
Ceph: A Scalable, High-Performance Distributed File System

Sage A. Weil Scott A. Brandt Ethan L. Miller Darrell D. E. Long
Carlos Maltzahn

University of California, Santa Cruz
{sage, scott, elm, darrell, carlosm}@cs.ucsc.edu

Abstract
File system designers continue to look to new architec-
tures to improve scalability. Object-based storage di-
verges from server-based (e. g., NFS) and SAN-based
storage systems by coupling processors and memory
with disk drives, delegating low-level allocation to object
storage devices (OSDs) and decoupling I/O (read/write)
from metadata (file open/close) operations. Even re-
cent object-based systems inherit decades-old architec-
tural choices going back to early UNIX file systems, how-
ever, limiting their ability to effectively scale to hundreds
of petabytes.

We have developed Ceph, a distributed file system
that provides excellent performance and reliability while
promising unprecedented scalability. Ceph maximizes
the separation between data and metadata management
by replacing allocation tables with a pseudo-random data
distribution function (CRUSH) designed for heteroge-
neous and dynamic clusters of unreliable OSDs. We
leverage OSD intelligence to distribute data replication,
failure detection and recovery with semi-autonomous
OSDs running a specialized local object storage file sys-
tem (EBOFS). Ceph is built around a dynamic distributed
metadata cluster that provides extremely efficient meta-
data management and seamlessly adapts to a wide range
of general purpose and scientific computing file system
workloads. Performance measurements under a variety
of workloads show that Ceph has excellent I/O perfor-
mance and scalable metadata management, supporting
more than 250,000 metadata operations per second.

1 Introduction

System designers have long sought to improve the per-
formance of file systems, which have proved critical to
the overall performance of an exceedingly broad class of
applications. The scientific and high-performance com-
puting communities in particular have driven advances
in the performance and scalability of distributed stor-

age systems, typically predicting more general purpose
needs by a few years. Traditional solutions, exemplified
by NFS [18], provide a straightforward model in which
a server exports a file system hierarchy that clients can
map into their local name space. Although widely used,
the centralization inherent in the client/server model has
proven a significant obstacle to scalable performance.

More recent distributed file systems have adopted ar-
chitectures based on object-based storage, in which con-
ventional hard disks are replaced with intelligent object
storage devices (OSDs) which combine a CPU, network
interface, and local cache with an underlying disk or
RAID [3, 28, 7, 6, 31]. OSDs replace the traditional
block-level interface with one in which clients can read
or write byte ranges to much larger (and often variably
sized) named objects, distributing low-level block allo-
cation decisions to the devices themselves. Clients typ-
ically interact with a metadata server (MDS) to perform
metadata operations (open, rename, etc.), while commu-
nicating directly with OSDs to perform file I/O (reads
and writes), significantly improving overall scalability.

Systems adopting this model continue to suffer from
scalability limitations due to limited or no distribution
of the metadata workload. Continued reliance on tradi-
tional file system principles like allocation lists and in-
ode tables and a reluctance to delegate intelligence to the
OSDs have further limited scalability and performance,
and increased the cost of reliability.

We present Ceph, a distributed file system that pro-
vides excellent performance and reliability while promis-
ing unparalleled scalability. Our architecture is based on
the assumption that systems at the petabyte scale are in-
herently dynamic: large systems are inevitably built in-
crementally, node failures are the norm rather than the
exception, and the quality and character of workloads are
constantly shifting over time.

Ceph decouples metadata and data operations by elim-
inating file allocation tables and replacing them with gen-
erating functions. This allows Ceph to leverage the in-

1

Metadata

storage

File I/O

Metadata Cluster

Object Storage Cluster

clientbash

Linux kernel

fusevfs

libfusels

…

clientbash

Linux kernel

fusevfs

libfusels

…

myproc

client

myproc

client

Clients
Metadata operations

Figure 1: System architecture. Clients perform file I/O
by communicating directly with OSDs. Each process can
either link directly to a client instance, or interact with a
mounted file system.

telligence present in OSDs to distribute the complexity
surrounding data access, update serialization, replication
and reliability, failure detection, and recovery. Ceph uti-
lizes a highly adaptive distributed metadata cluster ar-
chitecture that dramatically improves the scalability of
metadata access, and with it, the scalability of the en-
tire system. We discuss the goals and workload assump-
tions motivating our choices in the design of the architec-
ture, analyze their impact on system scalability and per-
formance, and relate our experiences in implementing a
functional system prototype.

