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Abstract

The scope of archival systems is expanding beyond

cheap tertiary storage: scientific and medical data is in-

creasingly digital, and the public has a growing desire to

digitally record their personal histories. Driven by the in-

creased cost efficiency of hard drives compared to tape,

and the rise of the Internet, content archives have be-

come a means of providing the public with fast, cheap

access to long-term data. Unfortunately, designers of

purpose-built archival systems are either forced to rely

on workload behavior obtained from a narrow, anachro-

nistic view of archives as simply cheap tertiary storage,

or extrapolate from marginally related enterprise work-

load data and traditional library access patterns.

To provide relevant input for the design of effective

long-term data storage systems, we examined the work-

load behavior of several scientific and historical archives,

covering a mixture of purposes, media types, and access

models. Our findings show that, for scientific archival

storage, files have become larger, but update rates have

remained largely unchanged. However, in public content

archives, we observed behavior that diverges from the

traditional “write-once, read-maybe” behavior of tertiary

storage. Our study shows that the majority of such data

is modified relatively frequently, and that indexing ser-

vices such as Google and internal data management pro-

cesses may routinely access large portions of an archive,

accounting for most of the accesses. Based on these ob-

servations, we identify areas for improving the efficiency

and performance of archival storage systems.

1 Introduction

Archival storage has traditionally been viewed as in-

expensive, tertiary storage [21, 25, 34, 35]; however, this

anachronistic definition is too narrow to accurately de-

scribe the current gamut of long-term storage use cases.

Changing storage media and access methods and increas-

ingly digital workflows have radically affected how long-

lived content is created, stored, and published. In the

business arena, data preservation is often mandated by

law, and data mining has proven to be a boon in shaping

business strategy. For individuals, archival storage is be-

ing called upon to preserve sentimental and historical ar-

tifacts such as photos, movies, personal documents, and

medical records [13, 19]. Finally, in one of the biggest

disruptive shifts in recent history, the Internet has rad-

ically changed how users interact with data, catalyzing

an explosion in the number of publicly-accessible, long-

term content repositories [3, 14, 17, 26, 27, 41].

While the growing variety of archival use cases share

a common characteristic of long data lifetimes, under-

standing of their respective workloads is out of date

at best, and non-existent at worst. There have been

no detailed studies of archival storage usage in nearly

two decades; the most recent studies were of super-

computing environments in the early 1990s [21, 25].

As a result, current work in long-term storage relies

upon questionable workload assumptions: observations

of out-dated archives with different media types and pur-

poses, marginally related studies of shorter-term enter-

prise workloads, or access patterns found in traditional li-

brary data stores [8, 37]. In contrast, a number of general

purpose and high performance workload studies have

been published in recent years, demonstrating the value

of up to date, empirical data [2, 4, 22, 31].

To close this knowledge gap, we present a study of

long-term data repository characteristics and workload

behavior covering between one and three years of ac-

tivity in several long-term data stores. The archives we

chose allow us to compare and contrast a range of work-

loads found in tertiary storage and public content repos-

itories, comprising prime examples of use cases aimed

at preserving data with indefinite life times. One archive

stores an approximately 1.3 PB scientific data set from

Los Alamos National Laboratory (LANL), spread across

disk and tape, with file metadata crawl summaries cover-

ing 1 year; this store is most similar to those from prior

archival storage studies and typifies the tertiary storage



system use case. Another store, representative of the

expanded role of long-term storage, is the Washington

State Digital Archives [41]; we analyzed 2.5 years of

access logs and record metadata from this store. The

third archive is a repository of water table reports from

the California Department of Water Resources [11], with

logs covering 3 years of activity. Other use cases often

grouped in the archival space—such as backup [23, 46],

and compliance [19, 32]—exhibit different behavior and

thus warrant their own examination as well.

Our analysis of the LANL metadata summaries re-

vealed that tertiary storage archives have changed in a

number of ways. First, the current LANL data set is

considerably larger than the NCAR system studied in

1993 [25], over 1 PB compared to 25 TB. Second, the

ratio of disk to tape has changed from the NCAR sys-

tem’s ratio of 1:262, to the LANL system ratio of 1:3.3

at the end of our study. Interestingly however, despite

the increased use of hard disks, overall update behavior

is largely similar to previous studies. Third, the typical

file size has grown considerably, although many of the

files are quite sparse.

Our results with the public water and historical

archives mark one of the first critical examinations of

the emerging class of publicly accessible long-term data

repositories, and reveal that their behavior deviates radi-

cally from conventional wisdom. First, the majority of

data in both the Washington State and water datasets

were updated at least once, and often several times over

the course of our traces. This finding directly contradicts

the widely held belief that archives are “write-once”.

Second, we found that large batch processes routinely

touch vast amounts of repository data, dominating traffic

to publicly accessibly archives. This behavior suggests

that a separate batch interface for low-priority accesses

could provide significant benefit. Third, we found that

even though some items within the data repositories are

moderately more popular, the distribution of accesses is

extremely long tailed, reducing the effectiveness of LRU

caching for reads. Fourth, we found that accesses exhibit

strong content locality within user sessions, though a va-

riety of content tends to be retrieved across user sessions,

suggesting that grouping data based on semantic content

could yield performance and efficiency gains.

The rest of the paper is arranged as follows. Sec-

tion 2 further illustrates the current gap between archival

systems, and our understanding of long-term workloads.

Section 3 describes each of our datasets included in our

study, as well as the traces collected over them. Next,

in Section 4 we present our observations. Finally we dis-

cuss the implications of our results in Section 5, and con-

clude in Section 6.

2 Related Work

In this section we present a brief timeline of workload

studies, illustrating that our understanding of long-term

data behavior predates the ubiquity of the Internet, and

the expanding role of archival storage. As a result, rel-

evant systems utilize behavior assumptions that are out-

dated, and overly narrow in scope.

The first generation of studies date back to 1981 [34,

35]. In those studies, Smith studied the file system of the

Stanford Linear Accelerator Center in the context of op-

timizing file migration algorithms, and defined the basic

patterns of tertiary storage behavior.

