
Self-Adjusting Two-Failure Tolerant Disk Arrays

Ignacio Corderı́, Thomas Schwarz,S.J.
Informática y Ciencias de la Computación

Universidad Católica del Uruguay

Montevideo, Uruguay

ignacio@corderi.com tschwarz@ucu.edu.uy

Ahmed Amer
Computer Engineering

Santa Clara University

Santa Clara, CA

a.amer@acm.org

Darrell D.E. Long
Computer Science

University of California

Santa Cruz, CA

darrell@cs.ucsc.edu

Jehan-François Pâris
Computer Science

University of Houston

Houston, TX

paris@cs.uh.edu

I. INTRODUCTION

While flash and Storage Class Memory (SCM) technologies

stand to replace magnetic disk technology as the mainstay

for high end applications, the sheer amount of data to be

stored, the attractive cost-to-capacity ratios of disks, and the

high streaming throughput in comparison with not only tape

but also with high-end flash and SCM, give magnetic disk

technology a continuing and important role in the storage

hierarchy. This is true whether disks are relegated to tertiary

storage roles or remain as the secondary storage technology

behind flash/SCM-based caches. A practical disk-based stor-

age system at petabyte scale is both dynamic and heteroge-

neous, as the number of devices it would require means that

new disks with better performance, reliability, and capacity

will continuously enter the system as old disks leave due to

failure, age, or technical obsolescence.

Data stored in a peta-scale system needs to be protected, but

its size will make disk failure a daily occurence. Observed data

on the life expectancy of disks [1], [2] and the occurrence of

latent disk sector errors [3] suggest that tolerance of at least

two failures is necessary, possibly in conjunction with disk

scrubbing or intra-disk redundancy [4].

While replication offers operational advantages, the storage

overhead with its associated costs in hardware and energy is

too large. Many two-failure resilient systems have been pro-

posed in the past [5], [6], [7], [8]. We propose an old, simple

scheme in which every piece of client data is part of two

different reliability stripes encompassing data disks and one

additional parity each. Managing this simple layout over the

lifetime of an evolving system is difficult. Our contribution is

a graph-based representation that transforms layout decisions

into the construction of (almost) regular graphs and coloring

their edges and vertices with many colors. For this, we can

use simple, greedy and heuristic graph algorithms.

II. GRAPH REPRESENTATION

We store client data in disklets, virtual disks of fixed size

stored contiguously in the physical disks of the system. Using

disklets allows us to deal with the dynamism and heterogeneity

of the storage system, which at any time could contain disks

of varying generations and capacities. Disklets can be moved

transparently to the user between physical devices. The size of

the disklets offers a trade-off. Fewer, larger disklets are easier

to administer. More, smaller disklets fit better into the disks

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a

b

c

d

e f g h

a b

e f g h

1 2
3

4 5
6
7 8

c d

9
11

12 13

15 16

14
10

Fig. 1: A small two-failure resilient array and its design-

theoretical dual (right).

of varied sizes. Intuitively, we propose using disklets of about

100GB, which would mean that current disks would hold about

ten disklets each, with future generations introduced into the

storage system holding more. At this rate, no more than 100GB

(less than 10% of current high capacity disks) could potentially

go to waste. Space reasons prevent us from discussing how

even such apparently wasted storage space could yet be used.

A. Disklets, Reliability Strips, Configurations and a Dual

We distinguish between disklets that store client data and

disklets that store parity data (i.e., used only to recover from

disk failures). We place each data disklet into groups of n−1

disklets to which we add a single parity disklet. We call the

resulting ensemble of n disklets a reliability stripe. Data on a

single lost disklet in a reliability group can be recovered by

reading from all the other members of the reliability group.

To withstand simultaneous double failure, we place each data

disklet in two different reliability stripes. Of course, as disklets

on a single failed disk are likely to fail at the same time, we

will have to deal with common failure causes, but we will

come to that. A parity disklet belongs to only one reliability

stripe. A very simple example of such an arrangement is given

in Fig. 1, left. The ovals with numerical values represent

data disklets, while the hexagons with letters represent parity

disklets. The arrangement of disklets in rows and columns

represent assignment to reliability stripes. For example, data

disklets 13, 14, 15, and 16, together with parity disklet d, form

a reliability stripe.