2 System Overview

The Ceph file system has three main components: the
client, each instance of which exposes a near-POSIX file
system interface to a host or process; a cluster of OSDs,
which collectively stores all data and metadata; and a
metadata server cluster, which manages the namespace
(file names and directories) while coordinating security,
consistency and coherence (see Figure 1). We say the
Ceph interface is near-POSIX because we find it appro-
priate to extend the interface and selectively relax con-
sistency semantics in order to better align both with the
needs of applications and improve system performance.

The primary goals of the architecture are scalability (to
hundreds of petabytes and beyond), performance, and re-
liability. Scalability is considered in a variety of dimen-
sions, including the overall storage capacity and through-
put of the system, and performance in terms of individ-
ual clients, directories, or files. Our target workload may
include such extreme cases as tens or hundreds of thou-
sands of hosts concurrently reading from or writing to
the same file or creating files in the same directory. Such
scenarios, common in scientific applications running on
supercomputing clusters, are increasingly indicative of
tomorrow’s general purpose workloads. More impor-
tantly, we recognize that distributed file system work-
loads are inherently dynamic, with significant variation
in data and metadata access as active applications and
data sets change over time. Ceph directly addresses the

issue of scalability while simultaneously achieving high
performance, reliability and availability through three
fundamental design features: decoupled data and meta-
data, dynamic distributed metadata management, and re-
liable autonomic distributed object storage.
Decoupled Data and Metadata—Ceph maximizes the
separation of file system metadata management from the
storage of file data. Metadata operations (open, rename,
etc.) are collectively managed by a metadata server clus-
ter, while clients interact directly with OSDs to per-
form file I/O (reads and writes). Object-based storage
has long promised to improve the scalability of file sys-
tems by delegating low-level block allocation decisions
to individual devices. However, in contrast to existing
object-based file systems [3, 28, 7, 6] which replace long
per-file block lists with shorter object lists, Ceph elim-
inates allocation lists entirely. Instead, a simple func-
tion is used to name the objects containing file data
based on inode number, byte range, and striping strat-
egy, while a special-purpose data distribution function
called CRUSH [?] assigns objects to specific storage de-
vices. This allows any party to calculate (rather than look
up) the name and location of objects comprising a file’s
contents, eliminating the need to maintain and distribute
object lists, simplifying the design of the system, and re-
ducing the metadata cluster workload.
Dynamic Distributed Metadata Management—
Because file system metadata operations make up as
much as half of typical file system workloads [20],
effective metadata management is critical to overall
system performance. Ceph utilizes a novel metadata
cluster architecture based on Dynamic Subtree Parti-
tioning [26] that adaptively and intelligently distributes
responsibility for managing the file system directory
hierarchy among tens or even hundreds of MDSs. A
(dynamic) hierarchical partition preserves locality in
each MDS’s workload, facilitating efficient updates
and aggressive prefetching to improve performance
for common workloads. Significantly, the workload
distribution among metadata servers is based entirely
on current access patterns, allowing Ceph to effectively
utilize available MDS resources under any workload and
achieve near-linear metadata performance scaling in the
number of MDSs.
Reliable Autonomic Distributed Object Storage—
Large systems composed of many thousands of devices
are inherently dynamic: they are built incrementally;
they grow and contract as new storage is deployed and
old devices are decommissioned; device failures are fre-
quent and expected; and large volumes of data are cre-
ated, moved, and deleted. All of these factors require
that the distribution of data evolve to effectively utilize
available resources and maintain the desired level of data
replication. Ceph delegates responsibility for data migra-

2

tion, replication, failure detection, and failure recovery
to the cluster of OSDs that is storing the data, while at a
high level, OSDs collectively provide a single distributed
and reliable object store to clients and metadata servers.
This approach allows Ceph to more effectively leverage
the intelligence (CPU and memory) present on each OSD
to achieve reliable, highly available object storage with
linear scaling.

