne [66], allowing more powerful programs to
be built. Languages and libraries may impose further restrictions on NVM use, but Twizzler itself
does not. Furthermore, Twizzler’s cross-object pointers allow external data references by code,
whereas NV-heap’s and DSPM’s [60] pointers are only internal. Existing work beyond Multics on
external references shows and recommends hardware support [59, 67], but provides a static or
per-process view of objects, unlike Twizzler, limiting scalability and flexibility.

Projects such as PMFS [25] and NOVA [69] provide a file system for NVM. Twizzler, in contrast,
provides direct NVM access atop of a key-value interface of objects. Although Twizzler does not
supply a file system, one can be built atop it. While NOVA and PMFS provide direct access to
NVM, NOVA adds indirection with copies. Both use mmap (which falls short as discussed above)
and, unlike Twizzler, require significant kernel interaction when using persistent memory:.

Our kernel that “gets out of the way” is influenced by systems such as Exokernel [29] and
SPIN [8], both of which drew on Mach [3]. In Exokernel, much of the OS is implemented in
userspace, with the kernel providing only resource protection. Our approach is similar in some
respects, but goes further in providing a single unified namespace for all objects, making it sim-
pler to develop programs that can leverage NVM to make their state persistent. In contrast, SPIN
used type-safe languages to provide protection and extensibility; our approach cannot rely upon
language-provided type safety, since we want to provide a general purpose platform.

8 FUTURE WORK

Compiler and Hardware Support. Twizzler’s clean-slate NVM abstraction reopens the possibility
of coevolving OSes, compilers and languages, and hardware. Standardized OS support for cross-
object pointers provides a stationary target for both compilers and hardware to design towards,
whereas application-specific solutions do not. Twizzler’s pointer translation functions are simple
enough to be emitted by a compiler. We plan to explore adding basic compiler support for C and
C++ to automatically interoperate with Twizzler so persistent pointers are even more transparent
to the compiler. Better still, we would like to study additional language-level support for persis-
tent pointers, including type and lifetime annotations (such as the ones supported in Rust [2]) for
additional semantics the compiler can make use of when emitting code that operates directly on
persistent data structures.

Hardware support, too, can be helpful in improving the performance of our pointer transla-
tions. With Twizzler providing a common framework, we can clearly state our needs to hardware.
For example, hardware-accelerated FOT access would improve the performance in pointer-heavy
data structures. Segmentation support, allowing us to assign page-tables for each object and load
them in as needed, would dramatically speed up memory mapping (and move memory manage-
ment closer to the semantics of our programming model). Finally, first-class support for abstract-
ing physical memory—a necessary feature for efficiently moving data around in a heterogeneous
memory hierarchy in the face of numerous devices—would simplify the design of the kernel, be-
cause we would not need to invoke the entirety of the virtualization hardware. We are interested
in exploring modifications to RISC-V to better support Twizzler.

Security. Although we discussed the Twizzler security model briefly, there is still much to do. The
current model provides access control, a basic ability to define and assign roles based on security
contexts, and simple sub-process fault isolation through the ability to switch security contexts.

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

Twizzler: A Data-Centric OS for NVM 11:27

We are exploring a flexible security model that allows programmers to easily trade off between
security, transparency, and performance using capability-based verification. For example, we are
implementing a call-gating mechanism that will allow us to restrict control-flow transfers between
application components, improving the security against malicious components and reducing the
possibility of memory-corrupting bugs.

Networking and Distributed Twizzler. One of the key principles of Twizzler is to focus the pro-
gramming model on data and away from ephemeral actors such as processes and nodes. This is
enabled by our identity-based pointers that decouple location from references, and by ensuring all
the context necessary to understand these relationships is stored with the data. Because our data
relationships are independent of the context of a particular machine, applications can more easily
share data. This easy sharing, combined with a large ID address space, motivates a truly global
object ID space.

We are building a networking stack and support for a distributed object space into Twizzler.
Our networking stack is based around extensive use of hardware virtualization in modern NICs.
This design, which is in use in existing kernel-bypass strategies, will work well with our core
OS design of reducing kernel interposition. At a higher level, we are considering how distributed
applications change in our model. For example, an increase in data mobility facilitated by our
location-independent data references and identities means that we can manifest both data and
code where they are needed without complex marshalling, turning distributed computation into a
rendezvous problem. We plan to build distributed applications atop Twizzler to demonstrate this
approach.