Establishing the approximate ten-year frequency

precedent, the next generation of studies occurred in the

early nineties. Workloads investigated included worksta-

tion file systems [38], and mixed disk and tape tertiary

storage [21, 25]. These studies are particularly interest-

ing, as they appear at the cusp of the Internet, and the

growth of public content repositories. In 1993, Miller

and Katz examined storage use at the National Center for

Atmospheric Research (NCAR) [25], which at the time

consisted of approximately 100 GB of disk, and 25 TB

of tape. In contrast, the LANL corpus we studied is ex-

pected to grow to 2 PB by 2011.

Finally, the recent past has seen the latest generation

of workload studies [2, 4, 22, 31], albeit none that specifi-

cally examine long-term data behavior. Thus, while these

examinations demonstrate the value of an up to date un-

derstanding of storage system behavior, it is difficult to

generalize their findings to long-term data repositories.

For example, Agrawal et al. examined long-term meta-

data trends, but for desktop PC workloads, and Anderson

examined high performance workload traces from an an-

imation company [4]. Similar studies done over other

relevant datasets have proven to be a boon to the research

community [2, 6, 7, 29, 33, 40].

As a result of the research community’s lack of anal-

ysis of archival storage system behavior, a number of

recent long-term preservation systems are based on as-

sumptions that may not be valid, or only pertain to a nar-

row view of archival storage. For example, many long-

term data systems explicitly assume that contents are im-

mutable, or imply this by using WORM media [9, 24, 30,

36, 44, 45]. Others assume that data is rarely read. For

example, Pergamum claims dramatic cost savings largely

predicated on the ability to keep drives spun down due

to low read rates [37]. Though these assumptions might

hold true, we have no up to date knowledge with which

to confirm them. It has been over 15 years since the last

tertiary storage study, and to the best of our knowledge,

there have been no studies of access behavior in modern

public content archives.



Owner Name Size Records Access Media Data Types

Los Alamos National Laboratory Scientific 1.3 PB 60,000,000 Private Disk, Tape Multiple

Washington State Archive Historical Unknown 28,000,000 Public Disk Multiple

Calif. Dept. of Water Resources Water 2.6 GB 57,000 Public Disk Single

Table 1: Overview of the corpora and archives covered by this study. We use name to identify the sketch throughout this paper.

Data types are the number of different types of records in the corpus.

Corpus Type Length Entry count

Scientific Daily FSStats histograms 13 months 4716

Historical User access logs 33 months 5.8 million

Historical Record metadata 33 months 28.3 million

Water Record update and metadata logs 51 months 900 thousand

Water User access logs 33 months 100 thousand

Table 2: Overview of reports and logs in our sketches, including the duration and number of distinct entries in each log.

3 Datasets

In an effort to achieve consistency in our discussion,

we begin by establishing a set of concise definitions. An

individual element in a set of data is a record. A record

may be a file, bitstream, or even a literal SQL record.

We refer to a collection of records as a corpus, and a

copy of that corpus as an instance. The hardware and

software used to store an instance of the corpus is the

archive; the long-data lifetimes and relatively short re-

fresh cycle of modern hardware suggest that a corpus will

reside on several archives over its lifetime. A system is a

holistic view of the archives, corpus and potentially even

users. Finally, we refer to the aggregate body of knowl-

edge about a system as a sketch. A sketch includes trace

logs, profiles, record metadata, and communication with

system architects and administrators.

Tables 1 and 2 provide an overview of the sources we

used to conduct this study, illustrating that the scope of

this study is focused on tertiary storage and public con-

tent archives. Our first source, from Los Alamos Na-

tional Labs (LANL), allows us to update our understand-

ing of traditional tertiary storage systems. Our second

source, illustrative of the shift the Internet and lower-

ing storage costs and have brought, is a public reposi-

tory of digitized historical documents, the Washington

State Digital Archives [41]. The third source we ex-

amine is a publicly accessible repository of water table

reports—such as ground water levels and salinity—from

the California Department of Water resources [11]. This

source is particularly interesting as it illustrates yet an-

other new direction in the long-term data space; small,

per-department specialized content repositories. Under-

standing the use of these small corpora is important, as

many may be stored on a single physical archive where

the aggregate behavior may be more important than indi-

vidual behavior.

Histogram type Description

Reported size File length returned by stat

Allocated space Number of bytes actually allo-

cated

mtime File modification times

mtime (KB) File modification times, grouped

by file size

Overhead Difference between reported

size and allocated space

Table 3: FSstats histogram reports collected over the scientific

repository. One set of histograms covers the entire archive, and

the other set is run once for each individual top-level directory,

corresponding roughly to specific projects.

3.1 Los Alamos National Laboratory

The corpus from LANL contains files used in their su-

percomputing environment. We refer to this as the sci-

entific corpus, and it most closely resembles the struc-

ture and intent of the classical view of long-term storage

as tertiary storage. The corpus contains approximately

60 million files, totaling 1.3 PB spread across disk and

tape. When a user is allocated compute time, he or she is

allocated a top-level directory in the archive.

We have 13 months of two daily histogram reports col-

lected over this corpus from a daily crawl of the system’s

inode metadata by FSstats [16]. One daily report cov-

ers the entire file system. The second covers each top-

level directory corresponding roughly to summaries of

individual projects. Table 3 describes the histograms we

used. Note that atime (access time) tracking was explic-

itly disabled in the file system, so we could not effec-

tively analyze retrieval patterns.



Field Name Example Null

Record ID 123555 No

Date 1 10-10-1910 Yes

Date 2 Yes

Type Marriage Record No

Ingest date 11-12-2008 12:25:06 No

Modify date 9-4-2009 12:52:00 Yes

Num. of objects 0 No

Table 4: Historical record metadata. A yes in the Null column

indicates the value may be null. Number of objects is the num-

ber of digital objects associated with a record, possibly zero.

The two date fields are used to hold record specific dates, such

as birth and death times.