The following sections describe the operation of the
Ceph client, metadata server cluster, and distributed ob-
ject store, and how they are affected by the critical fea-
tures of our architecture. We also describe the status of
our prototype.

3 Client Operation

We introduce the overall operation and interaction of
Ceph’s components and its interaction with applications
by describing Ceph’s client operation. The Ceph client
runs on each host executing application code and exposes
a file system interface to applications. In the Ceph pro-
totype, the client code runs entirely in user space and
can be accessed either by linking to it directly or as a
mounted file system via FUSE (a user-space file system
interface). Each client maintains its own file data cache,
independent of the kernel page or buffer caches, making
it accessible to applications that link to the client directly.

3.1 File I/O and Capabilities

When a process opens a file, the client sends a request
to the MDS cluster. An MDS traverses the file system
hierarchy to translate the file name into thefile inode,
which includes a unique inode number, the file owner,
mode, size, and other per-file metadata. If the file exists
and access is granted, the MDS returns the inode num-
ber, file size, and information about the striping strategy
used to map file data into objects. The MDS may also
issue the client acapability (if it does not already have
one) specifying which read or write operations are per-
mitted. Capabilities currently include four bits control-
ling the client’s ability to read, cache reads, write, and
buffer writes. In the future, capabilities will include secu-
rity keys allowing clients to prove to OSDs that they are
authorized to read or write data [17] (the prototype cur-
rently trusts all clients). Subsequent MDS involvement
in file I/O is limited to managing capabilities to preserve
file consistency and achieve proper semantics.

Ceph generalizes a range of striping strategies to map
file data onto a sequence of objects. To avoid any need
for file allocation metadata, object names are constructed
by concatenating the file inode number and the object
number. Object replicas are then assigned to OSDs using
CRUSH, a globally known mapping function (described
in Section 5.1). For example, if one or more clients open

a file for read-only access, an MDS grants them the ca-
pability to read and cache file content. Armed with the
inode number, layout, and file size, the clients can name
and locate all objects containing file data and read di-
rectly from the OSD cluster. Any objects or byte ranges
that don’t exist are defined to be file “holes,” or zeros.
Similarly, if a client opens a file for writing, it is granted
the capability to write with buffering, and any data it gen-
erates at any offset in the file is simply written to the ap-
propriate object on the appropriate OSD. The client re-
linquishes the capability on file close and provides the
MDS with the new file size (the largest offset written),
which redefines the set of objects that (may) exist and
contain file data.

3.2 Client Synchronization

POSIX semantics sensibly require that reads reflect any
data previously written, and that writes are atomic (i. e.,
the result of overlapping, concurrent writes will reflect
a particular order of occurrence). When a file is opened
by multiple clients with either multiple writers or a mix
of readers and writers, the MDS will revoke any pre-
viously issued read caching and write buffering capa-
bilities, forcing all client I/O for that file to be syn-
chronous. That is, each application read or write oper-
ation will block until it is acknowledged by the OSD,
effectively placing the burden of update serialization
and synchronization with the OSD storing each object.
When writes span object boundaries, clients acquire ex-
clusive locks on the affected objects (granted by their re-
spective OSDs), and then immediately submit the write
and unlock operations to achieve the desired serializa-
tion. Object locks are similarly used to mask latency for
large writes by acquiring locks and flushing data asyn-
chronously.

Not surprisingly, synchronous I/O can be a perfor-
mance killer for applications, particularly those doing
small reads or writes, due to the latency penalty—at least
one round-trip to the OSD. Although read-write sharing
is relatively rare in general-purpose workloads [20], it is
more common in scientific computing applications [24],
where performance is often critical. For this reason, it
is often desirable to relax consistency at the expense of
strict standards conformance in situations where appli-
cations do not rely on it. Although Ceph supports such
relaxation via a global switch, and many other distributed
file systems punt on this issue [18], this is an imprecise
and unsatisfying solution: either performance suffers, or
consistency is lost system-wide.

