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The ever-growing amount of data requires highly scalable storage solutions. The most flexible approach
is to use storage pools that can be expanded and scaled down by adding or removing storage devices. To
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environment. This article presents and evaluates the Random Slicing strategy, which incorporates lessons
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1. INTRODUCTION

The ever-growing creation of, and demand for, massive amounts of data requires highly
scalable storage solutions. The most flexible approach is to use a pool of storage devices
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Table I. Advantages and Disadvantages of Several Data Distribution Strategies

Distribution strategy Advantages Disadvantages

Table-based —Extremely fast† lookup —Poor scalability (tables grow linearly
T [b] �→ D —Easily adaptable to new with # of blocks)

devices —Computationally intensive reversibility
for large table sizes

Rule-based —Fast† lookup —May run into fragmentation problems
f n(b) �→ D —Easily reversible‡ —Adapting to new devices involves huge

data migrations
Pseudorandom-based —Moderately∗ fast† lookup —May require substantial memory to
hn(b) �→ D —Inherently fair provide desired randomness

—Extremely flexible (naturally
adapts to new devices)

—Not easily reversible‡

Definitions used: b, data block ID; D, device ID; T [x], content of table T for block ID x; f n(x), result of
applying rule f n to block ID x; hn(x), value of applying one, several or a combination of n hash functions
h0, . . . , hn to block ID x.
†Depending on particular implementation.
‡It is possible to compute the collection of blocks managed by a particular device.
∗Depending on the number of hash functions applied.

that can be expanded and scaled down as needed by adding new storage devices or
removing older ones. This approach, however, necessitates a scalable solution for
locating data items in such a dynamic environment, which has led to the proposal of
several families of data distribution strategies (see Table I for a detailed summary of
their advantages and inconveniences.)

Table-based strategies can provide an optimal mapping between data blocks and stor-
age systems, but obviously do not scale to large systems because tables grow linearly
in the number of data blocks. Rule-based methods, on the other hand, run into frag-
mentation problems, so defragmentation must be performed periodically to preserve
scalability.

Hashing-based strategies use a compact function h in order to map balls with unique
identifiers out of some large universe U into a set of bins called S so that the balls
are evenly distributed among the bins. In our case, balls are data items and bins are
storage devices. Given a static set of devices, it is possible to construct a hash function
so that every device gets a fair share of the data load.

Standard hashing techniques, however, do not adapt well to a changing set of devices:
consider, for example, the hash function h(x) = (a · x +b) mod n, where S represents the
set of storage devices and is defined as S = {0, . . . , n − 1}. If a new device is added, we
are left with two choices: either replace n by n+1, which would require virtually all the
data to be relocated; or add additional rules to h(x) to force a certain set of data blocks
to be relocated on the new device in order to get back to a fair distribution, which, in
the long run, destroys the compactness of the hashing scheme.

Pseudorandomized hashing schemes that can adapt to a changing set of devices have
been proposed and theoretically analyzed. The most popular is probably Consistent
Hashing [Karger et al. 1997], which is able to evenly distribute single copies of each
data block among a set of storage devices and to adapt to a changing number of disks. We
will show that these pure randomized data distribution strategies have, despite their
theoretical perfectness, serious drawbacks when used in very large systems. Especially,
many of their beneficial properties are only achieved if a certain level of randomness
can be achieved. This is particularly important because, as we will show in this article,
it has a serious influence on the necessary amount of memory required by a strategy or
the performance it delivers, which may render it infeasible in large-scale environments.
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Besides adaptivity and fairness, redundancy is important as well. Storing just a
single copy of a data item in real systems is dangerous because, if a storage device
fails, all of the blocks stored in it are lost. It has been shown that simple extensions
of standard randomized data distribution strategies to store more than a single data
copy are not always capacity efficient [Brinkmann et al. 2007].

Nevertheless, despite the sheer amount of randomized data distribution strategies
that have been proposed over the years, there does not exist a formal analysis that
evaluates them in a common environment. We believe such an analysis would be
useful because it helps to understand the strengths and limitations of each strategy
and might lead to the invention of better data distribution mechanisms based on the
lessons learned.

The main contributions of this article are the following.

—We present the first comparison of different hashing-based distribution strategies
that are able to replicate data in a heterogeneous and dynamic environment. This
comparison shows the strengths and drawbacks of the different strategies as well as
their constraints. Such comparison is novel because hashing-based data distribution
strategies have been mostly analytically discussed, with only a few implementations
available, and in the context of peer-to-peer networks with limited concern for the
fairness of the data distribution [Stoica et al. 2003]. Only a few of these strategies
have been implemented in storage systems, where limited fairness immediately
leads to a strong increase in costs [Brinkmann et al. 2004; Weil et al. 2006a].

—We introduce Random Slicing, which overcomes the drawbacks of randomized data
distribution strategies by incorporating lessons learned from table-based, rule-based
and pseudo-randomized hashing strategies. Random Slicing keeps a small table
with information about previous storage system insertions and removals. This table
helps to drastically reduce the required amount of randomness that needs to be
computed and thus reduces the amount of necessary main memory by several orders
of magnitude.

—We provide an analysis of the influence (or lack thereof ) of eighteen different
pseudo-random number generators (PRNGs) in all the strategies studied. We eval-
uate each generator in terms of quality of distribution and performance provided.
We believe that the results of this analysis may help other researchers choose
an appropriate PRNG when designing and implementing new randomized data
distribution strategies.

It is important to note that all randomized strategies map (virtual) addresses to a set
of disks, but do not define the placement of the corresponding block on the disk surface.
This placement on the block devices has to be resolved by additional software running
on the disk itself. Therefore, we will assume inside the remainder of the article that the
presented strategies work in an environment that uses object-based storage. Unlike
conventional block-based hard drives, object-based storage devices (OSDs) manage disk
block allocation internally, exposing an interface that allows others to read and write to
variably sized, arbitrarily named objects [Azagury et al. 2003; Devulapalli et al. 2008].

1.1. The Model

Our research is based on an extension of the standard “balls into bins” model [Johnson
and Kotz 1977; Mitzenmacher 1996]. Let {0, . . . , M − 1} be the set of all identifiers for
the balls and {0, . . . , N − 1} be the set of all identifiers for the bins, where each ball
represents a data block and each bin a storage device. Suppose that the current number
of balls in the system is m ≤ M and that the current number of bins in the system is
n ≤ N. We will often assume for simplicity that the balls and bins are numbered in

ACM Transactions on Storage, Vol. 10, No. 3, Article 9, Publication date: July 2014.



9:4 A. Miranda et al.

a consecutive way starting with 0, but any numbering that gives unique numbers to
each ball and bin would work for our strategies.

Suppose that bin i can store up to bi (copies of) balls. Then we define its relative
capacity as ci = bi/

∑n−1
j=0 bj . We require that, for every ball, k copies must be stored

in different bins for some fixed k. In this case, a trivial upper bound for the number
of balls the system can store while preserving fairness and redundancy is

∑n−1
j=0 bj/k,

but it can be much less than that in certain cases. We term the k copies of a ball a
redundancy group.

Placement schemes for storing redundant information can be compared based on the
following criteria (see also Brinkmann et al. [2002]).

—Capacity Efficiency and Fairness. A scheme is called capacity efficient if it allows us
to store a near-maximum number of data blocks. We will see in the following that the
fairness property is closely related to capacity efficiency, where fairness describes the
property that the number of balls and requests received by a bin are proportional to
its capacity.

—Time Efficiency. A scheme is called time efficient if it allows a fast computation of the
position of any copy of a data block without the need to refer to centralized tables.
Schemes often use smaller tables that are distributed to each node that must locate
blocks.

—Compactness. We call a scheme compact if the amount of information the scheme
requires to compute the position of any copy of a data block is small (in particular, it
should only depend on n—the number of bins).

—Adaptivity. We call a scheme adaptive if it only redistributes a near-minimum amount
of copies when new storage is added in order to get back into a state of fairness. We
therefore compare the different strategies in Section 6 with the minimum amount of
movements, which is required to keep the fairness property.

Our goal is to find strategies that perform well under all of these criteria.

1.2. Previous Results

Data reliability and support for scalability as well as the dynamic addition and re-
moval of storage systems is one of the most important issues in designing storage
environments. Nevertheless, up to now only a limited number of strategies has been
published for which it has formally been shown that they can perform well under these
requirements.

Data reliability is achieved by using RAID encoding schemes, which divide data
blocks into specially encoded sub-blocks that are placed on different disks to make
sure that a certain number of disk failures can be tolerated without losing any infor-
mation [Patterson et al. 1988]. RAID encoding schemes are normally implemented by
striping data blocks according to a pre-calculated pattern across all the available stor-
age devices. Even though deterministic extensions for the support of heterogeneous
disks have been developed [Cortes and Labarta 2001; Gonzalez and Cortes 2008],
adapting the placement to a changing number of disks is cumbersome under RAID as
all of the data may have to be reorganized.