To use mathematical Design Theory (from finite mathe-

matics), we call each data disklet an element and the set

of data disklets in a reliability group a block. Each parity

disklet corresponds to exactly one block, namely the parity

is calculated for the group of disklets in the block. A two-

(disklet)-failure tolerant layout consists of elements organized

978-1-4244-8912-1/10/$26.00 ©2010 IEEE

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 24,2020 at 09:15:00 UTC from IEEE Xplore. Restrictions apply.

a
b

u t

c
4

2

3
1

Fig. 2: Failure pattern.

into blocks such that:

(1) Each element is in exactly two blocks.

(2) Each block contains exactly n elements.

(3) Two different elements are in at most one block.

These properties define a configuration [9]. We can obtain ad-

ditional insight by passing to the dual design, where the blocks

of the dual correspond to the elements of the primary design,

the elements of the dual to the blocks of the primary, and

where the “is an element of” relationship between elements

and blocks is reversed. In the dual, the elements are reliability

stripes (represented by the parity disklets), the blocks are data

disklets, and a dual element (parity disklet) belongs to a block

(data disklet) if the data disklet is part of the reliability stripe

that stores its parity in the parity disklet. As each data disklet

is in exactly two reliability stripes, the dual is a graph. Since

each parity disklet stores the parity of n data disklets, the dual

is n-regular (i.e., the node degree of the graph is n). Fig. 1

right gives the dual of the design on the left. For example,

the reliability stripe consisting of data disklets {3,7,11,15}
stores its parity on disklet g. Data disklet 7 is also in stripe

{5,6,7,8} with parity in b, therefore, in the dual, 7 is an edge

between b and g.

Conversely, given an n-regular graph, we obtain the dual

disklet array layout by adopting the following rules:

(1) Each vertex corresponds to a parity disklet.

(2) Each edge corresponds to a data disklet.

(3) The parity disklet contains the XOR of all data on disklets

adjoining it.

Graph theory knows of many families of n-regular graphs.

Disklets need to be housed in real disks. We represent this

by coloring the edges and vertices of the graph with the disk

number. Integration of new disks, removal of obsolete disks,

and data recovery after failure force us to change the disklet

layout. These changes are represented by manipulations in the

graph. If we introduce a new parity disklet, we add a vertex

to the graph. If we introduce a new data disklet, we add an

isolated edge to the graph. To attach this edge, corresponding

to disklet i with data Di to a parity disklet a with content Pa
we need to calculate Pa := Pa ⊕Di. To detach disklet i from

parity disklet a, we also calculate Pa := Pa ⊕Di. Removing

parity disklets does not change data on other disklets.

B. Failure Tolerance Representation

Arguments about failure tolerance are much easier in the

graph than in the original primary design, as was previously

observed [10]. Disk and sector failure induce a failure pattern
in the graph, i.e., the set of the now unavailable disklets. Fig. 2

Fig. 3: Minimal irreducible failure patterns.

gives an example where three failed parity disklets (vertices)

and four failed data disklets (edges) are marked. Often, we

can reconstruct unavailable disklets, which means calculating

the lost data and placing them on a replacement disklet stored

elsewhere. The graph representation only indicates this process

by coloring with a different disk color and unmarking the

disklet.

Data on a lost parity disklet is recovered by accessing all

data disklets in the same reliability stripe and recalculating

the parity. Thus, we can unmark a failed vertex if none of

the adjacent edges is marked. Data on a data disklet can be

recovered from all other disklets in the same reliability stripe.

Thus, we can unmark a failed edge if one of its adjacent

vertices and all other edges adjacent to that vertex are not

marked. Edge 1 in Fig. 2 fullfills this condition with regards

to both vertices, but edge 2 solely at vertex t. Vertex a can

also be immediately recovered. Data recovery often has to be

iterative. We can immediately recover a, 1, and 2, but only

after recovering 2 can we recover 3. After this, we are stuck,

since we cannot make progress for the remaining b, c, and 4.

Thus, Fig. 2 represents a situation where we have lost data.

We call this process of unmarking recoverable items failure
pattern reduction.