3.2 Washington State Digital Archives

One public corpus we examined is a collection of

digitized, historical artifacts—such as census informa-

tion, military records, photographs, and land records—

stored in an SQL database at the Washington State Digi-

tal Archives. We refer to this as the historical corpus. At

the time of capture, it contained approximately 90 mil-

lion records, 28 million of which are accessible via their

public web interface; the rest must be accessed on-site.

Records occasionally move between public and private

status based on content or explicit request. In this study,

we focus on the publicly available records, since this is

the only portion of the corpus covered in the provided

user access logs.

We obtained two logs for this corpus, spanning

September 27, 2007 to June 17, 2010. The first log de-

tails per-record metadata, described in Table 4. The sec-

ond is a user access log that records accesses to individ-

ual records. Each record is linked to zero or more digital

objects—such as photographs and documents—but each

digital object is only associated with one record. The

trace does not note whether the digital objects linked to

that record were retrieved. Further, while the access log

provides information to group accesses from the same

session, we cannot link different sessions to specific in-

dividuals or hosts.

It should be noted that our logs only reflect user re-

trieval of records within the corpus database and do not

reflect access to any other content, e.g. HTML pages.

Additionally our logs do not track the activity from data

migration or integrity checking processes. As we dis-

cuss further in Sections 4 and 5, these administrative

processes actually make up the dominant fraction of ac-

cesses.

3.3 California Dept. of Water Resources

The final corpus in our study, the water corpus, is a

relatively small set of water table reports consisting of

57,000 records. We have two traces for the water cor-

Field name Example

Site A00268

Site type Surface Water

Parameter Flow

Period of record 1997

File name GW DEPTH POINT DATA

File size 13050

File type Plot

Table 5: Water record metadata, and representative values.

Unique records are identified using a (Site, Period of Record,

File Name) tuple.

pus. The first is a set of update logs from approximately

weekly and quarterly batch scripts. Each update log

notes the records written to, the date, and record meta-

data, summarized in Table 5. The second is a set of

access traces consisting of a per-user access log, where

each entry notes the IP address that retrieved the record,

as well as the site, period of record, and record retrieved.

As with the historical corpus, the logs here do not re-

flect accesses to general web content, only downloads of

the reports themselves. Similarly, if there are any inter-

nal indexing or integrity processes running, they are not

reflected in our logs.

In the update trace, we identify a unique record using a

tuple of site name, period of record, and file name. Com-

plicating this, however, was an intermittent change in

file naming conventions that made it difficult to map old

names to new, introducing the danger of over-counting

files and mapping updates to incorrect file names. To

address this, we only count updates to files that map to

names in existence on the last day of the update log.

Though this discards approximately 50% of the 1.7 mil-

lion updates, it ensures we have both a correct file count,

and an accurate lower-bound on file update activity; more

updates may have been required to keep the relevant files

up to date, but no fewer.

4 Analysis

Our analysis is motivated by a hypothesis covering

three primary areas. First, as media capacities and costs

have changed, the tertiary storage use case has seen in-

creased use of hard drives. Second, with the broadening

variety of archival use cases, “write-once” does not ac-

curately describe modification behavior in all long-term

data stores. Third, it is similarly not accurate to charac-

terize all long-term storage as “read-maybe”.

We begin by comparing the scientific sketch of the ter-

tiary storage archive at LANL to the archive Miller and

Katz describe at NCAR, since theirs was the most recent

study of a large—for the time—tertiary storage system.

Following that, we examine update behavior in modern

content preservation systems. Finally, we analyze ac-



Disk (TB) Tape (TB) Total (TB)

1993 0.1 26.2 26.3

2010 300 1000 1300

Ratio 1:3000 1:38.2 1:49.4

CAGR 60.2% 23.9% 25.8%

Table 6: Tertiary storage comparison between the NCAR sys-

tem in the 1993 Miller study [25], and the current LANL sys-

tem, showing the ratio between the 1993 value and the 2010

value, and compound annual growth rate (CAGR).

cesses to complete our investigation into the validity of

the “write-once, read-maybe” assumption [15, 37, 43].

4.1 Tertiary Storage Evolution

Compound Annual Growth Rates Compared to the

previous study, total corpus size exhibited a compound

annual growth rate (CAGR) of 25.8%. The CAGR for

tape was only 23.9% compared to 60.2% for disk.

As summarized in Table 6, the scientific corpus from

LANL contained about 1.3 PB at the end the report pe-

riod, and is hosted on 1000 TB of tape, and 285 TB of

hard drives. Note however that the LANL corpus is con-

tinuing to grow, and is estimated to grow to over 2 PB by

the end of 2010. While the LANL administrators have

designed the tape library to expand to partially accom-

modate this growth, overall system growth will still be

dominated by disk. Compared to the scientific corpus

of the NCAR study, the total corpus exhibited a CAGR

of 25.8%. However, most of the growth in capacity oc-

curred in hard drive storage. Compared to the earlier

study, our data shows a hard drive CAGR of 60.2%.

Note, we restricted our hard drive comparison to a holis-

tic high level view, as the NCAR archive did not use com-

modity hard drives, relying instead on proprietary stor-

age modules. Interestingly, that hardware was fairly old

when it was studied in 1993; the IBM 3380 systems [20]

in the NCAR archive were introduced in 1980, with the

final revisions released in 1987.

Similarly, the NCAR archive used IBM 3480 tapes,

with a capacity of 200 MB per tape. This format was

introduced in 1984, making it 9 years old at the time of

the study; by 1992 IBM was producing the fourth gen-

eration 3490E IDRC tapes, with a capacity improvement

of 12 times that of the 3480. By comparison, the current

LANL archive uses the relatively recent LTO-4 format

tapes, with 1 TB of capacity, 5000 times the storage of

the IBM 3480 tapes. Even with the potentially exagger-

ated gap in tape capacity, we still see a CAGR of 23.9%,

which lags slightly behind the total storage CAGR of

25.8%. The impact of this disruptive shift towards more

disk-centric tertiary storage on file usage and migration

patterns is of keen interest; however, the LANL sketch

lacks access time and user behavior information so we
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Figure 1: CDF of reported file sizes and allocated space at

the end of the scientific trace. Volume refers to the aggregate

amount of storage consumed (in KB), count to the number of

files. Sparse files have larger reported file size than allocated

space, causing the difference between the curves.

must relegate its investigation to future work.