Of course, for compatibility, we will provide a traditional sockets-based networking stack. How-
ever, we can use existing userspace libraries that, e.g., implement TCP in userspace. Because we
implemented our POSIX compatibility library in userspace, applications can gain many benefits
afforded by kernel-bypass networking frameworks while still using traditional socket interfaces.

Alternative Block Storage Technologies. Our work meshes well with key-value SSDs, which ex-
tend the NVMe specification to include put and get operations. This would allow us to store and
retrieve parts of objects based on their names rather than block addresses, thus greatly simplify-
ing the storage system of the OS, because it removes the need for a filesystem. Twizzler uses a
userspace pager design for moving data between memory and indirectly accessible storage; pro-
viding a more “native” interface for object-based storage will greatly improve the performance of
this system. We have prototype KVSSDs, and are in the process of implementing support for them
in Twizzler.

9 CONCLUSION

Operating systems must evolve to support future trends in memory hierarchy organization.
Failing to evolve will relegate new technology to outdated access models, preventing it from
reaching full potential and making it difficult for OSes to evolve in the future. Twizzler shows a
way forward: an OS designed around NVM that provides new, efficient, and easy-to-use semantics
for direct access to memory. Cross-object pointers in Twizzler allow programmers to easily build
composable and extensible applications with low overhead by removing the kernel from persistent
data access paths, thereby improving the flexibility and performance. Our simpler programming
model improved performance despite the (small) pointer translation overhead. Even a memory
hierarchy with large RAM but without persistent memory benefits from our design by enabling
programs to operate on large, shared, in-memory data with ease. Our programming model is
easy to work with compared to existing systems, and we were able to both quickly prototype real
applications with advanced access control features and port existing software (SQLite). Twizzler

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

11:28 D. Bittman et al.

will give us a system from which we can build a full NVM-based OS around a data-centric design
and explore the future of applications, OSes, and processor design on a new memory hierarchy:.

Availability. Twizzler is available at twizzler.io.

ACKNOWLEDGMENTS

We would like to thank the members of the Storage Systems Research Center for their support and
feedback.

REFERENCES

(13]

(14]

[15]

(16]

(17]

[n.d.]. The musl C Library. Retrieved from https://musl.libc.org/.

[n.d.]. The Rust Programming Language. Retrieved from https://www.rust-lang.org/.

Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid, Avadis Tevanian, and Michael Young.
1986. Mach: A new kernel foundation for UNIX development. In Proceedings of the USENIX Technical Conference.
USENIX, 93-112. Retrieved from http://www.ssrc.ucsc.edu/PaperArchive/accetta-usenix86s.pdf.

Sasha Ames, Nikhil Bobb, Kevin M. Greenan, Owen S. Hofmann, Mark W. Storer, Carlos Maltzahn, Ethan L. Miller,
and Scott A. Brandt. 2006. LiFS: An attribute-rich file system for storage class memories. In Proceedings of the 23rd
IEEE/14th NASA Goddard Conference on Mass Storage Systems and Technologies. IEEE. Retrieved from http://www.
ssrc.ucsc.edu/Papers/ames-mss06.pdf.

Katelin Bailey, Luis Ceze, Steven D. Gribble, and Henry M. Levy. 2011. Operating system implications of fast, cheap,
non-volatile memory. In Proceedings of the 13th Workshop on Hot Topics in Operating Systems (HotOS’11). Retrieved
from http://www.ssrc.ucsc.edu/PaperArchive/bailey-hotos11.pdf.

Piotr Balcer. 2015. An introduction to pmemobj (part 1) - accessing the persistent memory. Retrieved from https:
//pmem.io/2015/06/13/accessing-pmem.html.

A.Bensoussan, C. T. Clingen, and R. C. Daley. 1969. The Multics virtual memory: Concepts and design. In Proceedings
of the 2nd ACM Symposium on Operating Systems Principles (SOSP’69).

Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Giin Sirer, Marc E. Fiuczynski, David Becker, Craig
Chambers, and Susan Eggers. 1995. Extensibility, safety, and performance in the SPIN operating system. In Proceedings
of the 15th ACM Symposium on Operating Systems Principles (SOSP’95). Retrieved from http://www.ssrc.ucsc.edu/
PaperArchive/bershad-sosp95.pdf.

Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008. Wedge: Splitting applications into reduced-
privilege compartments. In Proceedings of the 5th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI'08). USENIX Association, Berkeley, CA, 309-322. Retrieved from http://dl.acm.org/citation.cfm?id=
1387589.1387611.