A simple linear algorithm for failure pattern reduction

anotates marked edges and vertices with positive numbers. A

marked vertex gets the number of marked, adjacent edges and

a colored edge (x,y) receives two numbers, fx and fy. If x
is marked, then fx is the number of adjacent marked edges,

otherwise it is that number minus 1. Analogously for fy. For

example, edge 3 has fu = 1 and fb = 2. We can unmark if

one of these numbers is zero. In this case, adjacent edges and

vertices change their number.

Not all failure patterns are reducible. These irreducible

failure patterns describe instances of data loss. For an edge to

be part of an irreducible failure pattern, either the end-vertices

also failed, or at least one of the adjoining edges has also

failed, or both. Therefore, minimal irreducible failure patterns

are either a chain, Fig. 3 left, or a cycle, Fig. 3 right. The chain

is a walk starting and ending at a failed vertex connected with

failed edges in between. The cycle is an edge cycle in the

sense of graph theory. The smallest minimal failure patterns

are the bar-bell (Fig. 3, lower left), and the triangle (Fig. 3,

lower right).

C. Good Disklet Layouts

The number n of data disklets per reliability stripe de-

termines the parity storage overhead and the recovery load.

The storage overhead (amount of parity data divided by the

amount of client data) is 2/n as each data disklet is part of

two reliability stripes. As we assume a large storage system

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 24,2020 at 09:15:00 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Grid graph without and with failure pattern.

with Flash / SCM components, we can assume that the cost

of maintaining parity is low. Recovering data stored on a lost

disklet involves reading n and writing one disklet. The choice

of n offers therefore a trade-off between parity overhead and

reconstruction load. Smaller reconstruction load can lead to

faster recovery and therefore to higher reliability. We can gain

flexibility by allowing the parameter n to vary slightly between

reliability stripes. In the graph, this corresponds to an “almost

regular” graph where the number of edges connected to a

vertex is not constant, but varies slightly.

Since several disklets are located on the same disk, a disk

failure results in the loss of a number of disklets. When we use

a good disklet-to-disk assignment (to be discussed shortly), a

double disk failure will not cause data to be lost. However, an

adversary can always choose three disks to fail so that data

loss occurs. We want to minimize the possibility that three

disk failures (or more) result in the occurrence of either the

barbell or the triangle. We cannot prevent the former, but we

can avoid triangles through the shape of the graph.

To create a good initial disklet layout, we therefore choose

an n-regular graph without triangles. Among the many pos-

sibilities, we can select subgraphs of a grid graph. The grid

graph has for vertices the points N
r with integer coefficients in

the r-dimensional Euclidean space. The edges are defined to be

the lines of length 1 between these points. The edges therefore

only connect vertices that differ in only one coordinate, and in

that coordinate by one. The results is an r-dimensional grid.

After choosing the graph, we select a finite region, for

example defined by a square box consisting of vertices with

coordinates less than a given l. We then assign disklets to

the vertices in the box, these will become the parity disklets.

Afterwards, we assign data disklets to the edges. The subgraph

is not regular. An interior vertex has degree 2r, but one

of the 2r corner vertices has only degree r. To make the

graph regular, we connect vertices on the boundary to its

diametrically opposed counter-vertex. In fact, we can avoid

this last operation because it complicates growing the graph

(necessary if the disk array increases in size). The vertices

with fewer edges correspond to reliability stripes with fewer

data disklets and cause higher parity overhead, but since most

of the vertices are interior (for a disk array of substantial

size), the overall loss is easy to tolerate. In general, we do

not need to assign all disklets in an array at the same time.

In this case, we can postpone the decision of having a regular

graph or an almost regular graph until we are either about to

run out of space (in which case we assign data disklets to

the edges between diametrically opposite vertices) or about

1
2

1

22

1

Fig. 5: Beginning of restructuring after failure.

to incorporate new disks (in which case we want to grow the

array). Finally, the subgraph does not have to be a square box,

but can be rectangular.

D. Disklet to Disk Assignment

A disklet layout is defined by an (almost) n-regular graph.

We represent the assignment of disklets to disks by coloring

the element (vertex or edge) with a color representing the disk.

Not every coloring will do, as otherwise a single disk failure

might lead to data loss. We color elements with the same color

(i.e., collocate disklets on the same disk) if they are apart from

each other in the graph. We now discuss our notion of distance.