File Sizes Files between 1 and 2 GB consumed 40% of

reported storage, but many large files were sparse.

Moving to the record level, we next examined file sizes

within the corpus. Figure 1 shows a CDF of file sizes

calculated from the last day’s histogram in our dataset.

Nearly 50% of the data written in the NCAR study con-

sisted of files between 10 and 100 MB; in contrast, we

found that 40% of the total reported usage in the LANL

corpus consisted of files between 1 and 2 GB.

Interestingly, however, when comparing the reported

file sizes to the amount of storage space actually allo-

cated to files, we see that 60% of allocated space is con-

sumed by files sizes between 2 and 8 MB. Thus, while

the bulk of storage is consumed by files that are consid-

erably larger than the previous study, those files tend to

be sparse; over a petabyte is accounted for when looking

at file sizes, but only around 100 TB is actually allocated.

This behavior may be partially attributable to scientific

super-computing’s use of shared checkpoint files [10].

4.2 Data Modifications

Tertiary Storage Updates Despite a growing reliance

on hard drives, traditional tertiary corpora continue to

be fairly static; 60% of the LANL content we observed

was not modified in nearly a year.

We begin by examining the private scientific dataset,

the corpus most similar to the previous study of tertiary

storage [25]. Figure 2 is a heat-map showing the fraction

of individual records (files) in the corpus that fall into

various age ranges over time. The y-axis corresponds

to histogram bucket ranges, and the x-axis the day of

the trace. The heat-scale on the right maps shade to the

total fraction of archive contents. Thus, a corpus that

exhibited a high degree of content modification across

many files would be warmest along the base of the y-axis;

many records would have a recent modification time.

When records are ingested into the archive, they tend
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Figure 2: Heatmap of the scientific corpus’s daily record modi-

fication histograms over 400 days. The color indicates the frac-

tion of the archives contents, x-axis the day in the trace, and

y-axis the modification time histogram bucket. For example,

on day 275 of the trace, 80% of archive contents received their

most recent modification 128–256 days ago. Note y-axis is log

scaled (to match the histogram report), and we truncate it after

1024 days, as most contents are below that age.

to be ingested in batches, and they maintain their exist-

ing modification time, explaining why the temperature

warms in areas other than the histogram bucket for 0–

2 days. At the start of the trace, the archive ingested

a batch of files with recent modification times. In Fig-

ure 2 this appears as a warm area near trace day 0, for

histogram bucket with files 2–4 days old. As the trace

proceeds, those records remain static, and age steadily.

This is seen on the heat map by the high temperature re-

gion of the histogram moving from the 2–4 day bucket to

the 64–128 day bucket as the trace proceeds from day 0

to day 100. Other ingests follow the same behavior, as

seen near days 60, 100, 150 and finally 310.

Despite the growing use of hard drives, our results

show that aggregate modification behavior in traditional

tertiary storage is still much the same as it was at NCAR

over 15 years ago. That study showed that 65% of files

referenced in the 24 month trace were only written to a

single time, and over 20% were read but never written

to. Similarly, at the end of our dataset’s duration, despite

only having a 13-month trace, we see that approximately

60% of corpus records had modification dates more than

256 days in the past.

Content Storage Mutability Long-term content cor-

pora are highly dynamic: 50% of records in the water

corpus received 5 or more updates, often stemming from

automatic data management processes. Similarly, 75%

of the historical corpus saw at least one update during

the trace.

To compare tertiary storage update times with those

of long-term content repositories, we examine data up-
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Figure 3: CDF of records, showing the number of updates per

record over the duration of the water sketch’s update trace.

dates within the publicly accessible water corpus. One

complication to note is that we can only deduce record

creation in the water sketch by noting a record’s first ap-

pearance in an update log. In our analysis, we associate

each record with a list of updates generated from the up-

date logs. As discussed in Section 3, we filtered the up-

dates such that only updates mapped to files present on

the last day were included in our analysis. Though this

introduces the danger of under-counting updates, it en-

sures that our results remain conservative and removes

potentially misleading update counts caused by record

renaming.

Examining the logs in the water sketch reveals a sur-

prisingly high number of updates caused by corpus man-

agement: automatic policy rules frequently overwrote

generated reports, whether or not they had actually re-

ceived updated data. Two scripts in particular generated

a large volume of data updates. The first ran approx-

imately weekly, and modified any report that had data

updated within 30 days. The second ran on an irregular,

but roughly quarterly schedule, and overwrote all reports

in the corpus regardless of the last update they received.

To identify the source of updates, we break our analy-

sis into three sets. The first contains all the updates seen

by the corpus. To isolate the results of the weekly script,

the second set only considers updates that occur to a file

after 30 days have passed. We call this the 30-day filter.

The last set takes the results of the 30-day filter, and re-

moves all mass updates that touch over 10,000 records.

We call this the quarter filter. Using this approach, we

can identify a lower bound on the number of necessary

updates; more may have been required to keep the rele-

vant reports up to date, but no fewer.

The results, shown in Figure 3, demonstrate behavior

that deviates dramatically from the “write-once” assump-

tion of traditional tertiary storage. When no filters are

applied, we see that only 40% of the records receive 5 or

fewer updates, and those that receive 20 or fewer updates

still only account for around 65% of all records. Apply-

ing the 30-day filter, we see that a significant fraction of

the corpus still receives 5 or more updates. We observe a
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Figure 4: Histogram of inter-update arrival times for all

records in the water corpus.
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Figure 5: Histogram of time between a record’s creation, and

its last update within the water corpus. Note records that re-

ceive no updates are not counted.

shift, however, when we filter out the quarterly updates,

as 60% of the records receive zero updates. This is still

far from the “write-once” scenario; 10% of the records

receive 3 or more updates, and 20% receive one or more.