In the following, we just focus on data placement strategies that are able to cope
with dynamic changes of the capacities or the set of storage devices in the system.
Karger et al. [1997] present an adaptive hashing strategy for homogeneous settings
that satisfies fairness and is 1-competitive with respect to adaptivity. In addition, the
computation of the position of a ball takes only an expected number of O(1) steps. How-
ever, their data structures need at least n log2 n bits to ensure a good data distribution.
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Brinkmann et al. [2000] presented the cut-and-paste strategy as alternative place-
ment strategy for uniform capacities. Their scheme requires O(n log n) bits and O(log n)
steps to evaluate the position of a ball. Furthermore, it keeps the deviation from a fair
distribution of the balls extremely small with high probability. Interestingly, the theo-
retical analysis of this strategy has been experimentally re-evaluated in a recent paper
by Zheng and Zhang [2011].

Sanders [2001] considers the case that bins fail and suggests to use a set of forwarding
hash functions h1, h2, . . . , hk, where at the time hi is set up, only bins that are intact at
that time are included in its range.

Adaptive data placement schemes that are able to cope with arbitrary heterogeneous
capacities have been introduced in Brinkmann et al. [2002]. The presented strategies
Share and Sieve are compact, fair, and (amortized) (1 + ε)-competitive for arbitrary
changes from one capacity distribution to another, where ε > 0 can be made arbitrarily
small. Other data placement schemes for heterogeneous capacities are based on geo-
metrical constructions [Schindelhauer and Schomaker 2005]; the linear method used
combines the standard consistent hashing approach [Karger et al. 1997] with a linear
weighted distance measure. By using bin copies and different partitions of the hash
space, the scheme can get close to a fair distribution with high probability. A second
method, called logarithmic method, uses a logarithmic distance measure between the
bins and the data to find the corresponding bin.

All previously mentioned work is only applicable for environments where no replica-
tion is required. Certainly, it is easy to come up with proper extensions of the schemes
so that no two copies of a ball are placed in the same bin. A simple approach feasible
for all randomized strategies to replicate a ball k times is to perform the experiment k
times and to remove after each experiment the selected bin. Nevertheless, it has been
shown that the fairness condition cannot be guaranteed for these simple strategies and
that capacity will be wasted [Brinkmann et al. 2007]. This article will also evaluate
the influence of this capacity wasting in realistic settings.

The first methods with dedicated support for replication were proposed by Honicky
and Miller [2003, 2004], RUSH (Replication Under Scalable Hashing) maps replicated
objects to a scalable collection of storage servers according to user-specified server
weighting. When the number of servers changes, RUSH tries to redistribute as few
objects as possible to restore a balanced data distribution while ensuring that no two
replicas of an object are ever placed on the same server.

A drawback of the RUSH-variants is that they require that new capacity is added
in chunks, where each chunk is based on servers of the same type and the number of
disks inside a chunk has to be sufficient to store a complete redundancy group without
violating fairness and redundancy. The use of subclusters is required to overcome the
problem if more than a single block of a redundancy group is accidentally mapped to the
same hash-value. This property leads to restrictions for bigger numbers of sub-blocks.
In this case, prime numbers can be used to guarantee a unique mapping between blocks
of a redundancy group and the servers inside a chunk.

CRUSH is derived from RUSH and supports different hierarchy levels that pro-
vide the administrator finer control over the data placement in the storage environ-
ment [Weil et al. 2006b]. The algorithm accommodates a wide variety of data replication
and reliability mechanisms and distributes data in terms of user-defined policies. Con-
trary to other randomized strategies, in CRUSH replicas are mapped in a random but
deterministic manner that takes into account server capacities and cluster organiza-
tion. This lack of freedom can eventually lead to unbalanced resource utilization and
might require data relocation.

Amazon’s Dynamo [DeCandia et al. 2007] uses a variant of Consistent Hashing with
support for replication where each node is assigned multiple “tokens” (positions in the
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ring) chosen at random that are used to partition the hash space. The number of tokens
that a node is responsible for is decided based on its capacity, thus taking into account
the heterogeneity in the performance of nodes. In addition, Dynamo uses a membership
model where each node is aware of the data hosted by its peer nodes, and requires that
each node actively gossips the full routing table. Dynamo’s authors, however, claim
that scaling this design to run with tens of thousands of nodes is not easy because the
complexity of the routing table increases with the size of the system.

Brinkmann et al. [2007] have shown that a huge class of placement strategies cannot
preserve fairness and redundancy at the same time and have presented a placement
strategy for an arbitrary fixed number k of copies for each data block, which is able to
run in O(k). The strategies have a competitiveness of log n for the number of replace-
ments in case of a change of the infrastructure. This competitiveness has been reduced
to O(1) by breaking the heterogeneity of the storage systems [Brinkmann and Effert
2008]. Besides the strategies presented inside this paper, it is worth mentioning the
Spread strategy, which has similar properties to those of Redundant Share [Mense and
Scheideler 2008].

To the best of our knowledge there is only one structured analysis of the influence of
pseudorandom number generators in data distribution strategies. Popov et al. [2012]
replace the internal hash function of Consistent Hashing and Redundant Share with
several pseudorandom number generators and evaluate the strategies both in terms
of performance and quality of distribution. We decided to extend this evaluation to all
the strategies that we considered in the article.

2. RANDOMIZED DATA DISTRIBUTION

For the reader’s convenience, we present in this section a short description of the applied
data distribution strategies we will evaluate. We start with Consistent Hashing and
Share, which can, in their original form, only be applied for k = 1 (i.e., only one copy of
each data block) and therefore lack support for redundancy. Both strategies are used
as sub-strategies inside some of the investigated data distribution strategies. Besides
their usage as substrategies, we will also present a simple replication strategy, which
can be based on any of these simple strategies. Afterwards, we present Redundant
Share and RUSH, which directly support data replication.

2.1. Consistent Hashing

We start with the description of the Consistent Hashing strategy, which solves the
problem of (re-)distributing data items in homogeneous systems [Karger et al. 1997].
In Consistent Hashing, both data blocks and storage devices are hashed to random
points in a [0, 1)-interval, and the storage device closest to a data block in this space is
responsible for that data block. Consistent Hashing ensures that adding or removing
a storage device only requires a near minimal amount of data replacements to get
back to an even distribution of the load. However, the consistent hashing technique
cannot be applied well if the storage devices can have arbitrary nonuniform capacities
since in this case the load distribution has to be adapted to the capacity distribution of
the devices. The memory consumption of Consistent Hashing heavily depends on the
required fairness. Using only a single point for each storage devices leads to a load
deviation of n · log n between the least and heaviest loaded storage devices. Instead it
is necessary to use log n virtual devices to simulate each physical device, respectively
to throw log n points for each device to achieve a constant load deviation.

2.2. Share-Strategy

Share supports heterogeneous environments by introducing a two-stage process
[Brinkmann et al. 2002]. In the first stage, the strategy randomly maps one interval for
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each storage system to the [0, 1)-interval. The length of these intervals is proportional
to the size of the corresponding storage systems and some stretch factor s and can
cover the [0, 1)-interval many times. In this case, the interval is represented by several
virtual intervals. The data items are also randomly mapped to a point in the [0, 1)-
interval. Share now uses an adaptive strategy for homogeneous storage systems, like
Consistent Hashing, to get the responsible storage systems from all storage systems
for which the corresponding interval includes this point.

The analysis of the Share-strategy shows that it is sufficient to have a stretch factor
s = O(log N) to ensure correct functioning and that Share can be implemented in
expected time O(1) using a space of O(s · k · (n + 1/δ)) words (without considering the
hash functions), where δ characterizes the required fairness. Share has an amortized
competitive ratio of at most 1+ε for any ε > 0. Nevertheless, we will show that, similar
to Consistent Hashing, the memory consumption heavily depends on the expected
fairness.

2.3. Trivial Data Replication

Consistent Hashing and Share are, in their original setting, unable to support data
replication or erasure codes, since it is always possible that multiple stripes belonging
to the same stripe set are mapped to the same storage system and that data recovery
in case of failures becomes impossible. Nevertheless, it is easy to imagine strategies to
overcome this drawback and to support replication strategies by, for example, simply
removing all previously selected storage systems for the next random experiment for
a stripe set. Another approach, used inside the experiments in this article, is to simply
perform as many experiments as are necessary to get enough independent storage
systems for the stripe set. It has been shown that this trivial approach wastes some
capacity [Brinkmann et al. 2007], but we will show in this article that this amount can
often be neglected.

2.4. Redundant Share

Redundant Share has been developed to support the replication of data in heteroge-
neous environments. The strategy orders the bins according to their weights ci and
sequentially iterates over the bins [Brinkmann et al. 2007]. The basic idea is that the
weights are calculated in a way that ensures perfect fairness for the first copy and to
use a recursive descent to select additional copies. Therefore, the strategy needs O(n)
rounds for each selection process. The algorithm is log n-competitive concerning the
number of replacements if storage systems enter or leave the system. The authors of
the original strategy have also presented extensions of Redundant Share, which are
O(1)-competitive concerning the number of replacements [Brinkmann and Effert 2008]
as well as strategies, which have O(k)-runtime. Both strategies rely on Share and we
will discuss in the evaluation section why they are not feasible in realistic settings.