We use the notion of walks in graphs. A walk is a sequence

of alternating edges and vertices that are adjacent to each other.

Graph theory defines the length of a walk to be the number

of edges contained in it, but we use here a different measure,

namely the number of elements in a walk minus one. In Fig. 2,

the sequence t, 2, u, 3, b, 4, c is therefore a walk of length

six. We define the walking distance between two elements as

the length of a minimal walk (in our sense) connecting them.

Elements in an irreducible failure pattern have to be at walking

distance from each other. Consequently, if elements colored

with the same disk are at least at walking distance two, then

no two disk failures can lead to data loss. Coloring the graph

subject to this restriction is fairly simple because of the large

number of colors (disks).

E. Restructuring after Failure

Assume that a number of disks have failed simultaneously

and that recovery operations or scrubbing has led to the

discovery of a number of disklets with latent sector errors.

As a result, our graph now has some failed elements. Fig. 4

gives an example. To the left, we show the grid graph used.

The graph is two-dimensional and the interior vertices have

edge degree of only 4 corresponding to reliability stripes of

size 4+1. In reality, we would use a grid of higher dimension.

To the right, we show the effect of a disk failure combined

with latent sector failures.

To recover from failure, we reconstruct data and have to

place them in disklets on disks. If we have empty disklets, then

the reconstructed data can be placed on some of these disklets.

However, this placement recolors the graph and we have to

take care that our rule against a minimal walking distance

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 24,2020 at 09:15:00 UTC from IEEE Xplore. Restrictions apply.

between two elements with the same color is preserved. If we

cannot avoid a violation by assigning reconstructed disklets to

disks, then we pick two disklets and interchange their location

(This is not a small operation as disklets are tens of GB in

size).

An additional problem arises if there are no free disklets

to store reconstructed data. While this occurs rarely (most

storage systems are not left to reach full capacity), we need to

handle this case. We do so by reorganizing as previously pro-

posed [11]. The idea is to restructure by enlarging reliability

stripes and thus freeing parity disklets for use as data disklets.

In the example of Fig. 5, we have three failed elements, but

have not suffered data loss. We need two spots to store the

data from the two failed data disklets. We pick randomly two

parity disklets and use them for this purpose. In our graph

representation, we now have several dangling edges, including

one that is not attached to any vertex. This corresponds to

a data disklet that does not contribute to any parity and is

therefore not protected against failure. We now attach dangling

edges to vertices. This corresponds to XORing the contents

of these data disklets to the parity disklets. Fig. 5 lower left

shows the result after reattaching two edges. There still remain

seven dangling edges to be reattached. The resulting graph is

not pretty, since it is now far from being regular and because

we cannot avoid triangles. However, as long as we preserve

the graph property, we are still protected against double disk

failure. Attaching dangling edges might also lead to violation

of the coloring rule that two elements of the same color not be

placed close together. In a small graph like this, it is difficult

to enforce this rule successfully, but in a graph representing

a petabyte-scale storage system, the sheer number of disks

means that using a simple greedy algorithm would be feasible.

F. Incorporating New Disks

New disks usually enter the system in large numbers, e.g.,
one or more racks full of disks needing to be incorporated. The

following strategies are possible. First, we can just configure

the new disks independently of the old ones. The resulting

graph then has at least two components, one of which is

colored only for the new disks. If a new disk fails, recovery

workload will be distributed over only the new disks. The

second strategy distributes the recovery workload over all disks

and incidentally addresses the problem of disk infant mortality.

However, the cost is a major reshuffle of data moving many

disklets from old disks to new ones.

The first strategy just adds a new component to the graph.

The second is represented by adding more edges and vertices

and recoloring some edges and vertices to represent the

copying of disklets from old disks to disklets on new disks. To

adjust the number of disklets, we increase the box that defined

the grid graph. Depending on how we dealt with lack of

regularity, this might imply detaching edges on the boundary

of the box. Detaching an edge means removing a data disklet

from a parity stripe. This is done by XORing the contents of

the data disklet and the contents of the parity disklet. Then, if

we move a disklet from the old part of the array to a disk in

TABLE I: Data loss rate and data loss probability after failure

of a rack and simultaneous, additional x disk failures (for 20

racks with 50 or 1000 disks, and 50 racks with 400 disks).
x 20 × 50 20 × 1000 50 × 400 disks