Daniel Bittman, Peter Alvaro, Darrell D. E. Long, and Ethan L. Miller. 2019. A tale of two abstractions: The case for
object space. In Proceedings of USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage’19).

Daniel Bittman, Peter Alvaro, and Ethan L. Miller. 2019. A persistent problem: Managing pointers in NVM. In Pro-
ceedings of the 10th Workshop on Programming Languages and Operating Systems (PLOS’19). 30-37.

Adrian M. Caulfield, Arup De, Joel Coburn, Todor Mollov, Rajesh Gupta, and Steven Swanson. 2010. Moneta: A
high-performance storage array architecture for next-generation, non-volatile memories. In Proceedings of the 43rd
IEEE/ACM International Symposium on Microarchitecture (MICRO’10). 385-395. Retrieved from http://www.ssrc.ucsc.
edu/PaperArchive/caulfield-micro10.pdf.

Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D. Lazowska. 1994. Sharing and protection in a
single-address-space operating system. ACM Trans. Comput. Syst. 12, 4 (Nov. 1994), 271-307. Retrieved from http:
/[www.ssrc.ucsc.edu/PaperArchive/chase-tocs94.pdf.

Guoyang Chen, Lei Zhang, Richa Budhiraja, Xipeng Shen, and Youfeng Wu. 2017. Efficient support of position inde-
pendence on non-volatile memory. In Proceedings of the 50th IEEE/ACM International Symposium on Microarchitecture
(MICRO’17). ACM, New York, NY, 191-203. Retrieved from http://doi.acm.org/10.1145/3123939.3124543.

Howard Chu and Symas. [n.d.]. Lightning Memory-Mapped Database (part of the OpenLDAP project). Retrieved
from https://symas.com/lmdb/.

Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson.
2011. NV-Heaps: Making persistent objects fast and safe with next-generation, non-volatile memories. In Proceed-
ings of the 16th International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’11). 105-118. Retrieved from http://www.ssrc.ucsc.edu/PaperArchive/coburn-asplos11.pdf.

Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Derrick
Coetzee. 2009. Better I/O through byte-addressable, persistent memory. In Proceedings of the 22nd ACM Symposium

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

Twizzler: A Data-Centric OS for NVM 11:29

(19]

[20]

[21]

(22]

(30]

(31]

(32]

(35]

(36]

(37]

on Operating Systems Principles (SOSP’09). 133-146. Retrieved from http://www.ssrc.ucsc.edu/PaperArchive/condit-
sosp09.pdf.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking cloud
serving systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC’10). ACM, New
York, NY, 143-154. DOI : https://doi.org/10.1145/1807128.1807152.

Fernando J. Corbat6 and Victor A. Vyssotsky. 1965. Introduction and overview of the Multics system. In Proceedings
of the November 30 — December 1, 1965, Fall Joint Computer Conference, Part . ACM, 185-196. Retrieved from http://
dl.acm.org/citation.cfm?id=1463912.

Robert C. Daley and Jack B. Dennis. 1968. Virtual memory, processes, and sharing in MULTICS. Commun. ACM 11, 5
(May 1968), 306—312. Retrieved from http://www.ssrc.ucsc.edu/PaperArchive/daley-cacm68.pdf.

Partha Dasgupta, Richard J. LeBlanc, Jr., Mustaque Ahamad, and Umakishore Ramachandran. 1991. The clouds
distributed operating system. IEEE Comput. (Nov. 1991). Retrieved from http://www.ssrc.ucsc.edu/PaperArchive/
dasgupta-computer91.pdf.

Alan Dearle, Rex di Bona, James Farrow, Frans Henskens, Anders Lindstrém, John Rosenberg, and Francis Vaughan.
1994. Grasshopper: An orthogonally persistent operating system. Comput. Syst. 7, 3 (June 1994), 289-312. Retrieved
from http://dl.acm.org/citation.cfm?id=198008.198009.

Biplob Debnath, Sudipta Sengupta, and Jin Li. 2010. FlashStore: High throughput persistent key-value store. In
Proceedings of the 36th Conference on Very Large Databases (VLDB’10). Retrieved from http://www.ssrc.ucsc.edu/
PaperArchive/debnath-vldb10.pdf.

Xiangyu Dong, Cong Xu, Norm Jouppi, and Yuan Xie. 2014. Emerging Memory Technologies: Design, Architecture, and
Applications. Springer, 15-50.

Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff
Jackson. 2014. System software for persistent memory. In Proceedings of the 9th European Conference on Computer
Systems (EuroSys’14). Retrieved from http://www.ssrc.ucsc.edu/PaperArchive/dulloor-eurosys14.pdf.

Izzat El Hajj, Alexander Merritt, Gerd Zellweger, Dejan Milojicic, Reto Achermann, Paolo Faraboschi, Wen-mei Hwu,
Timothy Roscoe, and Karsten Schwan. 2016. SpaceJMP: Programming with multiple virtual address spaces. In Proceed-
ings of the 21st International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’16). ACM, New York, NY, 353-368. DOI: https://doi.org/10.1145/2872362.2872366.

Dawson R. Engler, Sandeep K. Gupta, and M. Frans Kaashoek. 1995. AVM: Application-level virtual memory. In
Proceedings of the 5th Workshop on Hot Topics in Operating Systems (HotOS’95). IEEE, 72-77.

Dawson R. Engler and M. Frans Kaashoek. 1995. Exterminate all operating system abstractions. In Proceedings of the
5th Workshop on Hot Topics in Operating Systems (HotOS 95). IEEE, 78-83.

Dawson R. Engler, M. Frans Kaashoek, and James O’Toole, Jr.1995. Exokernel: An operating system architecture for
application-level resource management. In Proceedings of the 15th ACM Symposium on Operating Systems Principles
(SOSP’95). 251-266. Retrieved from http://www.ssrc.ucsc.edu/PaperArchive/engler-sosp95.pdf.

Hewlett Packard Enterprise. 2018. YCSB-C. Retrieved from https://github.com/HewlettPackard/meadowlark/tree/
master/extra/YCSB-C.

Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and Dejan Milojicic. 2015. Beyond processor-centric operating
systems. In Proceedings of the 15th Workshop on Hot Topics in Operating Systems (HotOS’15). USENIX Association.
Retrieved from https://www.usenix.org/conference/hotos15/workshop-program/presentation/faraboschi.

David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W. O’Toole, Jr. 1991. Semantic file systems. In Pro-
ceedings of the 13th ACM Symposium on Operating Systems Principles (SOSP’91). ACM, 16-25. Retrieved from http://
www.ssrc.ucsc.edu/PaperArchive/gifford-sosp91.pdf.

Burra Gopal and Udi Manber. 1999. Integrating content-based access mechanisms with hierarchical file systems. In
Proceedings of the 3rd Symposium on Operating Systems Design and Implementation (OSDI’99). 265-278. Retrieved from
http://www.ssrc.ucsc.edu/PaperArchive/gopal-0sdi99.pdf.

Jorge Guerra, Leonardo Marmol, Daniel Campello, Carlos Crespo, Raju Rangaswami, and Jinpeng Wei. 2012. Software
persistent memory. In Proceedings of the USENIX Annual Technical Conference. Retrieved from http://www.ssrc.ucsc.
edu/PaperArchive/guerra-atc12.pdf.

Gernot Heiser and Kevin Elphinstone. 2016. L4 microkernels: The lessons from 20 years of research and deployment.
ACM Trans. Comput. Syst. 34, 1 (April 2016). DOI : https://doi.org/10.1145/2893177.

Gernot Heiser, Kevin Elphinstone, Stephen Russell, and Jerry Vochteloo. 1993. Mungi: A Distributed Single Address-
Space Operating System. Technical Report 9314. School of Computer Science and Engineering, University of New
South Wales. Retrieved from http://www.ssrc.ucsc.edu/PaperArchive/heiser-scse9314.pdf.

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott Shenker,
and Ion Stoica. 2011. Mesos: A platform for fine-grained resource sharing in the data center. In Proceedings of the

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

11:30 D. Bittman et al.

(44]

8th USENIX Conference on Networked Systems Design and Implementation (NSDI'11). USENIX, Berkeley, CA, 295-308.
Retrieved from http://dl.acm.org/citation.cfm?id=1972457.1972488.

Antony L. Hosking and J. Eliot B. Moss. 1993. Object fault handling for persistent programming languages:
A performance evaluation. In Proceedings of the 8th Conference on Object-oriented Programming Systems, Languages,
and Applications (OOPSLA’93). ACM, New York, NY, 288-303. DOI: https://doi.org/10.1145/165854.165907.

Qingda Hu, Jinglei Ren, Anirudh Badam, and Thomas Moscibrod. 2017. Log-structured non-volatile main mem-
ory. In Proceedings of the USENIX Annual Technical Conference. 703-717. Retrieved from http://www.ssrc.ucsc.edu/
PaperArchive/hu-atc17.pdf.

Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan Wang,
Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and Steven Swanson. 2019. Basic performance measurements of the Intel
Optane DC persistent memory module. arXiv abs/1903.05714 (2019).

Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. 1988. Fine-grained mobility in the Emerald system.
ACM Trans. Comput. Syst. 6, 1 (Feb. 1988), 109-133. DOI : https://doi.org/10.1145/35037.42182.

Eric Jul and Bjarne Steensgaard. 1991. Implementation of distributed objects in Emerald. In Proceedings of the Inter-
national Workshop on Object Orientation in Operating Systems. IEEE, 130-132.

M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Hector M. Bricefio, Russell Hunt, David Mazieres, Thomas
Pinckney, Robert Grimm, John Jannotti, and Kenneth Mackenzie. 1997. Application performance and flexibility on
exokernel systems. In Proceedings of the 16th ACM Symposium on Operating Systems Principles (SOSP’97). ACM, New
York, NY, 52-65. DOI : https://doi.org/10.1145/268998.266644.

Orran Krieger, Marc Auslander, Bryan Rosenburg, Robert W. Wisniewski, Jimi Xenidis, Dilma Da Silva, Michal Os-
trowski, Jonathan Appavoo, Maria Butrico, Mark Mergen, Amos Waterland, and Volkmar Uhlig. 2006. K42: Building a
complete operating system. In Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer Systems
2006 (EuroSys’06). ACM, New York, NY, 133-145. DOI : https://doi.org/10.1145/1217935.1217949.

Dokeun Lee and Youjip Won. 2013. Bootless boot: Reducing device boot latency with byte addressable NVRAM. In
Proceedings of the International Conference on High Performance Computing. Retrieved from http://www.ssrc.ucsc.edu/
PaperArchive/lee-hpcc13.pdf.

James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby Bhattacharjee, and Peter Druschel.
2016. Light-weight contexts: An OS abstraction for safety and performance. In Proceedings of the 12th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI'16). USENIX Association, 49-64. Retrieved from
https://www.usenix.org/conference/osdil6/technical-sessions/presentation/litton.

Youyou Lu, Jiwu Shu, and Long Sun. 2016. Blurred persistence: Efficient transactions in persistent memory. ACM
Trans. Stor. 12, 1 (Jan. 2016). Retrieved from http://www.ssrc.ucsc.edu/PaperArchive/lu-tos16.pdf.

Youyou Lu, Jiwu Shu, Long Sun, and Onur Mutlu. 2014. Loose-ordering consistency for persistent memory. In Pro-
ceedings of the 32nd IEEE International Conference on Computer Design (ICCD’14). IEEE, 216-223.

Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris. 2017. Persistent memcached: Bringing legacy code
to byte-addressable persistent memory. In Proceedings of the 9th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage’17). USENIX Association. Retrieved from https://www.usenix.org/conference/hotstorage17/
program/presentation/marathe.

Pankaj Mehra and Samuel Fineberg. 2004. Fast and flexible persistence: The magic potion for fault-tolerance, scalabil-
ity and performance in online data stores. In Proceedings of the 18th International Parallel and Distributed Processing
Symposium (IPDPS’04). DOI : https://doi.org/10.1109/IPDPS.2004.1303232.

Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan Xie, and Onur Mutlu. 2013. A case for efficient hard-
ware/software cooperative management of storage and memory. In Proceedings of the 5th Workshop on Energy-Efficient
Design (WEED’13). Retrieved from http://www.ssrc.ucsc.edu/PaperArchive/meza-weed13.pdf.

Dushyanth Narayanan and Orion Hodson. 2012. Whole-system persistence. In Proceedings of the 17th International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’12). 401-500. Re-
trieved from http://www.ssrc.ucsc.edu/PaperArchive/narayanan-asplos12.pdf.

Yuanjiang Ni, Jishen Zhao, Daniel Bittman, and Ethan Miller. 2018. Reducing NVM writes with optimized shadow
paging. In Proceedings of the 10th Workshop on Hot Topics in Storage and File Systems (HotStorage’18). Retrieved from
http://www.ssrc.ucsc.edu/ni-hotstorage18.pdf.

Yuanjiang Ni, Jishen Zhao, Heiner Litz, Daniel Bittman, and Ethan L. Miller. 2019. SSP: Eliminating redundant writes
in failure-atomic NVRAMs via shadow sub-paging. In Proceedings of the 52nd IEEE/ACM International Symposium on
Microarchitecture.