2.5. RUSH

The RUSH algorithms all proceed in two stages, first identifying the appropriate cluster
in which to place an object, and then identifying the disk within a cluster [Honicky
and Miller 2003, 2004]. Within a cluster, replicas assigned to the cluster are mapped to
disks using prime number arithmetic that guarantees that no two replicas of a single
object can be mapped to the same disk. The selection of clusters is a bit more complex
and differs between the three RUSH variants: RUSHP , RUSHR, and RUSHT . RUSHP
considers clusters in the reverse of the order they were added, and determines whether
an object would have been moved to the cluster when it was added; if so, the search
terminates and the object is placed. RUSHR works in a similar way, but it determines
the number of objects in each cluster simultaneously, rather than requiring a draw
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Fig. 1. Overview of Random Slicing’s data distribution. The data space is divided into intervals that are
assigned to storage devices. A storage device can be responsible for several intervals that configure the
device’s partition of the data space. The size of each partition is computed so that the amount of data
contained in it matches the capacity of the device relative to the overall storage capacity. Blocks are assigned
to intervals using a pseudo-randomized hash function that guarantees uniformity of distribution.

for each object. RUSHT improves the scalability of the system by descending a tree to
assign objects to clusters; this reduces computation time to log c, where c is the number
of clusters added.

3. RANDOM SLICING

In this section, we describe our proposal for a new data distribution strategy called
Random Slicing. This strategy tries to overcome the drawbacks of current random-
ized data distribution strategies by incorporating lessons learned from table-based
and pseudo-randomized hashing strategies. In particular, it tries to reduce the re-
quired amount of randomness necessary to keep a uniform distribution, which can
cause memory consumption problems.

3.1. Description

Random Slicing is designed to be fair and efficient both in homogeneous and heteroge-
neous environments and to adapt gracefully to changes in the number of bins. Suppose
that we have a random function h : {1, . . . , M} → [0, 1) that maps balls uniformly at
random to real numbers in the interval [0, 1). Also, suppose that the relative capacities
for the n given bins are (c0, . . . , cn−1) ∈ [0, 1)n and that

∑n−1
i=0 ci = 1.

The strategy works by dividing the [0, 1) range into intervals and assigning them to
the bins currently in the system (see Figure 1). Notice that the intervals created do not
overlap and completely cover the [0, 1) range. Also note that bin i can be responsible
for several noncontiguous intervals Pi = (I0, . . . , Ik), where k < n, which will form
the partition of that bin. To ensure fairness, Random Slicing will always enforce that∑k−1

j=0 |Ij | = ci.
In an initial phase, that is, when the first set of bins enters the system, each bin i

is given only one interval of length ci, since this suffices to maintain fairness. When-
ever new bins enter the system, however, relative capacities for old bins change due to
the increased overall capacity. To maintain fairness, Random Slicing shrinks existing
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partitions by splitting the intervals that compose them until their new relative capaci-
ties are reached. The new intervals generated are used to create partitions for the new
bins.

First, the strategy computes by how much partitions should be reduced in order
to keep the fairness of the distribution. Since the global capacity has increased, each
partition Pi must be reduced by ri = ci − c′

i, where c′
i corresponds to the new relative

capacity of bin i.
Partitions become smaller by releasing or splitting some of their intervals, thus

generating gaps, which can be used for new intervals. This way, the partition lengths
for the old bins already represent their corresponding relative capacities and it is only
necessary to use these gaps to create new partitions for the newly added bins.

The time efficiency and the memory consumption of the strategy, of course, cru-
cially depend on the maximum number of intervals being managed. In the following
theorems, we derive a worst-case upper bound for this number.1

THEOREM 3.1. Assume an environment where storage systems can only be added. In
this case, adding n storage systems leads to at most (1/2) · n · (n + 1) intervals.

PROOF. We use an induction technique to prove the theorem. For the base case,
it holds that adding the first storage system leads to 1 interval and it holds that
(1/2) · 1 · 2 = 1. In the following, we show the inductive step from change n to change
(n+1). We show that adding a new storage system leads to at most n new intervals and
that therefore the number of intervals after the insertion is at most (1/2) ·n·(n+1)+n =
(1/2) · (n2 + 3n) ≤ (1/2) · (n2 + 3n+ 2) = (1/2) · (n+ 1)(n+ 2), which is the inductive step.

The number of intervals is smaller than n before a new storage system is added.
Then, a part of the intervals of each storage system already within the system has to
be assigned to the new storage system. Assume now for each existing storage system
that we pick an arbitrary interval first. If the size of this interval is smaller than the
interval length, which has to be assigned to the new storage system, we assign the
complete interval to the new storage system. The number of intervals does not change
in this case and we continue with the next intervals until we reach one interval which
cannot be completely assigned to the new storage system. In this case, we split this
interval and assign one part to the new storage system and keep the other for the
previously existing one. Therefore, the number of interval increases by at most one for
each previously existing storage system (or stays constant if the last assigned interval
will be completely assigned to the new storage system).

In the following, we investigate an environment where storage systems can also
be removed. We assume in the following that the number of storage systems is not
decreasing for a long time in a typical storage environment and that new storage
systems are always bigger than storage systems which have been removed. We call a
situation, where at most as many storage systems, as have been previously removed,
have been added to the environment steady state.

THEOREM 3.2. Assume that there have been at most n storage systems in the environ-
ment. Then the number of intervals will be smaller than (1/2) · n · (n + 1) in the steady
state.

PROOF. Assume that k storage systems have been removed and no new storage sys-
tems have been added. In this case it can occur that the number of intervals becomes

1Notice, however, that the theorem assumes a worst-case scenario where storage systems are added one by
one and that, as we will see in Section 5, an appropriate algorithm can significantly reduce the number of
intervals if several storage systems are added in bulk.
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bigger than (1/2) · n · (n + 1). Now assume that at least k new storage systems have
been added to the environment and the system is back in a steady state. We will show
in this case that the number of intervals is at most (1/2) · n · (n + 1), where n is the
number of all storage systems, which have previously been part of the environment.
We use a technique inspired by the zero-height-strategy proposed in Brinkmann et al.
[2000] and assign first all intervals, which have been previously assigned to the re-
moved storage system, to the new storage systems. This is possible as the new storage
systems are at least as big as the removed storage systems. If the new storage systems
are bigger than the removed ones, additional intervals lengths have to be assigned to
them. In this case, we just assign the remaining capacity in the same way as performed
in Theorem 3.1.

3.2. Interval Creation Algorithm

The goal of the interval creation algorithm is to split existing intervals in a way that
allows new intervals to be created while maintaining the relative capacities of the
system. Note that the strategy’s memory consumption directly depends on the number
of intervals used and, therefore, the number of new intervals created in each addition
phase can hamper scalability. We briefly explain two interval creation strategies and
two variants.

—Greedy. This algorithm tries to collect as many complete intervals as possible and
will only split an existing interval as a last resort. Furthermore, when splitting an
interval is the only option, the algorithm tries to expand any adjacent gap instead of
creating a new one. Once enough gaps are collected to produce an even distribution,
they are assigned sequentially to new partitions.

—CutShift. This algorithm also tries to collect as many complete intervals as possible,
but, when it is necessary to split an interval, alternates between splitting it by the
beginning or by the end in an attempt to maximize gap length. Once enough gaps
are collected to produce an even distribution, they are assigned sequentially to new
partitions.

—Greedy+Sorted. A variant of Greedy where the largest partitions are assigned greed-
ily to the largest gaps available.

—CutShift+Sorted. A variant of CutShift where the largest partitions are assigned
greedily to the largest gaps available.

Note that these strategies are intentionally simple since our intention is that interval
reorganizations can be computed as fast as possible in order to reduce the reconfigura-
tion time of the storage system.

An example of the CutShift+Sorted reorganization is shown in Figure 2, where two
new bins B3 and B4, representing a 33% capacity increase, are added to the bins B0,
B1, and B2. Figure 2(a) shows the initial configuration and the relative capacities for
the initial bins. Figure 2(b) shows that the partition of B0 must be reduced by 0.06,
the partition of B1 by 0.11, and the one of B2 by 0.16, whereas two new partitions
with a size of 0.14 and 0.19 must be created for B3 and B4. The interval [0.1, 0.2) ∈ B1
can be completely cannibalized, whereas the intervals [0.0, 0.1) ∈ B0, [0.2, 0.6) ∈ B2
and [0.7, 0.9) ∈ B1 are split while trying to maximize gap lengths. Figure 2(c) shows
that the partition for B3 is composed of intervals [0.23, 0.36) and [0.7, 0.71), while the
partition for B4 consists only of interval [0.04, 0.23).