For precisely this reason, a set of high perfor-
mance computing extensions to the POSIX I/O interface
have been proposed by the high-performance computing
(HPC) community [27], a subset of which are imple-
mented by Ceph. Most notably, these include anO LAZY

3

flag for openthat allows applications to explicitly relax
the usual coherency requirements for a shared-write file.
Performance-conscious applications who manage their
own consistency (e. g., by writing to different parts of
the same file, a common pattern in HPC workloads [24])
are then allowed to buffer writes or cache reads when
I/O would otherwise be performed synchronously. If de-
sired, applications can then explicitly synchronize with
two additional calls:lazyio propagatewill flush a given
byte range to the object store, whilelazyio synchronize
will ensure that the effects of previous propagations are
reflected in any subsequent reads. The Ceph synchro-
nization model thus retains its simplicity by providing
correct read-write and shared-write semantics between
clients via synchronous I/O, and extending the applica-
tion interface to relax consistency for performance con-
scious distributed applications.

3.3 Namespace Operations
Client interaction with the file system namespace is man-
aged by the metadata server cluster. Both read operations
(e. g., readdir, stat) and updates (e. g., unlink, chmod) are
synchronously applied by the MDS to ensure serializa-
tion, consistency, correct security, and safety. For sim-
plicity, no metadata locks or leases are issued to clients.
For HPC workloads in particular, callbacks offer mini-
mal upside at a high potential cost in complexity.

Instead, Ceph optimizes for the most common meta-
data access scenarios. Areaddir followed by astat of
each file (e. g., ls -l) is an extremely common access
pattern and notorious performance killer in large direc-
tories. A readdir in Ceph requires only a single MDS
request, which fetches the entire directory, including in-
ode contents. By default, if areaddir is immediately
followed by one or morestats, the briefly cached infor-
mation is returned; otherwise it is discarded. Although
this relaxes coherence slightly in that an intervening in-
ode modification may go unnoticed, we gladly make this
trade for vastly improved performance. This behavior
is explicitly captured by thereaddirplus[27] extension,
which returnslstat results with directory entries (as some
OS-specific implementations ofgetdiralready do).

Ceph could allow consistency to be further relaxed by
caching metadata longer, much like earlier versions of
NFS, which typically cache for 30 seconds. However,
this approach breaks coherency in a way that is often crit-
ical to applications, such as those usingstatto determine
if a file has been updated—they either behave incorrectly,
or end up waiting for old cached values to time out.

We opt instead to again provide correct behavior and
extend the interface in instances where it adversely af-
fects performance. This choice is most clearly illustrated
by a stat operation on a file currently opened by multi-
ple clients for writing. In order to return a correct file

size and modification time, the MDS revokes any write
capabilities to momentarily stop updates and collect up-
to-date size and mtime values from all writers. The high-
est values are returned with thestat reply, and capabil-
ities are reissued to allow further progress. Although
stopping multiple writers may seem drastic, it is neces-
sary to ensure proper serializability. (For a single writer,
a correct value can be retrieved from the writing client
without interrupting progress.) Applications who find
coherent behavior unnecessary—victims of a POSIX in-
terface that doesn’t align with their needs—can opt to use
statlite[27], which takes a bit mask specifying which in-
ode fields are not required to be coherent.

4 Dynamically Distributed Metadata

Metadata operations often make up as much as half of file
system workloads [20] and lie in the critical path, making
the MDS cluster critical to overall performance. Meta-
data management also presents a critical scaling chal-
lenge in distributed file systems: although capacity and
aggregate I/O rates can scale almost arbitrarily with the
addition of more storage devices, metadata operations
involve a greater degree of interdependence that makes
scalable consistency and coherence management more
difficult.

File and directory metadata in Ceph is very small, con-
sisting almost entirely of directory entries (file names)
and inodes (80 bytes). Unlike conventional file systems,
no file allocation metadata is necessary—object names
are constructed using the inode number, and distributed
to OSDs using CRUSH. This simplifies the metadata
workload and allows our MDS to efficiently manage a
very large working set of files, independent of average
file sizes. Our design further seeks to minimize metadata
related disk I/O through the use of a two-tiered storage
strategy, and to maximize locality and cache efficiency
with Dynamic Subtree Partitioning [26].