Matheus Ogleari, Ethan L. Miller, and Jishen Zhao. 2018. Steal but no force: Efficient hardware-driven undo+redo
logging for persistent memory systems. In Proceedings of the 24th International Symposium on High-performance
Computer Architecture (HPCA’18). Retrieved from http://www.ssrc.ucsc.edu/ogleari-hpcal18.pdf.

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

Twizzler: A Data-Centric OS for NVM 11:31

Yoann Padioleau and Olivier Ridoux. 2003. A logic file system. In Proceedings of the USENIX Annual Technical Confer-
ence. 99-112. Retrieved from http://www.ssrc.ucsc.edu/PaperArchive/padioleau-usenix03.pdf.

Aleatha Parker-Wood, Darrell D. E. Long, Ethan L. Miller, Philippe Rigaux, and Andy Isaacson. 2014. A file by any
other name: Managing file names with metadata. In Proceedings of the 7th International Systems and Storage Conference
(SYSTOR’14). Retrieved from http://www.ssrc.ucsc.edu/Papers/parkerwood-systor14.pdf.

Timothy Roscoe. 1994. Linkage in the Nemesis single address space operating system. ACM SIGOPS Oper. Syst. Rev.
28, 4 (Oct. 1994), 48-55. Retrieved from http://www.ssrc.ucsc.edu/PaperArchive/roscoe-osr94.pdf.

Andy Rudoff et al. 2017. Persistent Memory Programming Library. Retrieved from http://pmem.io/nvml/.

Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. 2017. Distributed shared persistent memory. In Proceedings of
the Symposium on Cloud Computing (SoCC’17). Association for Computing Machinery, New York, NY, 323-337.
DOI:https://doi.org/10.1145/3127479.3128610.

Jonathan S. Shapiro and Jonathan Adams. 2002. Design evolution of the EROS single-level store. In Proceedings of
the USENIX Annual Technical Conference. USENIX, 59-72. Retrieved from http://www.ssrc.ucsc.edu/PaperArchive/
shapiro-usenix02.pdf.

Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. 1999. EROS: A fast capability system. In Proceedings
of the 17th ACM Symposium on Operating Systems Principles (SOSP’99). ACM, New York, NY, 170-185. DOI: https:
//doi.org/10.1145/319151.319163.

Eugene Shekita and Michael Zwilling. 1990. Cricket: A Mapped, Persistent Object Store. Technical Report 956. Univer-
sity of Wisconsin. Retrieved from http://www.ssrc.ucsc.edu/PaperArchive/shekita-uw-tr956.pdf.

Alan Skousen and Donald Miller. 1999. Using a single address space operating system for distributed computing
and high performance. In Proceedings of the 18th IEEE International Performance, Computing and Communications
Conference (IPCCC’99). 8-14.

Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark Gahagan, and Steven Swanson. 2016. Morpheus: Creating appli-
cation objects efficiently for heterogenous computing. In Proceedings of the ACM/IEEE 43rd International Symposium
on Computer Architecture.

Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Lightweight persistent memory. In Proceed-
ings of the 16th International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’11). Retrieved from http://www.ssrc.ucsc.edu/PaperArchive/volos-asplos11.pdf.

Tiancong Wang, Sakthikumaran Sambasivam, Yan Solihin, and James Tuck. 2017. Hardware supported persistent
object address translation. In Proceedings of the 50th IEEE/ACM International Symposium on Microarchitecture (MI-
CRO’17). ACM, New York, NY, 800-812. DOI : https://doi.org/10.1145/3123939.3123981.

William Wulf, Ellis Cohen, William Corwin, Anita Jones, Roy Levin, C. Pierson, and Fred Pollack. 1974. HYDRA: The
kernel of a multiprocessor operating system. Commun. ACM 17, 6 (June 1974), 337-345. DOI : https://doi.org/10.1145/
355616.364017.

Jian Xu and Steven Swanson. 2016. NOVA: A log-structured file system for hybrid volatile/non-volatile main mem-
ories. In Proceedings of the 14th Usenix Conference on File and Storage Technologies (FAST’16). USENIX Association,
Berkeley, CA, 323-338. Retrieved from http://dl.acm.org/citation.cfm?id=2930583.2930608.

Received November 2020; revised March 2021; accepted March 2021

ACM Transactions on Storage, Vol. 17, No. 2, Article 11. Publication date: June 2021.