3.3. Data Lookup

Once all partitions are created, the location of a data item/ball b can be easily deter-
mined by calculating x = h(b) and retrieving the bin associated with it. Notice that
some balls will change partition after the reorganization, but as partitions always
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Fig. 2. Example of the CutShift+Sorted algorithm. Two new devices B3 and B4 are added to the system,
representing a capacity increase of 14% and 19%, respectively. The algorithm computes the new relative
capacities (ci) of each partition and proceeds to create gaps by either assimilating or slicing intervals.
Interval [0.1, 0.2) is completely assimilated, while intervals [0.0, 0.1) and [0.2, 0.6) are cut. Note how the
algorithm shifts the cutting point to the beginning or the end of the interval to increase the length of the
gap. When all gaps are created the largest partitions are assigned to the largest intervals.

match their ideal capacity, only a near minimal amount of balls will need to be reallo-
cated. Furthermore, if h(b) is uniform enough and the number of balls in the system is
significantly larger than the number of intervals (both conditions easily feasible), the
fairness of the strategy is guaranteed.

3.4. Fault Tolerance

As explained in Section 2.3, Random Slicing provides fault tolerance to data loss by
using data replication. In order to ensure data resilience, and given a block identifier,
the strategy simply needs to perform as many random experiments as needed to get
enough independent partitions to place each replica. In the worst case, this trivial
approach can have a negative effect in performance (due to a potentially high num-
ber of random experiments) and fairness (due to an unbalanced placement of copies).
Nevertheless, as we will see in Section 6, the practical impact is neglectable.

Concerning metadata, the interval table should be safe-guarded at all costs, since it is
the key element that allows clients to locate data blocks. Nevertheless, for performance
reasons it should be kept in memory in order to be able to locate the appropriate
partitions efficiently, which could cause problems in case of unexpected shutdowns or
node failures. In case of metadata loss, the strategy could recover in three ways:

(1) A client node could rebuild the interval table simply by replaying the successive
changes in devices (and capacity) made to the storage system. This data could be
kept in an external log, or could be provided by the system administrator if needed.

(2) As we will see in Section 5, the memory footprint of the interval table is small even
for tens of thousands of storage devices. Since the interval table is only modified
when changes are made to the storage system, it would be reasonable to keep a
backup copy of the table in secondary storage.

(3) All client nodes must have an in-memory copy of the interval table in order to
access the storage system; it would be easy to transfer this information from an
active client to a newly recovered one.
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3.5. Extensions

Note that up to now we have discussed Random Slicing’s capability to distribute data
blocks according to the relative capacities of the storage system’s devices. Nevertheless,
it is also possible to distribute data according to any other metrics devised by the system
administrator. For instance, Random Slicing could be used to monitor I/O workload or
power efficiency by simply defining an appropriate parameter to model the relative I/O
load of each device or its relative power consumption.

By increasing or reducing these parameters, the administrator could control how
many intervals are assigned to each storage device and thus redistribute the data load
to other devices when I/O bottlenecks were detected or when a device needed to be spun
down/turned off.

This kind of extensions are more dynamic in nature than a change in capacity and,
as such, pose additional challenges like a more frequent update of the data structure in
charge of partitions, or increased data migration. It remains to see, however, if Random
Slicing’s current techniques would be effective in such a dynamically changing environ-
ment but this falls beyond the scope of this article and is a subject of future research.

4. METHODOLOGY

Most previous evaluations of data distribution strategies are based on an analytical
investigation of their properties. In contrast, we will use a simulation environment
to examine the real-world properties of the investigated protocols. The simulation
environment has been developed by the authors of this article and is available online.2
This collection also includes the parameter settings for the individual experiments
described in the article.

First, we evaluate the scalability of Random Slicing with the different interval cre-
ation algorithms proposed in Section 3.2. This way, we will determine how well the
strategy scales and we will select the best algorithm for the rest of the simulations.

Second, we run experiments for all distribution strategies described in Section 2 in
an environment that scales from a few storage systems up to thousands of devices.
We evaluate these strategies in terms of fairness, adaptivity, performance and memory
consumption and compare the results with those of Random Slicing.

Third, we measure the impact of the randomization function on distribution quality
and performance. We run several simulations where we change the pseudorandom
number generator used by each strategy. Each experiment measures the changes in
fairness and performance of each strategy.

All experiments assume that each storage node (also called storage system in the
following) consists of 16 hard disks (plus potential disks to add additional intra-shelf
redundancy). Besides, most experiments distinguish between a homogeneous setting
(all devices have the same capacity) and a heterogeneous settings (the capacity of
devices varies).

In all experiments described but those of Section 7, the implementations of Consis-
tent Hashing, Share and Redundant Share use a custom implementation of the SHA1
pseudo-random number generator [Eastlake and Jones 2001]. The RUSH∗ variants use
the William-Hill generator, while the implementation of Random Slicing uses Thomas
Wang’s 64 bit mixing function [Wang 2007].

5. SCALABILITY OF RANDOM SLICING

Random Slicing’s performance and memory consumption largely depends on how well
the number of intervals scales when there are changes in the storage system. An

2http://dadisi.sourceforge.net.
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Fig. 3. Percentage of new intervals created. Each step adds as many homogeneous or heterogeneous devices
as necessary to reach the target capacity increase (i.e., 10%, 50%, and 80%). In the case of heterogeneous
devices, the capacity of each device is increased by 1.5.

excessive amount of new intervals can render the strategy useless due to memory or
performance constraints. In this section, we evaluate the different interval creation
algorithms proposed in Section 3.2 and measure how well they scale.

Figure 3 plots the percentage of new intervals created when adding devices to the
storage system. The evaluation begins with 50 devices and adds, in each step, as much
new devices as needed to increase the overall capacity of the system by 10%, 50%, or
80%. We evaluate a homogeneous setting where all the devices added have the same
capacity, as well as a heterogeneous setting where the capacity of new devices increases
by a factor of 1.5 in each step. In order to test long-term scalability, we continuously
add devices until we surpass 25,000 devices.

Figures 3(a), 3(c), and 3(e) depict the evaluation results for the homogeneous setting,
while Figures 3(b), 3(d), and 3(f) show the results for the heterogeneous setting. All four
algorithms behave similarly in all experiments, which is to be expected as the number of
intervals is not directly related to the capacity of the devices. All show an initial phase
where adding devices leads to a high percentage of new intervals, with the Greedy
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algorithm even doubling the number of intervals in the first addition phase. This is not
surprising since initially the number of intervals to work with is small, which limits
the capability of the algorithms to create large gaps and increases the number of new
intervals. This also explains why CutShift is more successful at reducing the number
of new intervals than Greedy, since it is able to create larger gaps.

Assigning the largest partitions to the largest gaps also has some influence in reduc-
ing the number of new intervals, as the results for Greedy+Sorted and CutShift+Sorted
show when comparing them against the non-sorted variants.

Note that once the algorithms have enough intervals to work with, they are sig-
nificantly more effective: depending on the target increase in capacity, all strategies
are able to reduce the number of new intervals to around 10%, 50%, or 80% per step,
respectively, and keep it steady even after more than 10 reorganizations. Interestingly
enough, the number of new intervals created roughly corresponds to the increase in
capacity, regardless of the number of devices added.

Figure 4 shows the total number of intervals created by each algorithm. As expected,
the CutShift algorithms produce a substantial reduction in the number of intervals
when compared to the Greedy algorithms: by the end of each homogeneous exper-
iment, CutShift algorithms produce ∼30,000, ∼12,000 and ∼9,000 fewer intervals
than Greedy algorithms (Figures 4(a), 4(c), and 4(e), respectively). In the heteroge-
neous experiments, this reduction amounts to ∼30,000, ∼15,000, and ∼8,000 intervals
(Figures 4(b), 4(d), and d(f), respectively).

We also observe that, by the end of the experimental runs, the number of intervals
grows considerably: for instance, the system depicted in Figures 4(a) and 4(b) needs
3 × 105 intervals after its 23rd reorganization. Such a number of intervals, though sig-
nificant, can be effectively managed using an appropriate segment tree [Bentley 1977]
structure, which has a storage cost of O(n · log n) and a lookup cost of O(log n) [De Berg
et al. 2008], where n is the number of intervals. Using this structure, the worst case
memory requirement for 3 × 105 intervals is ∼167MB,3 which seems acceptable for
over 25,000 devices and can be computed in a matter of minutes.

Based on this evaluation, we select the CutShift+Sorted as our management algo-
rithm, which gives good results both in the initial and the stable phase. From now on,
every evaluation of Random Slicing will use this algorithm. For the sake of completion,
Algorithm 1 shows the pseudocode for this mechanism.

6. EVALUATION OF RANDOMIZED STRATEGIES

The following section evaluates the impact of the different distribution strategies on
the data distribution quality, the memory consumption of the different strategies, their
adaptivity and performance.

6.1. Experimental Setup

We assume that each storage system in the homogeneous setting can hold up to
k · 500,000 data items, where k is the number of copies of each block. Assuming a
hard disk capacity of 1 TByte and putting 16 hard disks in each shelf means that each
data item has a size of 2 MByte. The number of placed data items is k · 250,000 times
the number of storage systems. In all cases, we compare the fairness, the memory con-
sumption, as well as the performance of the different strategies for a different number
of storage systems.