Many of these are complete “Period of Record” reports

that are running summaries of all prior data for a site.

Content Storage Activity The water and historical

records were both highly active long after their ingest

times. In the water corpus, 50% of records received up-

dates more than 256 days after their creation. In the his-

torical corpus 85% of modification times were more than

256 days past the record’s creation date.

When we examine the inter-arrival time of updates, the

time between any two consecutive updates to a record, il-

lustrated in Figure 4, we see surprisingly large numbers

of records with long inter-update periods. 35% of the ap-

proximately 900,000 observed updates occurred after a

period of over 64 days. When we apply our 30-day and

quarterly filters, we still see 70% and 50%, respectively,

of updates occur with an inter-arrival time of more than

64 days, though the total volume of updates drops signif-

icantly.

To further investigate update behavior within the water

corpus, we examine the range of time over which records

were receiving updates. Figure 5 shows a histogram of

the time between a record’s creation and the last update

it received. There are, however, two important points

to note with this histogram. First, it does not include
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Figure 6: Histogram for the historical sketch, showing the

range of time between a record’s ingest date and its last modi-

fication time. Note that records not updated are not counted.

records that were never updated after creation as they

would not contribute to the update count. Second, the

record’s ingest time relative to the start and end of the

trace period impacts the update range we observe; for

example, a record ingested two days before the end of

trace would have at most a two day range. Nonetheless,

this is still a valid method of demonstrating that records

continue to be modified long after their ingest time. Us-

ing this approach, we see that over 50% of records that

receive updates do so over a range of over 256 days.

When we apply the 30 day and quarter filters we see

the proportions remain roughly the same; approximately

50% of records that received updates were modified over

256 days after record creation. However, the number of

records receiving updates drops due to the filtering.

In our historical sketch we do not have the same level

of access granularity we did in the water sketch; rather,

we can only see a record’s last modification time. This

time reflects the most recent time that any of a record’s

fields or associated digital objects are modified. This

level of detail is still sufficient to show that of the ap-

proximately 28 million publicly accessible records, over

21 million had a non-null modification date, meaning

that approximately 75% of the corpus content was up-

dated at least once. This is significantly more than that

shown in both Agrawal’s desktop trace study [2], where

over 80% of files remained unwritten each year for over

5 years; and the modern tertiary storage behavior illus-

trated in Figure 2, where approximately 80% of the cor-

pus remained unmodified.

Update time ranges were also similar between the wa-

ter and historical sketches. When we look at the time

between a historical record’s ingest and its last recorded

modification time, shown in Figure 6, we see that 85% of

the modification times show a difference of 256 or more

days from the record’s creation.

The surprising amount of update activity we see across

both the water and historical corpora is made possible by

the use of cheap random access media. The use of tape or

optical media based in the face of so many modifications

would be problematic, as they require significant extra



hardware. Additionally, the long access times of such

media are a barrier to frequent modification of data.

4.3 Accesses

In our water and historical logs, record modifications

appear as session-less, system-generated operations. In

contrast, record accesses are associated with a distinct

session. Thus, our access analysis looks at both aggre-

gate and session-oriented access behavior. As mentioned

previously, the LANL archive disabled access time up-

dates, and histogram reports were generated from meta-

data mirrors. Thus, we are unable to analyze user ac-

cesses in the scientific corpus.

Large-Scale Retrievals Accesses are dominated by a

few, often machine generated large-scale retrievals, such

as a Google crawl or integrity checking process.

In the historical sketch, we observe approximately

5.88 million distinct accesses between September 27,

2007 and June 16, 2010. The accesses are across

1.05 million user sessions, accessing 2.28 million dis-

tinct records. From discussions with the repository ad-

ministrators, we also know that all records are integrity

checked monthly. Though only 8% of the 28 million

publicly available records were accessed by users over

3 years, 100% of the records were read via the integrity

checking process each month. If we consider integrity

checking to be equivalent to record retrieval, then less

than 1% of reads come from end-users. Even assuming

that files are checked for integrity once per year, only

10% of read traffic would come from users. This finding

has significant implications on archive design. Effective,

low-latency end-user retrievals are critical to the percep-

tion of a useful system, but only make up a small fraction

of the actual workload. On the other hand, administrative

processes, which make up the bulk of accesses and are

critical to the integrity of the system, are typically less

latency-sensitive. Thus, as we discuss further in this sec-

tion as well as in Section 5, a separate batch interface for

bulk accesses could provide significant benefit to future

systems.

In the water sketch, we see roughly 98,000 distinct

retrievals between August 28, 2007, and July 1, 2010.

By artificially grouping accesses originating from the

same IP address that arrive within 10 minutes of one an-

other, we identify approximately 8500 user sessions. We

choose 10 minutes as the threshold based on our observa-

tion that the number of sessions created by our grouping

method taper off after approximately 10 minutes. We ex-

clude approximately 1200 retrievals that had a null value

for their files, accounting for approximately 1% of all re-

trieval requests.

We find that approximately 70,500 of the 98,000 total

accesses in the water sketch originated from Google, and

27,000 from other users. Since there were 57,000 records

in the last quarterly update, and non-Google users made

27,000 requests, we observe that no more than 50% of

the archive’s contents could be retrieved by non-Google

users. On the other hand, Google likely requested nearly

all of the reports given the methodical nature of their

crawls, though we cannot conclusively state this given

the file renaming issues we noted earlier.

LRU Caching LRU caching is moderately effective at

absorbing per-session record re-retrievals and flash traf-

fic. As a whole it is ineffective at absorbing day-to-day

traffic due to limited record popularity.

One peculiar behavior we notice in both the water

and historical sketches is significant numbers of user-

sessions re-retrieving the same record in the same ses-

sion, often within a few seconds. Communication with

system administrators and architects yielded no expla-

nation for this odd behavior. We note that these re-

retrievals accounted for 3% of the retrievals in the water-

sensor log, and nearly 35% (2.04 million) of the record

retrievals for the historical archive. These re-retrievals

have a noticeable impact on our results and implications

for archival system design.