DLP DLR DLP DLR DLP DLR
1 0.02% 0.014% 10.76% 0.0005% 0.000% 0.0000%
2 0.32% 0.014% 20.32% 0.0005% 0.002% 0.0001%
3 1.00% 0.013% 29.02% 0.0006% 0.020% 0.0004%
4 2.08% 0.014% 36.82% 0.0006% 0.034% 0.0006%
5 3.67% 0.014% 43.55% 0.0006% 0.044% 0.0006%
10 15.95% 0.017% 68.51% 0.0008% 0.282% 0.0008%
20 58.75% 0.025% 90.49% 0.0012% 1.06% 0.0007%

the new part, we give it a new color, specifically the name of

the disk. Afterwards, we color the new edges and vertices in

the graph.

G. Removing Obsolete Disks

Disks leave the system because of failure (in which case

we can either recolor the corresponding disklets to disks that

remain in the system if the disks have space left for the

disklets, otherwise we have to reconfigure) or because they

have become obsolete. Data on obsolete disks would be moved

elsewhere in the storage system, possibly on replacement

disks. In the graph, this is once again expressed as recoloring.

H. Reconfiguring for Energy Savings and Load Balancing

The load of a disklet depends on the data it contains.

By swapping disklets between disks, we can achieve load

balancing or congregate low demand disklets on disks that can

be turned off, without changing the resilience of the disk array.

If we can identify disklets with read-only data, we can also use

swapping and rearranging of reliability stripes to have parity

disklets that have no load. Such disklets can also be placed

on disks to be powered off.

III. SYSTEM DESIGN

Our representation / management approach applies to all

large storage systems and presupposes only the capability to

maintain a large graph and run greedy algorithms on that

graph. This is certainly the case if we have a metadata server,

which would also be needed to implement search functionality

over the large amount of data and to manage the relationship

between a potential first level storage system using solid state

disks and our disk-based system.

To the clients, our storage system gives the abstraction of

small, but highly reliable virtual disks, formed of the disklets.

While any such abstraction can result in less complete use of

the available storage capacity, it does facilitate energy savings

by turning off disks needed only by dormant clients, and it

should also increase spatial locality. The scheme is similar

to the extents used in database systems to administer large

amounts of storage space.

IV. PRELIMINARY EXPERIMENTAL RESULTS

We started implementing algorithms based on our graph

representation. We implemented the initial disklet layout for

a system comprised of homogeneous racks containing disks

with 10 disklets each. We used a layout where 8 data disklets

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 24,2020 at 09:15:00 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Probability of data loss in an array with N disks and x failures.

N x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x = 10
200 0.362% 1.154% 2.266% 4.248% 7.020% 10.562% 15.518% 21.458%
500 0.048% 0.130% 0.346% 0.676% 0.936% 1.480% 2.264% 3.304%

1000 0.020% 0.034% 0.092% 0.158% 0.260% 0.468% 0.616% 0.768%
1500 0.008% 0.022% 0.044% 0.082% 0.134% 0.160% 0.298% 0.354%
2000 0.004% 0.022% 0.022% 0.022% 0.044% 0.082% 0.134% 0.160%
5000 0.002% 0.002% 0.004% 0.014% 0.008% 0.010% 0.012% 0.050%

10000 0.000% 0.000% 0.000% 0.000% 0.000% 0.004% 0.004% 0.010%
15000 0.000% 0.000% 0.002% 0.002% 0.000% 0.002% 0.000% 0.004%
20000 0.000% 0.000% 0.000% 0.002% 0.002% 0.000% 0.000% 0.002%

��������	
����	����

�
�����				

�����

�����

�����

�����

��
��
	

��
�

�
��

��

�

�����

�����

� ����� ����� ����� �����

�
��
�

��	�������

Fig. 6: Execution times for initial graph layout.

form a reliability stripe with one additional parity disklet. The

execution times for this initial data layout depended linearly

on the number of disks (1.329 ms per disk), but not on the

number of racks. Accordingly, this (one-time) task can be done

in less than a minute for an array with 20000 disks (Figure 6).