In the heterogeneous setting we begin with 128 storage systems and we add 128 new
systems in each step, each with 3/2 times the size of the previously added system. We
are placing again half the number of items, which saturates all disks.

3Assuming each node needs 32 bytes: 2 pointers for child trees and 2 integers for interval ranges.
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Fig. 4. Total number of intervals created. Each step adds as many homogeneous or heterogeneous devices
as necessary to reach the target capacity increase (i.e., 10%, 50%, and 80%). In the case of heterogeneous
devices, the capacity of each device is increased by 1.5.

For each of the homogeneous and heterogeneous tests, we also count the number
of data items, which have to be moved in case we are adding disks, so that the data
distribution delivers the correct location for a data item after the redistribution phase.
The number of moved items has to be as small as possible to support dynamic environ-
ments, as the systems typically tend to a slower performance during the reconfiguration
process.

We will show that the dynamic behavior can be different if the order of the k copies
is important, e.g., in case of parity RAID, Reed-Solomon codes, or EvenOdd-Codes, or if
this order can be neglected in case of pure replication strategies [Patterson et al. 1988;
Blaum et al. 1994; Corbett et al. 2004].

All graphs presented in the section contain four bars for each number of storage
systems, which represent the experimental results for one, two, four, and eight copies
(please see Figure 5 for the color codes in the legend). The white boxes in each bar
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ALGORITHM 1: CutShift Gap Collection Algorithm
Input : Bins = {b0, . . . , bn−1, bn, . . . , bp−1} such that b0, . . . bn−1 are the capacities for old

bins and bn . . . bp−1 are the capacities for new bins
Input : Intervals = {I0, . . . , Iq−1}
Output : Gaps = {G0, . . . , Gm−1}
Require: (p > n) ∧ (q ≥ n)

1 begin
2 ∀i ∈ {0, . . . , n − 1} : ci ←− bi/

∑n−1
j=1 bj

3 ∀i ∈ {0, . . . , p − 1} : c′
i ←− bi/

∑p−1
j=1 bj

4 ∀i ∈ {0, . . . , n − 1} : ri ←− BlockCount(ci − c′
i)

5 Gaps ←− ∅
6 foreach i ∈ Intervals do
7 b ←− bin assigned to i
8 g ←− last gap from Gaps
9 if rb > 0 then

10 if Length(i) < rb then
11 if Adjacent(g, i) then
12 g.end ←− g.end + Length(i)
13 else
14 Gaps ←− Gaps + {i.start, i.end}
15 end
16 rb ←− rb − Length(i)
17 if last interval was assimilated completely then
18 cut interval end ←− False
19 end
20 else
21 if Adjacent(g, i) then
22 g.end ←− g.end + Length(i)
23 else
24 if cut interval end then
25 Gaps ←− Gaps + {i.end − rb, i.end}
26 else
27 Gaps ←− Gaps + {i.start, i.start + rb}
28 end
29 end
30 rb ←− 0
31 cut interval end ←− ¬cut interval end
32 end
33 end
34 end
35 end

represent the range of results, for example, between the minimum and the maximum
usage. Also, the white boxes include the standard deviation for the experiments. Small
or non-existing white boxes indicate a very small deviation between the different ex-
periments.

6.2. Fairness

The first simulations evaluate the fairness of the strategies for different sets of ho-
mogeneous disks, ranging from 8 storage systems up to 8,192 storage systems (see
Figure 5). Notice that there are some missing results for Consistent Hashing, Share
and Redundant Share. These correspond to configurations that took too much time to
evaluate or used more resources than available.
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Fig. 5. Fairness of the data distribution strategies (homogeneous setting).

Consistent Hashing has been developed to evenly distribute one copy over a set of
homogeneous disks of the same size. Figure 5(a) shows that the strategy is able to fulfill
these demands for the test case, in which all disks have the same size. The difference
between the maximum and the average usage is always below 7% and the difference
between the minimum and average usage is always below 6%. The deviation is nearly
independent from the number of copies as well as from the number of disks in the
system, so that the strategy can be reasonably well applied. We have thrown 400 · log n
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Fig. 6. Influence of point number on Consistent Hashing.

Fig. 7. Fairness of Share depending on stretch factor.

points for each storage system (please see Section 2.1 for the meaning of points in
Consistent Hashing).

The fairness of Consistent Hashing can be improved by throwing more points for
each storage system (see Figure 6 for an evaluation with 64 storage systems). The
evaluation shows that initial quality improvements can be achieved with very few
additional points, while further small improvements require a high number of extra
points per storage system. 400 · log n points are 2400 points for 64 storage systems,
meaning that we are already using a high number of points, where further quality
improvement becomes very costly.

Share has been developed to overcome the drawbacks of Consistent Hashing for
heterogeneous disks. Its main idea is to (randomly) partition the disks into intervals
and assign a set of disks to each interval. Inside an interval, each disk is treated as
homogeneous and strategies like Consistent Hashing can be applied to finally distribute
the data items.

The basic idea implies that Share has to compute and keep the data structures
for each interval. 1,000 disks lead to a maximum of 2,000 intervals, implying 2,000
times the memory consumption of the applied uniform strategy. On the other hand, the
number of disks inside each interval is smaller than n, which is the number of disks in
the environment. The analysis of Share shows that on average c · log n disks participate
in each interval (see Section 2.2, without loss of generality we will neglect the additional
1
δ

to keep the argumentation simple). Applying Consistent Hashing as homogeneous
strategy therefore leads to a memory consumption, which is in O(n · log2 n · log2(log n))
and therefore only by a factor of log2(log n) bigger than the memory consumption of
Consistent Hashing.

Unfortunately, it is not possible to neglect the constants in a real implementation.
Figure 5(b) shows the fairness of Share for a stretch factor of 3 · log n, which shows
huge deviations even for homogeneous disks. A deeper analysis of the Chernoff-bounds
used in Brinkmann et al. [2002] shows that it would have been necessary to have a
stretch factor of 2,146 to keep fairness in the same order as the fairness achieved with
Consistent Hashing, which is infeasible in scale-out environments.
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Fig. 8. Fairness of the data distribution strategies (heterogeneous setting).

Simulations including different stretch factors for 64 storage systems for Share are
shown in Figure 7, where the x-axis depicts the stretch factor divided by ln n. The fair-
ness can be significantly improved by increasing the stretch factor. Unfortunately, a
stretch factor of 32 already requires in our simulation environment more than 50 GByte
main memory for 64 storage systems, making Share impractical in bigger environ-
ments. In the following, we will therefore skip this strategy in our evaluations.

Redundant Share uses precomputed intervals for each disk and therefore does not
rely too much on randomization properties. The intervals exactly represent the share of
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each disk on the total disk capacity, leading to a very even distribution of the data items
(see Figure 5(d)). The drawback of this version of Redundant Share is that it has linear
runtime, possibly leading to high delays in case of huge environments. Brinkmann and
Effert [2008] have presented enhancements, which enable Redundant Share to have a
runtime in O(k), where k is the number of copies. Redundant Share in O(k) requires
a huge number of Share instances as sub-routines, making it impractical to support a
huge number of disks and a good fairness at the same time. Figure 5(c) shows that it
is even difficult to support multiple copies for more than 64 disks, even if the required
fairness is low, as 64 GByte main memory have not been sufficient to calculate these
distributions. Therefore, we will also neglect Redundant Share with runtime in O(k)
in the following measurements.

RUSHP , RUSHT , and RUSHR place objects almost ideally according to the appro-
priate weights, though the distribution begins to degrade as the number of disks grows
(see Figures 5(e), 5(f), and 5(g)). Interestingly, however, this deviation from the ideal
load decreases when the number of copies increases, which might imply that the hash
function is not as uniform as expected and needs more samples to provide an even
distribution.

In Random Slicing, precomputed partitions are used to represent a disk’s share of
the total system capacity, in a similar way to Redundant Share’s use of intervals. This
property, in addition to the hash function used, enforces an almost optimal distribution
of the data items, as shown in Figure 5(h).

The fairness of the different strategies for a set of heterogeneous storage systems is
depicted in Figure 8. As described in Section 6.1, we start with 128 storage systems
and add every time 128 additional systems having 3/2-times the capacity of the previ-
ously added. Once again, missing results in Redundant Share and RUSH∗ are due to
configurations too expensive in terms of the computing power available.

The fairness of Consistent Hashing in its original version is obviously very poor (see
Figure 8(a)). Assigning the same number of points in the [0, 1)-interval for each storage
system, independent of its size, leads to huge variations. Simply adapting the number
of points based on the capacities leads to much better deviations (see Figure 8(b)).
The difference between the maximum, respectively minimum and the average usage
is around 10% and increases slightly with the number of copies. In the following, we
will always use Consistent Hashing with an adaptive number of copies, depending on
the capacities of the storage systems.