From the daily access counts in the historical sketch

shown in Figure 7(a), we observe that the number of ac-

cesses on any given day is relatively stable, and exhibits

a slow growth trend. We do, however, observe a number

of moderate spikes, and one large spike around day 900.

A microanalysis of the large spike finds that it is com-

prised almost entirely of sessions that only retrieved a

single record, and that the records retrieved were pre-

dominantly (over 90%) photographs. Further, the upper

quartile of distinct records retrieved in the spike received

5 or more accesses, as opposed to the usual 1 or 2 on

most prior days we examined. Consultation with the sys-

tem and corpus administrators yielded no clear explana-

tion for behavior seen in the spike. Further, we confirmed

that external indexers, such as Google, only have access

to around 6000 records, ruling out a possible explanation.

To explore the potential effectiveness of caching on

daily traffic and spike mitigation, we ran our daily ac-

cess count analysis with two different sizes of a simple

LRU caching filter: 0.01% and 0.1% of the total num-

ber of retrievals, corresponding to 500 and 5000 records.

When we include re-retrievals during the same session

in the count, even a small cache is shown to be mod-

erately effective at absorbing accesses, with overall hit

ratios of 37% and 38% for a 500 and 5000 record cache,

respectively. When we remove the re-retrievals the cache

effectiveness plummets, exhibiting an overall hit ratio of

less than 7% for even the 5000 record LRU cache.

Interestingly, as Figure 7(c) shows, the cache is effec-

tive at reducing the magnitude of several of the access

spikes. Even the small cache absorbed nearly 50% of

the traffic during the day 900 spike. Thus, while their



overall impact is low, read caches in long-term content

stores may be useful for handling flash traffic and record

re-retrievals.

Next, we examine daily access counts and cache ef-

fectiveness for the water repository, illustrated in Fig-

ure 8. One of the first things we note is an extended

access spike, approximately between days 700 and 750.

Using a reverse IP look up we confirmed this was Google

slowly crawling the repository contents. In total, Google

accounted for over 70% of all record retrievals. For our

subsequent analysis of the water accesses, we filtered

the large, external index crawl from the dataset. Note

that while other user sessions did occasionally exhibit

bot-like behavior (fast inter-retrieval times, and mass re-

trievals) we could not conclusively identify them as such,

and left them in the trace.

In the water sketch, as with the historical sketch, we

see a moderate number of re-retrievals within user ses-

sions, and examine the impact of caching with and with-

out these re-retrievals, shown in Figure 9. As with our

previous observations, with re-retrievals included, we see

low to moderate cache effectiveness with hit rates of

12% for a cache size of 10 records, and 17% for 100

records. When we eliminate session level re-retrievals

the hit ratios drop to 2% and 8% respectively. In the wa-

ter sketch, however, caching remains largely ineffective

even on days with significantly increased traffic, as fig-

ure 9(b) illustrates.

Per-Session Behavior 50% of users’ sessions only re-

trieve a single record, though this accounts for fewer

than 10% of the total retrievals.

In Figure 10, we illustrate the number of retrievals per

session with and without re-retrievals. Interestingly, for

both the historical and water datasets, we see that over

50% of sessions only retrieve a single record. Further

we observe that the distribution quickly flattens out, with

approximately 90% of sessions retrieving 15 or fewer

records. Since many sessions are coming from humans

interacting via a web interface, the time between user re-

trievals is relatively long, often seconds to minutes.

While 50% of sessions—with re-retrievals—only re-

trieve a single record, those sessions in the historical

trace account for fewer than 10% of the total retrievals,

and fewer than 5% for the water sketch, as shown in Fig-

ure 11. The vast majority of data was accessed from

larger sessions. In the historical corpus, 40% of all ac-

cesses come from sessions of more than 20 retrievals, and

nearly 80% in the water sketch are made during similarly

large sessions. In the water sketch, this skew is due to a

Google index crawl of the corpus that occurred over sev-

eral large sessions, each retrieving hundreds to thousands

of records. The prevalence of these large mass retrievals,

much like the wholesale integrity checking, suggests the

utility of a batch interface, as we discuss further in Sec-
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(a) Complete historical corpus daily access rates with and without re-

retrievals
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(b) Historical corpus cache impact with re-retrievals for days 800-1000.
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(c) Historical corpus cache impact without re-retrievals for days 800-

1000.

Figure 7: Daily access counts to the historical corpus with and

without re-retrievals and the associated LRU cache impacts. If

a retrieval was absorbed by a cache hit it was not counted.
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Figure 8: Daily access counts to the water corpus with and

without the retrievals by Google
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(a) Water corpus daily access counts with re-retrievals, days 300-500.
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(b) Water corpus daily access counts without re-retrievals, days 300-500.

Figure 9: Daily access counts for the water corpus with and

without re-retrievals, and associated LRU cache impacts of size

10 and 100 records. If a retrieval was absorbed by a cache hit

it was not counted. Google accesses have been filtered out.

Note cache impact is nearly eliminated when re-retrievals are

removed.
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Figure 10: CDF of accesses per session showing the number of

records retrieved per session in the water and historical corpus,

with and without per session re-retrievals. We truncate at 30

accesses, the few large sessions would distort the plot.

tion 5.

Intra-Session Access Locality Users’ sessions tend

to show strong content correlation, retrieving a limited

number of content types. Inter-session (system-wide)

content popularity is extremely long tailed.

Next, we look at content popularity, independent of

sessions, to see if we can identify a subset of records or

content types that account for a disproportionate fraction

of accesses. Figure 12 shows that all of the distributions

exhibit a long tail, with the exception of the types-based

popularity for the historical archive. For example, the
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Figure 11: CDF showing what fraction of total retrievals were

contributed per session size with and without re-retrievals for

the water and historical corpora. Note we truncate the x-axis

at 100 to maintain readability as retrievals to the water corpus

dominated by a few large sessions; sessions with over 300 re-

trievals account for 60% of the total retrievals.
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Figure 12: CDF of record popularity by individual record, and

distinct content type. Note that x-axis values are ordered by

popularity, that is, the most popular items are plotted first. With

the exception of the historical corpus record types all CDFs are

subsampled.

sites—i.e. water well location—in the water set exhibit

the second strongest popularity affinity with 20% of sites

accounting for 60% of accesses, but the next 20% of sites

only account for another 20% of accesses. At file level

granularity, this trend becomes even more pronounced.