Our layouts do not suffer data loss from any double failure,

whether rack, disk, or sector, with the exception of two

rack failures, but any combination of three failures can lead

to data loss. We have to measure resilience carefully. An

experiment repeated multiple times will have a bad outcome

with probability arbitrarily close to one, if we only repeat it

enough times. Similarly, if we increase the number of disklets

per disk, then any combination of more than two disk failures

will, with high probability, result in data loss. We have to

measure the robustness of a layout not only by the probability

of data loss given a certain combination of failures, but also

by the expected rate of data loss.

Our first experiment simulated the robustness of the disk

array right after the failure of a whole rack. The results,

in Table I give the Data Loss Rate (DLR) and Data Loss

Probability (DLP) using 10 disklets per disk. The DLR is

very good, given that a rack constitutes 1/20 or 1/50 of all

disks in the array. The DLP is high with few racks. In our

second experiment (Table II) we observed good robustness of

our layout using again with 10 disklets per disk. We do not

give DLR because we usually only lose one data disklet if

we lose data at all. At worst, we lose 1.68 data disklets on

average after 10 disk failures out of a total of only 200. When

we varied the number of disklets, we observed a slightly lower

DLR coupled with a much increased DLP.

V. CONCLUSIONS AND FUTURE WORK

We have presented a representation for a storage system

with two failure tolerance based on flat XOR codes. We argue

that this representation allows us to implement fast algorithm

for the layout of very large, evolving disk arrays.

Much needs to be done. Fast, but efficient algorithms for

major changes in the disk array such as rack failure or insertion

of new disks still need to be implemented and tested. Our goal

is usually not to find an optimal layout (in a sense to be defined

precisely), but one that is close to optimal. To assert that our

algorithms perform at this level involves a more mathematical

analysis of the consequences of failures in such an array to

derive bounds on the robustness of optimal layouts, a task we

have barely started. Nevertheless, the results we have indicate

that the algorithms are quite effective and certainly fast and

easy to implement. This presents definite progress over the true

optimization (including looking for proven optimal designs)

that can be done only for special, small cases and supports

our pragmatic attitude.

REFERENCES

[1] E. Pinheiro, W. Weber, and L. Barroso, “Failure trends in a large disk
drive population,” in Proc. 5th USENIX FAST Conf., 2007.

[2] B. Schroeder and G. Gibson, “Disk failures in the real world: What does
an MTTF of 1,000,000 hours mean to you?” in Proc. 5th USENIX FAST
Conf., 2007.

[3] L. Bairavasundaram, G. Goodson, S. Pasupathy, and J. Schindler, “An
analysis of latent sector errors in disk drives,” in ACM SIGMETRICS,
2007.

[4] I. Iliadis, R. Haas, X. Hu, and E. Eleftheriou, “Disk scrubbing versus
intra-disk redundancy for high-reliability raid storage systems,” in ACM
SIGMETRICS, 2008.

[5] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient
scheme for tolerating double disk failures in RAID architectures,” IEEE
Transactions on Computers, pp. 192–202, 1995.

[6] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and
S. Sankar, “Row-diagonal parity for double disk failure correction,” in
Proc. 3rd USENIX FAST Conf., 2004.

[7] K. Greenan, X. Li, and J. Wylie, “Flat XOR-based erasure codes in
storage systems: Constructions, efficient recovery, and tradeoffs,” in
Proc. IEEE MSST, 2010.

[8] L. Hellerstein, G. Gibson, R. Karp, R. Katz, and D. Patterson, “Coding
techniques for handling failures in large disk arrays,” Algorithmica,
vol. 12, no. 2, pp. 182–208, 1994.

[9] H. Gropp, “Configurations,” in The CRC Handbook of Combinatorial
Designs, C. Cobourn and J. Dinitz, Eds. CRC Press, 1996.

[10] Z. Jie, W. Gang, L. Xiaogugang, and L. Jing, “The study of graph
decompositions and placement of parity and data to tolerate two failures
in disk arrays: Conditions and existence,” Chinese Journal of Computers,
vol. 26, no. 10, pp. 1379–1386, 2003.

[11] J.-F. Pâris, T. Schwarz, and D. Long, “Self-Adaptive Two-Dimensional
RAID Arrays,” in Proc. IEEE IPCCC, 2007.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 24,2020 at 09:15:00 UTC from IEEE Xplore. Restrictions apply.