Both Redundant Share and Random Slicing show again a nearly perfect distribution
of data items over the storage systems, due to their precise modeling of disk capacities
and the uniformity of the distribution functions (see Figures 8(c) and 8(g), respectively).

The fairness provided by RUSHP degrades steadily after the fourth reconfigura-
tion. In contrast, RUSHT delivers a perfect data distribution, even when it was
unable to do so in a homogeneous setting (see Figures 8(d) and 8(f), respectively).
Figure 8(e), however, shows that RUSHR does a good distribution job for 1, 2, and
4 copies but degrades with 8 copies showing important deviations from the optimal
distribution.

6.3. Memory Consumption and Compute Time

The memory consumption as well as the performance of the different data distribution
strategies have a strong impact on the applicability of the different strategies. We
assume that scale-out storage systems mostly occur in combination with huge cluster
environments, where the different cores of a cluster node can share the necessary data
structures for storage management. Assuming memory capacities of 192 GByte per
node in 2015 [Amarasinghe et al. 2010], we do not want to waste more than 10% or
approximately 20 GByte of this capacity for the metadata information of the underlying
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Fig. 9. Memory consumption and performance of the data distribution strategies (heterogeneous setting).

storage system. Furthermore, we assume access latencies of 5 ms for magnetic storage
systems and access latencies of 50 μs for solid state disks. These access latencies set an
upper limit on the time allowed for calculating the translation from a virtual address
to a physical storage system.

As described in Section 6.1, all experiments begin with 128 storage systems and add
128 additional systems in every scaling operation, each with 3/2 times the capacity of
the previously added systems. During each test, we measure the memory used in each
configuration as well as the performance of each request.
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Fig. 10. Adaptivity of the data distribution strategies in a heterogeneous setting.

The bars in Figure 9 represent the average allocated memory and the white bars on
top the peak consumption of virtual memory over the different tests. The points in that
figure represent the average time required for a single request. These latencies include
confidence intervals.

The memory consumption of Consistent Hashing only depends on the number and
kind of disks in the system, while the number of copies k has no influence on it (see
Figures 9(a) and 9(b)). In Figure 9(b) we are throwing 400 · log n points for the smallest
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disk, and the number of points for larger disks grows proportionally to their capacity,
which is necessary to keep fairness in heterogeneous environments. Using 1,280 het-
erogeneous storage systems requires a memory capacity of nearly 9 GByte, which is
still below our limit of 20 GByte.

The time to calculate the location of a data item only depends on the number of copies,
as Consistent Hashing is implemented as a O(1)-strategy for a single copy. The number
of copies has only an influence for a small number of storage systems, for example, it
needs significant more time to place 8 copies if it only uses 8 storage systems. The
reason for this is how we chose to implement redundancy: we generate new random
values into the [0, 1) ring until we find k different disks, which can take quite long
in case of hash collisions. Therefore, this proves that it is possible to use Consistent
Hashing in scale-out environments based on solid state drives, as the average latency
for the calculation of a single data item stays below 10 μs.

Redundant Share has very good properties concerning memory usage, but the com-
putation time grows linearly in the number of storage systems. Even the calculation of
a single item for 128 storage systems takes 145 μs. Using 8 copies increases the average
access time for all copies to 258 μs, which is 50 μs for each copy, making it suitable for
mid-sized environments, that are based on SSDs. Increasing the environment to 1280
storage systems raised the calculation time almost linearly for a single copy to 669 μs,
which is reasonable in magnetic-disk-based environments.

All RUSH variants show good results both in memory consumption and in com-
putation time (see Figures 9(d), 9(e), and 9(f)), being RUSHR the strategy with the
lowest computation time. The reduced memory consumption is explained because the
strategies do not need a great deal of in-memory structures in order to maintain the in-
formation about clusters and storage nodes. Lookup times depend only on the number
of clusters in the system, which can be kept comparatively small for large systems.

Random Slicing shows very good behavior concerning memory consumption and
computation time, as both only depend on the number of intervals I currently managed
by the algorithm (see Figure 9(g)). In order to compute the position of a data item x, the
strategy only needs to locate the interval containing fB(x), which can be done in O(log I)
using an appropriate tree structure. Furthermore, the algorithm strives to reduce the
number of intervals created in each step in order to minimize memory consumption as
much as possible. In practice, this yields an average access time of 5 μs for a single
data item and 13 μs for 8 copies, while keeping a memory footprint similar to that of
Redundant Share.

6.4. Adaptivity

Adaptivity to changing environments is an important requirement for data distribution
strategies and one of the main drawbacks of standard RAID approaches. Adding a
single disk to a RAID system typically either requires the replacement of all data
items in the system or splitting the RAID environment into multiple independent
domains.

The theory behind randomized data distribution strategies claims that these strate-
gies are able to compete with a best possible strategy in an adaptive setting. This
means that the number of data movements to keep the properties of the strategy after
a storage system has been inserted or deleted can be bounded against the best possible
strategy. We assume in the following that a best possible algorithm just moves as much
data from old disks to new disks, respectively, from removed disks to remaining disks,
as necessary to have the same usage on all storage systems. All bars in Figure 10 have
been normalized to this definition of an optimal algorithm.

Furthermore, we distinguish between placements, where the ordering of the data
items is relevant and where it is not. The first case occurs, for example, for standard
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Fig. 11. Fairness of Consistent Hashing for fixed number of points in a heterogeneous setting.

parity codes, where each data item has a different meaning (labeled “moved keeping
order” in Figure 10). If a client accesses the third block of a parity set, then it is
necessary to receive exactly that block. In contrast, the second case occurs for RAID 1
sets, where each copy has the same content and receiving any of this blocks is sufficient
(labeled “moved changing order”). We will see in the following that not having to keep
the order strongly simplifies the rebalancing process.

We start our tests in all cases with 128 storage systems and increase the number of
storage systems by 1, 2, 3, 5, 7, 11, or 13 storage systems. The new storage systems
have 1,5-times the capacity of the original system.

The original Consistent Hashing paper shows that the number of replacements is
optimal for Consistent Hashing by showing that data is only moved from old disks
to new disks in case of the insertion of a storage system or from a removed disk to
old disks in the homogeneous setting [Karger et al. 1997]. Figure 10(b) shows a very
different behavior, the number of data movements is sometimes more than 20-times
higher than necessary. The reason is that we are placing 400 · �log n� points for each
storage system and �log n� increases from 7 to 8 when adding storage system number
129. This leads to a large number of data movements between already existing storage
systems. Furthermore, the competitiveness strongly depends on whether the ordering
of the different copies has to be maintained or not.

Figure 10(a) shows the adaptivity of Consistent Hashing in case that the number
of points is fixed for each individual storage system and only depends on its own
capacity. We use 2,400 points for the smallest storage system and use a proportional
higher number of points for bigger storage systems. In this case, the insertion of new
storage systems only leads to data movements from old systems to the new ones and
not between old ones and therefore the adaptivity is very good in all cases. Figure 11
shows that the fairness in this case is still acceptable even in a heterogeneous setting.

The adaptivity of Redundant Share for adding new storage systems is nearly optimal,
which is in line with the proofs presented in Brinkmann et al. [2007]. Nevertheless,
Redundant Share is only able to achieve an optimal competitiveness if a new storage
system is inserted that is at least as big as the previous ones. Otherwise, it can happen
that Redundant Share is only log n-competitive (see Figure 10(c)).

Figure 10 shows that RUSH variants adapt nearly optimally when storage nodes
are added. Note, however, that we did not evaluate the effect on replica ordering be-
cause the current implementations do not support replicas as distinct entities. Instead,
RUSH variants distribute all replicas within one cluster. Note also that the miss-
ing columns in the results correspond to configurations not accepted in the current
implementation.

Figure 10(g) shows that the adaptivity of Random Slicing is very good in all cases.
This is explained because intervals for new storage systems are always created from
fragments of old intervals, thus forcing data items to migrate only to new storage
systems.
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Table II. Properties of the Examined Strategies in Heterogeneous Environments

Strategy Fairness Memory usage Lookup time Adaptivity

Consistent Hashing (fixed) Poor
(δ ↑ with n)

High
(μ ≈ 800MB)

Moderate
(τ ≈ 50μs)

Good
(α ≈ 7% )

Consistent Hashing (adapt.) Moderate
(δ ≈ 10%)

High
(μ ≈ 8GB)

High
(τ ≈ 98μs)

Poor
(α ≈ 1172%)

Redundant Share Good
(δ ≈ 0.36%)

Low
(μ ≈ 5MB)

Very High
(τ ≈ 1800μs)

Good
(α ≈ 0.08%)

RUSHP Poor
(δ ↑ with n)

Low
(μ ≈ 9MB)

Very High
(τ ≈ 400 μs)

Very Good1

(α ≈ 0.001%)

RUSHR Good, if k <

8
(δ ≈ 0.22%)
Poor, if k = 8
(δ ↑ with n)

Low
(μ ≈ 9MB)

Low
(τ ≈ 14 μs)

Very Good1

(α ≈ 0.001%)

RUSHT Good
(δ ≈ 0.36%)

Low
(μ ≈ 9MB)

Very High
(τ ≈ 300 μs)

Very Good1

(α ≈ 0.05%)

Random Slicing Good
(δ ≈ 0.4%)

Low
(μ ≈ 4.5MB)

Low
(τ ≈ 14 μs)

Good
(α ≈ 1.63%)

Definitions used: n, number of devices; k, number of copies; δ, average deviation from ideal load; μ, worst-case
memory consumption; τ , worst-case lookup time; α, worst-case deviation from ideal number of movements.
1The implementation evaluated does not support replicas as distinct entities.