4.1 Metadata Storage

Although the MDS cluster aims to satisfy most requests
from its in-memory cache, all metadata updates must
also be committed to disk for safety. A set of large,
bounded, lazily flushed journals allows each MDS to
quickly stream its updated metadata to disk in an effi-
cient and distributed manner. The per-MDS journals,
each many hundreds of megabytes, also absorb repeti-
tive metadata updates (common to most workloads) such
that when old journal entries are eventually flushed to
long-term storage, many are already rendered obsolete.
Although MDS recovery is not yet implemented by our
prototype, the journals are designed such that in the event
of an MDS failure, another node can quickly rescan the
journal to recover the critical contents of the failed node’s

4

Root

MDS 0 MDS 4MDS 1 MDS 2 MDS 3

Busy directory hashed across many MDS’s

Figure 2: Ceph dynamically maps subtrees of the direc-
tory hierarchy to metadata servers based on the current
workload. Individual directories are hashed across mul-
tiple nodes only when they become hot spots.

in-memory cache (for quick startup) and in doing so re-
cover the file system state.

This strategy provides the best of both worlds: stream-
ing updates to disk in an efficient (sequential) fashion,
and a vastly reduced re-write workload, allowing the
long-term on-disk storage layout to be optimized for fu-
ture read access. In particular, inodes are embedded di-
rectly within directories, allowing the MDS to prefetch
entire directories with a single OSD read request and
exploit the high degree of directory locality present in
most workloads [20]. Each directory’s content is writ-
ten to an OSD cluster using the same striping and dis-
tribution strategy as file data. Inode numbers are man-
aged with journaled updates and distributed free lists
(or simply considered immutable, as in our prototype),
while an auxiliaryanchor table[25] keeps the rare inode
with multiple hard links globally addressable by inode
number—all without encumbering the overwhelmingly
common case of singly-linked files with an enormous,
sparsely populated and cumbersome inode table.

4.2 Dynamic Subtree Partitioning
Our primary-copy caching strategy makes a single au-
thoritative MDS responsible for managing cache coher-
ence and serializing updates for any given piece of meta-
data. While most existing distributed file systems employ
some form of static subtree-based partitioning to delegate
this authority (usually forcing an administrator to carve
the dataset into smaller static “volumes”), some recent
and experimental file systems have tried hash functions
to distribute directory and file metadata [3], effectively
sacrificing locality for load distribution. Both approaches
have critical limitations: static subtree partitioning fails
to cope with dynamic workloads and data sets, while
hashing destroys metadata locality and critical opportu-
nities for efficient metadata prefetching and storage.

Ceph’s MDS cluster is based on a dynamic subtree
partitioning strategy that adaptively distributes cached
metadata hierarchically across a set of nodes [26], as il-
lustrated in Figure 2. Each MDS measures the popu-
larity of metadata within the directory hierarchy using

counters with an exponential time decay. Any opera-
tion increments the counter on the affected inode and all
of its ancestors up to the root directory, providing each
MDS with a weighted tree describing the recent load dis-
tribution. MDS load values are periodically compared,
and appropriately-sized subtrees of the directory hierar-
chy are seamlessly migrated to keep the workload evenly
distributed. The combination of shared long-term stor-
age and carefully constructed namespace locks allows
such migrations to proceed by transferring the appropri-
ate contents of the in-memory cache (including “dirty”
metadata that hasn’t been flushed from the MDS jour-
nal) to the new authority, with minimal impact on coher-
ence locks or client capabilities. The resulting subtree-
based partition is kept coarse to minimize prefix replica-
tion overhead and to preserve locality.

When metadata is replicated across multiple MDS
nodes, inode contents are separated into three groups,
each with different consistency semantics: security
(owner, mode), file (size, mtime), and immutable (inode
number, ctime, layout). While immutable fields never
change, security and file locks are governed by inde-
pendent finite state machines, each with a different set
of states and transitions designed to accommodate dif-
ferent access and update patterns while minimizing lock
contention. For example, owner and mode are required
for the security check during path traversal but rarely
change, requiring very few states, while the file lock re-
flects a wider range of client access modes as it controls
an MDS’s ability to issue client capabilities.