We note, however, that the file naming issues within

the water-sensor archive may mask some amount of file

popularity. The content popularity distribution corrobo-

rates our early findings showing LRU read-caching to be

largely ineffective; while certain categories of data are

more popular, individual records do not appear to be par-

ticularly more popular.

We next examine access locality within sessions to

see if individual user sessions tended to access a sin-

gle or few types of content. In our analysis, we first
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Figure 13: CDF showing the number of different content cat-

egories retrieved per session. In the historical corpus, records

have an associated category. In the water corpus, we examine

how many distinct sites as well as site year combinations are

accessed per user session. We truncate at 30 types to avoid a

distorted plot.

remove re-retrievals from all sessions; we then exclude

sessions in which only a single record is retrieved. Addi-

tionally we eliminate records from the historical sketch

that are found to be missing metadata (less than 0.5%

of retrievals), as well as those with the category listed

as “Restricted Type”; these records were originally pub-

lic and subsequently moved into the private archive, so

we cannot determine their category. The restricted type

retrievals account for 12% of accesses after removing re-

retrievals and excluding singleton sessions.

Figure 13 shows that, across both the historical and

water traces, individual user sessions tend to retrieve

strongly related content. We see that nearly 50% of ses-

sions in the historical trace retrieve three or fewer record

types, and similarly 50% of sessions in the water trace

retrieve data pertaining to only a single site. When we in-

clude the year, 25% of sessions retrieve records within a

single site-year combination, but still exhibit strong per-

session content locality.

Across sessions, however, a wide variety of content

and individual records are retrieved. This is evident in the

poor cache performance, as shown earlier in Figures 7

and 9. The strong individual session locality does sug-

gest that grouping data based on content along with pre-

fetching may be effective [42], provided the content type

has a sufficiently small number of records. For example,

this would likely be more effective for the water corpus

where any given site-year combination rarely has more

than 15 or so reports at a few tens of kilobytes apiece,

than for the historical corpus where there may be many

millions of records connected by an associated category.

In contrast the lack of individually popular records we

noted earlier impacts systems that aim to conserve en-

ergy by duplicating or migrating commonly used data, as

they require relatively fine grained, predictable system-

wide accesses in order to be effective [12, 28]. This is

because while we can make strong statements about in-

dividual session behavior, aggregate system wide activ-

ity is largely unpredictable in regards to the popularity of

records.

5 Lessons Learned

Our investigation into the behavior of tertiary storage

and long-term public content corpora revealed a num-

ber of high-level lessons. In this section we interpret our

observations, and discuss their implication for long-term

storage system design and future research directions.

5.1 Read-Write Behavior

While the scientific corpus exhibited the classical ter-

tiary storage behavior of fairly static content, the water

and historical corpora showed a surprisingly high degree

of change; data modifications were frequent, widespread,

and over a much longer duration than we expected. How-

ever, even in the scientific corpus we observed a stor-

age medium shift from tape to disk, suggesting that file

immutability should be an enforceable policy indepen-

dent of the media type. This flexibility is even handy for

explicitly immutable data–such as compliance stores–as

such datasets often have a specific expiration date, after

which the owners would like the data to be immediately

deletion.

With respect to reads, contrary to assumptions estab-

lished by tertiary storage, we found that both the wa-

ter and historical corpora were quite active. While user

requested reads were relatively rare, data management

tasks, indexing requests, and the inevitable migration of

long-term data, make the “read-maybe” pattern patently

false; all content is eventually read, and it is often read

en masse. This could severely impact the effectiveness

of system designs that rely on low read-rates. For ex-

ample, systems that rely on spun down disks for power

savings may overestimate the cost savings they can de-

liver [28, 37], unless accesses can be tightly controlled

and scheduled.

Further, our results suggest a potential danger in opti-

mizing for the wrong operations. In the water trace, the

vast majority of total accesses were from a few large-

scale requests—such as Google crawls—with the re-

mainder originating from user accesses that often only

retrieve a single record. We argue, however, that these

small numbers of user requests are latency sensitive, and

critical to the users’ perception of effective, long-term

storage.

Within these critical user sessions, we found that there

were a few favored content types, and the same data was

often requested multiple times within a single session.

Across sessions, however, it was much more difficult to

identify popular content. Thus, aside from assisting with

the re-retrieval problem, strategies that rely on migrating

popular data may be ineffective at best, and harmful at

worst [28, 47]; in a disk spin-down scenario, such move-

ment could incur additional energy penalties for little or



no benefit. Depending on the scale, this may also make

the use of tape-based architectures, and those based upon

immutable media types significantly less efficient.

It is important, however, not to downplay the impor-

tance of bulk accesses, since they dominate an archive’s

workload. Recall that we observed integrity checking ac-

counting for 99% of read accesses in our analysis of the

historical sketch. The disparity in large and small access

properties suggests that current archive interfaces are in-

sufficient. Since our data suggests that these large-scale

accesses are often latency-insensitive administrative pro-

cesses, we propose an asynchronous batch interface for

large requests as a complement to the traditional single

record interface. The benefit to the system is that such

a request would provide full a priori knowledge of the

records in the requests, allowing the archive to optimize

its resource scheduling most effectively.

Such an interface would allow a client to specify the

set of records desired, a schedule of when it needs the

requests fulfilled by, and a means to alert the client when

the request is complete. For writing, this could be useful

for data management functions: we observed that pub-

lic content archives provide anonymous read access, but

writes came from the system itself. In the case of exter-

nal indexing services, such an interface could help shift

the large-scale requests from appearing parasitic at an

energy cost and workload spike standpoint, to a more

symbiotic relationship; the indexing service receives the

data, and the archive can efficiently provide the means

for users to find it. To prevent pathological use of the

traditional, single-record access interface, archives could

utilize strategies such as throttling or retrieval caps.