6.5. Summary

We conclude this section with a brief qualitative overview of the results collected.
Table II summarizes our observations on the evaluated strategies, for all the properties
examined. Where available, we provide either average or worst case values of every
parameter examined in order to give a general view of each strategy’s strong points
and weaknesses.

7. IMPORTANCE OF THE RANDOMIZATION FUNCTION

As we have seen, one of the most efficient ways to achieve a balanced data load is using
hashing techniques to distribute data. This relies on the intrinsic connection that exists
between randomness and evenness of distribution [Azar et al. 1999; Raab and Steger
1998].

In practice, however, real randomness cannot be (easily) achieved, which forces us to
rely on pseudo-random number generators (PRNGs) in order to implement the required
hashing functions.

There are two main requirements which have to be fulfilled by these pseudorandom
number generators in order to be used as a data distribution function.

(1) The computation time for each data value should be as small as possible.
(2) The pseudorandom hash functions should distribute input data as evenly as

possible.

In this section, we evaluate different PRNGs and determine how they affect the over-
all performance and fairness of the data distribution strategies examined in this article.

7.1. Background

A PRNG is a deterministic algorithm that generates a sequence of numbers
Xn = {u0, u1, . . . , un} that approximates the properties of truly random numbers. Ob-
viously, numbers generated deterministically cannot be truly random, but it is usually
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sufficient that finite segments of the sequence behave in a manner indistinguishable
from an actual random sequence. Nevertheless, since Xn is usually constructed based
on a finite state (or “seed”) it will eventually be periodic, that is, there exists a positive
integer p such that un+p = un for a sufficiently large n. That minimal p is called the
generator’s period and it is important that it is much larger than the number of random
numbers that will ever be used.

Based on the mathematical approach used to generate Xn, PRNGs can be roughly
classified as follows.

Linear congruential (LC) generators are one of the oldest and best known PRNG
algorithms [Lehmer 1951]. They are very popular because they tend to be very efficient
and easy to implement, and are included in the runtime libraries of various compilers.
The sequence of pseudorandom integers Xn is defined by the recurrence

Xn+1 ≡ (a · Xn + c) mod m, (1)

where X0 is the “seed” or start value, m > 0 is the “modulus”, a is the “multiplier”
(0 < a < m) and c is an additive constant or “increment” (0 <= c < m).

LCs are capable of producing pseudorandom numbers of decent quality, but they are
extremely sensitive to the values chosen for c, m and a [Brent 1992]. In particular, LCs
provide the best results if: (1) c and m are relatively prime4; (2) a − 1 is divisible by all
prime factors of m; (3) a − 1 is a multiple of 4 [Knuth 1997; Severence 2009].

Multiplicative congruential (MC) generators are a variant of LCs that operate in a
multiplicative group of integers modulo n. The sequence of pseudorandom integers X
can be generally defined as

Xn+1 ≡ a · Xn mod m, (2)

where m is usually chosen to be either a prime number or a power of a prime number.
The multiplier a is chosen to be an element of high multiplicative order5 modulo m and
the seed is relatively prime to m.

Inversive congruential (IC) generators are a type of nonlinear congruential PRNG
algorithms that use the modular multiplicative inverse to generate the sequence of
values. The general formula for an ICG is:

{
Xn+1 ≡ (a · X−1

n + c) mod m if Xn �= 0
Xn+1 = c if Xn = 0.

(3)

Similarly to LCs and MCs, m is chosen to be a prime number for best results. Sequences
of integers produced by ICGs have the advantage of being free of undesirable statistical
deviations, and an algorithm is known [Chou 1995] to maximize period length.

Lagged Fibonacci (LF) generators are an improvement over the “standard” LCs, that
are based on a generalization of the Fibonacci sequence:

Xn+1 ≡ Xn−rθ Xn−s mod m (4)

for fixed “lags” r and s (0 < r < s) and where θ is some binary operator (addition,
subtraction, multiplication or the bitwise arithmetic exclusive-or operator). For these
generators, m is usually a power of 2. LFs are very sensitive to initial conditions and
may show statistical defects in the output sequence if inappropriate parameters are
used.

4gcd(a, b) = 1.
5The multiplicative order of a modulo n is the smallest positive integer k with ak ≡ 1 mod n.
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Subtract with carry (SWC) generators [Marsaglia and Zaman 1991] are a subclass
of LFs that generates a sequence of numbers using the following recurrence:

Xn+1 ≡ (Xn−r − Xn−s − cn−1) mod m,

cn =
{

1 if xn−s − xn−r − ci−q < 0
0 if xn−s − xn−r − ci−q ≥ 0.

(5)

Generalized feedback shift register (GFSR) generators are defined by a map f : Fd
q →

Fd
q of the form

f (x0, . . . , xn−1) = (x1, x2, . . . , xn),
xn = C(x0, . . . , xn−1), (6)

where C : Fd
q → Fq is a given function. Since the operation on previous values is

deterministic, the next value of the sequence is completely determined by its current
(or previous) state. Likewise, because the register has a finite number of possible states,
it must eventually enter a repeating cycle. Depending on the intended application
however, a well-chosen feedback function can produce a sequence of bits which appears
random and which has a very long cycle. Note that when C is of the form

C(x0, . . . , Xn−1) = a0 · x0 + · · · + an−1 · xn−1 (7)

for some given constants ai ∈ Fq, the map is called a linear feedback shift register
(LFSR). The most commonly used linear function of single bits is the binary exclusive-
or operation.

Cryptographic hash functions. A cryptographic hash function H is an algorithm that,
given an arbitrary block of data, returns a cryptographic hash value h such that any
change to the data modifies h. That is, for any two distinct inputs A and B, H(A) and
H(B) should be uncorrelated.

Though not a PRNG per se, the output of a cryptographic function usually follows
(by design) a uniform distribution over its period, which makes it theoretically suitable
to generate pseudorandom sequences [Luby 1996; Viega 2003].

7.2. Experimental Setup

Table III lists the set of pseudorandom number generators that we have evalu-
ated. We used implementations from Boost (www.boost.org) and Gcrypt (www.gnu.
org/s/libgcrypt), both well-known and extensively used C++ libraries, and we attempted
to cover a diverse set of PRNGs when selecting the algorithms.

These pseudorandom hash functions have been integrated in all of the proposed
data distribution strategies. We simulated each strategy with all the aforementioned
PRNGs and we measured performance and distribution quality in the same way as the
experiments presented in Section 6. In each experiment, we distributed m = 1,000 ∗ n
balls, with n being the number of configured storage systems. All experiments have
been run for 10, 100, and 1,000 homogeneous storage systems.

7.3. Influence on Fairness

Figure 12 shows the results obtained when evaluating the fairness provided by each
combination of PRNG and strategy. The white boxes in each bar represent the range
of results between the minimum and maximum usage per disk. As before, small or
non-existing white boxes indicate a very small deviation from an ideal data distri-
bution. Note that for some strategies we needed to split the y-axis to show all the
relevant results, due to the huge variability of the measurements obtained with every
algorithm.
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Table III. List of Evaluated PRNGs

PRNG Type

minstd rand LC
minstd rand0 LC
ecuyer1988 LC + LC (additive combine)
kreutzer1986 LC improved (shuffle)
hellekalek1995 IC
rand48 MC
Unix rand MC
lagged fibonacci607 LF
ranlux3 LF SWC (+ discard block)
ranlux64 3 LF SWC (+ discard block)
ranlux3 01 LF SWC (+ discard block)
ranlux64 3 01 LF SWC (+ discard block)
mt11213b GFSR (Mersenne twister)
mt19937 GFSR (Mersenne twister)
taus88 LFRS (XOR)
SHA1 Cryptographic hash
MD5 Cryptographic hash
Tiger-192 Cryptographic hash

Algorithm types: Linear congruential (LC), inversive con-
gruential (IC) multiplicative congruential (MC), lagged
Fibonacci (LF), linear feedback shift (LFS), subtract with
carry (SWC), generalized feedback shift register (GFSR),
linear feedback shift register (LFSR).

Interestingly, the results are very different from those presented in Section 6.2. Con-
sistent Hashing, for instance, which showed a distribution that was close to the ideal
distribution in the previous experiments, now shows a less-than-ideal data distribution
with some storage systems even receiving more than 250 times the expected amount
of balls in some cases (see Figure 12(a)).