4.3 Traffic Control

Partitioning the directory hierarchy across multiple
nodes can balance a broad range of workloads, but can-
not always cope with hot spots or flash crowds, where
many clients access the same directory or file. Ceph uses
its knowledge of metadata popularity to provide a wide
distribution for hot spots only when needed and with-
out incurring the associated overhead and loss of direc-
tory locality in the general case. The contents of heavily
read directories (e. g., many opens) are selectively repli-
cated across multiple nodes to distribute load. Directo-
ries that are particularly large or experiencing a heavy
write workload (e. g., many file creations) have their con-
tents hashed by file name across the cluster, achieving a
balanced distribution at the expense of directory local-
ity. This adaptive approach allows Ceph to encompass
a broad spectrum of partition granularities, capturing the
benefits of both coarse and fine partitions in the specific
regions where those strategies are most effective.

Every MDS response provides the client with updated
information about the authority and any replication of the
relevant inode and its ancestors, allowing clients to learn
the metadata partition for the parts of the file system they

5

…

…

… … …

…

CRUSH(pgid) (osd1, osd2)

OSDs

(grouped by

failure domain)

File

Objects
hash(oid) & mask pgid

PGs

(ino,ono) oid

Figure 3: Files are striped across many objects, grouped
into placement groups(PGs), and distributed to OSDs
via CRUSH, a specialized replica placement function.

interact with. Future metadata operations are directed
either at the authority (for updates) or a random replica
(for reads) based on the deepest known prefix of a given
path. Normally clients learn the proper locations of un-
popular (unreplicated) metadata and are able to contact
the appropriate MDS directly. Clients accessing popu-
lar metadata, however, are told the metadata reside either
on different or multiple MDS nodes, effectively bound-
ing the number of clients believing any particular piece
of metadata resides on any particular MDS, dispersing
potential hot spots and flash crowds before they occur.

5 Distributed Object Storage

From a high level, Ceph clients and metadata servers
view the object storage cluster (possibly tens or hundreds
of thousands of OSDs) as a single logical object store
and namespace. Ceph’s Reliable Autonomic Distributed
Object Store (RADOS) achieves linear scaling in both
capacity and aggregate performance by delegating man-
agement of object replication, cluster expansion, failure
detection and recovery to OSDs in a distributed fashion.

5.1 Data Distribution with CRUSH
Ceph must distribute petabytes of data among an evolv-
ing cluster of thousands of storage devices such that de-
vice storage and bandwidth resources are effectively uti-
lized. In order to avoid imbalance (e. g., recently de-
ployed devices mostly idle or empty) or load asymme-
tries (e. g., new, hot data on new devices only), we adopt
a strategy that distributes new data randomly, migrates a
random subsample of existing data to new devices, and
uniformly redistributes data from removed devices. This
stochastic approach is robust in that it performs equally
well under any potential workload.

Ceph first maps objects intoplacement groups(PGs)
using a simple hash function, with an adjustable bit
mask to control the number of PGs. We choose a value
that gives each OSD on the order of 1000 PGs to bal-
ance variance in OSD utilizations with the amount of
replication-related metadata maintained by each OSD.

Placement groups are then assigned to OSDs using
CRUSH (Controlled Replication Under Scalable Hash-
ing) [?], a pseudo-random data distribution function that
efficiently maps each PG to an ordered list of OSDs upon
which to store object replicas. This differs from conven-
tional approaches (including other object-based file sys-
tems) in that data placement does not rely on any block
or object list metadata. In contrast, to locate any object,
CRUSH requires only the placement group and anOSD
cluster map: a compact, hierarchical description of the
devices comprising the storage cluster. This approach
has two key advantages: first, it is completely distributed
such that any party (client, OSD, or MDS) can indepen-
dently calculate the location of any object; and second,
the map is infrequently updated, virtually eliminating
any exchange of distribution-related metadata. In doing
so, CRUSH simultaneously solves both the data distribu-
tion problem (“where should I store data”) and the data
location problem (“where did I store data”). Most im-
portantly, small changes to the storage cluster have little
impact on existing PG mappings, minimizing data mi-
gration due to device failures or cluster expansion.