5.2 Understanding Corpus Behavior

While the results presented in this paper have helped to

expand our understanding of long-term corpus behavior,

a number of trends motivate the need to understand the

aggregate behavior of multiple corpora hosted by a single

archive. First, the growth of cloud storage marks a shift

towards centralized data centers. Second, increasingly

digital workflows have spurred the proliferation of small

and mid-sized corpora. This leads to potential problems

in optimization, as superficially similar corpora could be

hosted on the same archive, despite the fact that they may

benefit from different configurations. For example, while

both the historical and water corpora showed strong con-

tent locality within user sessions, their record granular-

ity is vastly different; a single record type in the water

corpus may only contain 20 or 30 records, while in the

historical corpus one record type may have millions of

records. An optimal retrieval technique for one may be

pathological for the other.

Even within the scope of a single corpus there is more

work to be done with our current sketches. First, we

would like to investigate both temporal and content lo-

cality in record ingests and updates. Second, we plan

to more closely examine short-term behavior within the

traces, to see if short-term behavior in accesses and up-

dates is similar to that of the long-term behavior we ob-

served. Finally, as an aid in the development of effective

long-term repository systems, we hope to publish a se-

ries of workloads based on these traces. This would help

in the evaluation of archival designs, and in the repro-

ducibility of published results [1].

Finally, as we have noted, there is a wide gamut of

systems that fall within the category of long-term data

repositories. To that end we hope to locate and exam-

ine additional traces across all areas of archival storage

in order to identify and quantify their common, and di-

vergent characteristics. For example, within the tertiary

storage area, more granularity and study is needed; the

sketch we obtained from LANL had disabled recording

of access times, impeding our ability to analyze read be-

havior.

5.3 Tracing Difficulties

Acquiring high-quality trace data for this study proved

to be a vexing challenge. The worst examples we en-

countered were logs with no field descriptions or sup-

porting documentation, making them effectively unus-

able. However, with immeasurable assistance from the

archive owners, we were able to obtain and refine sev-

eral relevant and useful traces. To this end, we see a

strong need to continue the development of tools that en-

able organizations to easily collect and efficiently store

descriptive and relevant long-term access data [5]. This

is particularly true for archival storage, since, in contrast

to storage systems such as those used in enterprise and

the desktop, traces must be gathered over years. If data

are not gathered properly, reacquiring a trace can take

years, perhaps preventing the trace from driving an anal-

ysis to guide the design of the archival storage system’s

successor. In addition, there is a need for consistent trac-

ing standards to ensure ease of use and readability far

into the future.

Good tracing tools would also be a boon to archive op-

eration, as our observations revealed counter-productive

behavior of which the system administrators and archi-

tects were unaware. For example, in the historical sketch,

our analysis revealed frequent record re-retrievals within

the same session; the administrators did not know of this

behavior, and were unable to explain it. Additionally, the

water corpus exhibited many needless overwrites com-

ing from data management processes. These irregular-

ities highlight the need for good analysis tools to help

administrators identify pathological behavior within the

system.

Finally, data-centric (corpus-centric) tools for long-



term tracing would be useful for several reasons. First,

seemingly trivial actions can make analysis of longer-

term trends extremely difficult. For example, in the wa-

ter trace, files were identified by path names, but file re-

names did not capture the information needed to link old

path names to new path names. Second, as systems be-

come increasingly distributed, there may be multiple in-

stances of the same corpus in a single system, motivating

the need for tracing tools that can provide a holistic view

across archives [39]. Third, given the intended long life-

time of many corpora, data will live on many systems

over its life. In order to understand how data behavior

evolves, a long-term trace must extend beyond the life-

time of any single system.

Even with useful tools and traces, the importance of

good communication with system architects and admin-

istrators cannot be overstated. They can provide informa-

tion that is not captured by trace reports, significantly al-

tering conclusions. For example, in the historical sketch,

communication with the administrators was instrumen-

tal in understanding the scale of user request traffic and

system-generated integrity checking traffic, and in the

water sketch the administrators explained the nature of

their periodic batch processes.

6 Conclusions

As ever-growing quantities of our society’s data are

stored in long-term digital archives, it is increasingly im-

portant to understand how these archival storage systems

are used, and how they behave. To address this ques-

tion, we presented a detailed analysis of behavior in three

archival storage systems, including both scientific and

public data. Our study provides the first examination of a

large tertiary storage system in over 15 years, and the first

ever analysis of the behavior of public content archives.

Based on our findings, we have made concrete sugges-

tions for both archival storage system implementers and

administrators.

By analyzing the LANL sketch, we were able to see

how tertiary storage archives have evolved in the last

seventeen years. Our analysis reveals that, compared to

the NCAR system studied in 1993, the LANL corpus ex-

hibits a CAGR of 25.8%. Further, hard drives play an in-

creasingly important role in the archive; the NCAR sys-

tem had a disk to tape ratio of 1:262, in sharp contrast

to the LANL archive’s ratio of 1:3.3. Despite this shift,

the update patterns between then and now are largely un-

changed. Additional access time information is needed

to fully understand how the random access performance

of hard drives is being utilized.

The public water and historical sketches demonstrated

how long-term storage now covers a wide range of be-

havior. We found that the contents were both accessed

and modified frequently; 75% of the historical corpus

saw at least one update over the trace period, and 50%

of the water corpus saw 5 or more writes. Access traf-

fic was dominated by a few large-scale requests such as

data management scripts and Google crawls. This behav-

ior, along with the latency sensitivity of small requests

suggest that two different interfaces are called for: one

for the small, but critically important, user requests; and

another for the large-scale, but latency-insensitive bulk

requests. These results of our workload study and the

guidelines developed from the results will help archival

system designers in the construction and maintenance of

archives that can efficiently and effectively preserve so-

ciety’s digital legacy for future generations.
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