Other strategies seem to be less affected by the change of PRNG, though in gen-
eral the evaluations show worse results than those obtained with the original hash
functions, even for those strategies that previously showed a quasi-ideal distribution
like Redundant Share, RUSHR and Random Slicing (Figures 12(b), 12(d), and 12(f),
respectively).

If we consider the generators individually, the results for all the PRNGS evaluated
but the last three (SHA1, MD5 and Tiger) degrade when increasing the number of
storage systems from 100 to 1,000. This effect is less noticeable in Redundant Share
(Figure 12(b)), probably because it uses O(n) calls to a PRNG for each ball, which
results in a better random distribution.

Most interestingly, the taus88 PRNG shows really bad results in all experiments,
significantly degrading the fairness of all strategies when compared against the other
PRNGs.

In order to understand the reasons for this behavior, we must analyze the quality
of the number distribution produced by each PRNG. Figure 13 shows a visualization
of the first 220 numbers produced by each PRNG in the previous experiment. Each
number of the sequence is assigned an (x, y) coordinate in a 1024 × 1024 grid based on
its order in the sequence and a grayscale color based on its value. While this approach
is not a formal or exhaustive one, it is a fast way to get a general impression of a
generator’s quality.
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Fig. 12. Influence of PRNGs on fairness.

Surprisingly, most of the generators show obvious patterns in the distributions
produced, even when considering only a few thousand generations. In particular,
LF-based generators lagged fibonacci607, ranlux3, ranlux64 3 ranlux3 01 and ran-
lux64 3 01 display highly predictable patterns that shouldn’t appear in a truly random
sequence (Figures 13(h), 13(i), 13(j), 13(k), and 13(l), respectively). Notice how taus88
(Figure 13(o)) shows a clearly discernible pattern that explains the poor distribution
quality seen in the previous experiment.

The reason for this poor distribution quality lies in how strategies use PRNGs: in
order to generate an appropriate hash value, strategies need to use the data block
identifier as the seed of the generator, thus producing an independent Xn sequence for
each block. Most PRNGs guarantee a certain level of randomness within a sequence
but say nothing of the correlation between parallel sequences of different seeds, which
can lead to more predictable distributions and poor fairness.
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Fig. 13. Visual representation of the first 220 numbers generated by several PRNGs.

By contrast, generators kreutzer1986, hellekalek1995, and Unix rand, as well as
the Mersenne twister generators (mt11213b, mt19937) and the cryptographic hash
functions (SHA1, MD5, Tiger-192) produce uniformly distributed values with no clear
patterns, making them more suitable for data distribution (see Figures 13(d), 13(e),
13(g), 13(m), 13(n), 13(p), 13(q), and 13(r), respectively). Note, however, that it has
been shown that both MD5 and SHA1 are not resistant against collision-based attacks
[Wang et al. 2005; Stevens et al. 2007, 2009].

For a more formal approach, we also evaluate the same sequence of 220 numbers using
the well-known ENT statistical battery [Walker 1998]. Since randomness is impossible
to prove, the battery defines a series of statistical tests to verify that the sequence of
numbers “seems” random.

Entropy Test. This test measures the disorder in each byte of the sequence. The
higher the entropy, the more likely it is that the sequence is random.

Chi-square (χ2) Test. The χ2 test is the most common test used to verify the random-
ness of a sequence, since it is very sensitive to statistical deviations in PRNGs. The
result p provided is interpreted as the degree to which the sequence tested is suspect of
being non-random. If p > 99% or p < 1%, the sequence is almost certainly not random,
whereas if 95% < p < 99% or 1% < p < 5% the sequence is suspect.
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Table IV. Results Obtained with the ENT Suite

Entropy χ2 Statistic Mean Monte Carlo π Serial correlation
PRNG (bits/byte) Distribution (p) deviation estimation error coefficient

minstd rand 7.999 0.01% 0.049 0.131% 9.94 × 10−4

minstd rand0 7.999 0.01% 0.018 0.037% 2.83 × 10−3

ecuyer1988 7.999 0.01% 0.055 0.080% 5.05 × 10−4

kreutzer1986 7.999 0.01% 1.262 0.104% 3.94 × 10−3

hellekalek1995 7.999 0.01% 0.146 0.050% −7.42 × 10−4

rand48 7.885 0.01% 0.031 0.669% 2.12 × 10−4

Unix rand 7.498 0.01% 7.034 7.090% −4.86 × 10−2

lagged fibonacci607 7.996 0.01% 0.037 1.331% 1.43 × 10−3

ranlux3 7.999 0.01% 0.078 0.091% 1.94 × 10−4

ranlux64 3 7.996 0.01% 0.037 1.647% 1.43 × 10−3

ranlux3 01 7.999 0.01% 0.078 0.091% 1.94 × 10−4

ranlux64 3 01 7.996 0.01% 0.081 1.647% −1.17 × 10−3

mt11213b 7.999 0.01% 0.127 0.154% 5.87 × 10−4

mt19937 7.999 0.01% 0.029 0.036% −8.87 × 10−4

taus88 7.865 0.01% 15.547 6.453% −3.28 × 10−2

SHA1 7.999 3.18% 0.029 0.036% 4.42 × 10−4

MD5 7.999 71.33% 0.008 0.001% −2.97 × 10−4

Tiger-192 7.999 93.68% 0.032 0.014% 8.70 × 10−5

Totally random 8 5% < p < 95% 0.0 0% (π ) 0

Deviation from Mean. This is simply the result of summing all the bytes in the
sequence and dividing by the sequence length. If the sequence of numbers is random,
the value computed should be 127.5, which corresponds to a deviation of 0.

Monte Carlo π Estimation. Each successive sequence of six bytes is used as 24-bit
(x, y) coordinates within a square. If the distance of the randomly-generated point is
less than the radius of a circle inscribed within the square, the six-byte sequence is
considered a “hit”. The percentage of hits can be used to calculate the value of π . For
very large streams (this approximation converges very slowly), the value will approach
the correct value of π if the sequence is close to random.

Serial Correlation. This value measures the extent to which each byte in the file
depends upon the previous byte. For random sequences, this value (which can be
positive or negative) will, of course, be close to zero.

Table IV shows the results from this evaluation. Most interestingly the χ2 test clas-
sifies all distributions (except the cryptographic ones) as almost certainly not random,
which confirms the visualizations shown in Figure 13.

With respect to the other estimators, there is not a clear order of which PRNGs
behave better and which worse, and the results for generators of the same type seem
unrelated. Cryptographic hashes, once again, display the best results for most tests,
while taus88 does the contrary.

These evaluations prove that choosing a wrong PRNG can have disastrous results for
randomized data distribution strategies, as it can invalidate all the benefits provided
by the strategy.

7.4. Influence on Performance

Figure 14 shows the results obtained in the performance experiments for each combi-
nation of PRNG and strategy. Each bar shows the average time required for a single
request. These times include confidence intervals, which are represented as a white
segment in the bar.
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Fig. 14. Influence of PRNGs on performance.

Similarly to the results obtained in the previous evaluations, there is a lot of variabil-
ity in the results obtained. This time, however, the taus88 PRNG is the one providing
the best performance on average for all strategies except Consistent Hashing (see
Figure 14(a)), where rand48 is slightly faster). Notice that in these experiments the
lagged fibonacci607 generator consistently shows the worst performance results, even
though it was able to provide an acceptable fairness in the previous section.

Notice that all the PRNGs examined tend to behave similarly with 10, 100, or 1,000
storage systems, which is to be expected since the generators are not influenced by
the number of devices in the system. There is one significant exception, however, with
the Redundant Share strategy (Figure 14(b)), which shows increased response times in
each successive setting. Once again, this can be explained because Redundant Share
performs O(n) calls to the selected generator for each data block, which can significantly
increase the computation time if n is large.
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Most interestingly, notice that PRNGs that provided similar levels of fairness in the
previous experiment (e.g., SHA1, MD5, or Tiger), differ significantly when considering
average response time. In addition, cryptographic hashes usually perform worse than
simpler PRNGs that delivered similar fairness in the previous experiments, which can
be a concern in time-critical conditions.

This means that, when designing a randomized distribution strategy, a careful con-
sideration of the selected PRNG is necessary in order to avoid potential performance
pitfalls.

8. CONCLUSIONS

This article shows that many randomized data distribution strategies are unable to
scale to Exascale environments, as either their memory consumption, their load devi-
ation, or their processing overhead is too high. Nevertheless, they are able to easily
adapt to changing environments, a property which cannot be delivered by table- or
rule-based approaches.

The proposed Random Slicing strategy combines the advantages of all these ap-
proaches by keeping a small table and thereby reducing the amount of necessary ran-
dom experiments. The presented evaluation and comparison with well-known strate-
gies shows that Random Slicing is able to deliver the best fairness in all the cases
studied and to scale up to Exascale data centers.

We have also proven that choosing an appropriate pseudo-random number generator
is of the utmost importance when designing and evaluating a new randomized data
distribution strategy, since there is a significant risk of degrading the quality of the
strategy.
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