The cluster map hierarchy is structured to align with
its physical composition and potential sources of failure.
For instance, one might form a four-level hierarchy for
an installation consisting of shelves full of OSDs, rack
cabinets full of shelves, and rows of cabinets. Each OSD
also has a weight value to control the relative amount of
data it is assigned. CRUSH maps PGs onto OSDs based
on placement rules, which define the level of replica-
tion and any constraints on placement. For example, one
might replicate each PG on three OSDs, all situated in
the same row (to limit inter-row replication traffic) but
separated into different cabinets (to minimize exposure
to a power circuit or edge switch failure). The cluster
map also includes a list of down or inactive devices and
a version number, which is incremented by an MDS each
time the map changes. All OSD requests are tagged with
the client’s map version, such that all parties can agree on
the current distribution of data. OSDs with old maps re-
quest the latest from an MDS or receive incremental up-
dates from their peers. Updates also piggyback on OSD
replies if the client’s map is out of date.

5.2 Replication

In contrast to systems like Lustre [3], which assume one
can construct sufficiently reliable OSDs using mecha-
nisms like RAID or fail-over on a SAN, we assume that
in a peta- or exabyte system failure will the norm rather
than the exception, and at any point in time several OSDs
are likely to be inoperable. To maintain system availabil-
ity and ensure data safety in a scalable fashion, RADOS
manages its own replication of data, while taking steps
to minimize its impact on performance.

6

Data is replicated in terms of placement groups, each
of which is mapped to an ordered list ofn OSDs (forn-
way replication). Clients send all writes to the first non-
failed OSD in an object’s PG (theprimary), who applies
the update locally, updates the version number for the
object and PG, and forwards the write to any additional
replica OSDs. After each replica applies the update and
responds to the primary, the write is acknowledged to the
client. This approach spares the client of any of the com-
plexity surrounding synchronization or serialization be-
tween object replicas, which can become onerous in the
presence of other writers or failure and recovery opera-
tions. It also shifts the bandwidth consumed by replica-
tion from the client to the OSD cluster’s internal network,
where we expect greater resources to be available.

5.3 Data Safety
In distributed storage systems, there are essentially two
reasons why data is written to shared storage. First,
we are interested in making our updates visible to other
clients. This should be quick: we would like our writes
to be visible as soon as possible, particularly when mul-
tiple writers or mixed readers and writers force clients
to operate synchronously. Second, we are interested in
knowing definitively that the data we’ve written is safely
replicated, on disk, and will survive power or other fail-
ures. RADOS disassociates synchronization from safety
when acknowledging updates, allowing Ceph to realize
both low-latency updates for efficient application syn-
chronization and well-defined data safety semantics.

Figure 4 illustrates the messages sent during an ob-
ject write. The primary forwards the update to replicas,
and replies with anack after it is applied to all OSDs’
in-memory buffer caches. A finalcommit is sent (per-
haps many seconds later) when it is safely committed to
disk. We send theackto the client only after the update is
replicated—even though this increases client latency—to
seamlessly tolerate the failure of any single OSD. By de-
fault, clients buffer writes until they committed to disk to
avoid data loss in the event of a simultaneous power loss
to all OSDs in the placement group. On recovery, the PG
allows the replay of previously acknowledged (and thus
ordered) updates for a fixed interval before new updates
are accepted.

5.4 Failure Detection
Timely failure detection is critical to maintaining data
safety, but can become difficult as a cluster scales to
many thousands of devices. For certain failures, such
as disk errors or corrupted data, OSDs can self-report.
Failures that make an OSD unreachable on the net-
work, however, require active monitoring. Ceph dis-
tributes liveness verification by having each OSD moni-
tor a pseudo-random subset of its peers. In certain cases,
existing inter-OSD replication traffic serves as a passive

Client Primary OSD Replica OSD Replica OSD

Write
Ack

Commit to disk

Commit

T
im

e

Figure 4: RADOS responds with anack after the write
has been applied to the buffer caches on all OSDs repli-
cating the object. Only after it has been safely committed
to disk is a finalcommitnotification sent to the client.

confirmation of liveness, with no additional communi-
cation overhead. If an OSD has not heard from a peer
recently, an explicit ping is sent.

In order to cope with intermittent OSD failures (e. g., a
reboot), RADOS considers two dimensions of OSD live-
ness: whether the OSD is reachable, and whether it is
assigned data by CRUSH. A non-responsive OSD is ini-
tially markeddown, and any primary responsibilities (up-
date serialization, replication) temporarily pass on to the
next OSD for each of its placement groups. If after some
interval the OSD does not recover, it is markedoutof the
data distribution map, at which point another OSD joins
each PG to re-replicate its contents. Clients who have
pending operations with a failed OSD simply resubmit
to the new primary, which safely ignores any duplicates.

Because a wide variety of network anomalies may
cause intermittent lapses in OSD connectivity, a moni-
tor (currently colocated with an MDS node) collects fail-
ure reports to filter out transient or systemic problems
(like a network partition) centrally. Whenever the mon-
itor updates the cluster map to reflect any failures or re-
coveries, affected OSDs are provided incremental map
updates, which then spread throughout the cluster by pig-
gybacking on existing inter-OSD communication. This
combination of distributed detection and a centralized
monitor allows fast detection without unduly burdening
the monitor, and resolves the occurrence of inconsistency
with centralized arbitration. Most importantly, it avoids
initiating widespread data re-replication due to systemic
problems by marking OSDsdownbut notout (e. g., after
a power loss to half of all OSDs). Our prototype monitor
is not yet replicated for reliability.

5.5 Recovery and Cluster Updates
The OSD cluster map will change due to OSD failures,
recoveries, and explicit cluster changes such as the de-
ployment of new storage. Ceph handles all such changes
the same way. To facilitate fast recovery, OSDs maintain
a version number and log of recent changes (names and
versions of updated or deleted objects) for each PG.

On boot, each OSD retrieves the latest OSD cluster

7

map from the monitor, iterates over all locally stored
placement groups, and calculates their CRUSH mapping
to determine which ones it is responsible for, either as a
primary or replica. For every PG it replicates, the OSD
provides the primary with its current PG version number.
For each PG for which it is the primary, the OSD collects
current (and former) replicas’ PG versions. If the pri-
mary lacks the most recent PG state, it retrieves the log
of recent PG changes (or a complete content summary, if
needed) from current or prior OSDs in the PG in order
to determine the correct (most recent) PG contents. The
primary then sends each replica an incremental log up-
date (or complete content summary, if needed), such that
all parties know what the PG contentsshouldbe, even if
their locally stored object set may not match. Only after
the primary determines the correct PG state and shares it
with any replicas is I/O to objects in the PG permitted.
OSDs are then independently responsible for retrieving
missing or outdated objects from their peers. If an OSD
receives a request for a stale or missing object, it delays
processing and moves that object to the front of the re-
covery queue.

When an active OSD receives an updated cluster
map, the same process is repeated for affected place-
ment groups only (e. g., those that change due to an
OSD newly markeddown). For example, supposeosd1
crashes and is markeddown, andosd2 takes over as pri-
mary forpgA. If osd1 recovers, it will request the latest
map on boot, and the monitor will mark it asup. When
osd2 receives the resulting map update, it will realize it
is no longer primary forpgA and send thepgA version
number toosd1. osd1 will discover it has an older ver-
sion ofpgA, retrieve recentpgA log entries fromosd2,
tell osd2 its contents are current, and then begin pro-
cessing requests while any updated objects are recovered
in the background.

Because failure recovery is driven entirely by individ-
ual OSDs, each PG affected by a failed OSD will re-
cover in parallel to (very likely) different replacement
OSDs. This approach, based on the Fast Recovery Mech-
anism (FaRM) [33], decreases recovery times and im-
proves overall data safety.

5.6 Object Storage with EBOFS

Although a variety of distributed file systems use local
file systems like ext3 to manage low-level storage [3, 12],
we found their interface and performance to be poorly
suited for object workloads [24]. The existing ker-
nel file system interface limits our ability to understand
when object updates are safely committed on disk. Syn-
chronous writes or journaling can provide the desired
safety, but only with a heavy latency and performance
penalty. More importantly, the POSIX interface fails to
support atomic data and metadata (e. g., version attribute)

update transactions, which are important for maintaining
RADOS consistency.

Instead, each Ceph OSD manages its local object stor-
age with EBOFS, an Extent and B-tree based Object File
System. Implementing EBOFS entirely in user space
and interacting directly with a raw block device allows
us to define our own low-level object storage interface
and update semantics, which separate update serializa-
tion (for synchronization) from on-disk commits (for
safety). EBOFS supports compound atomic transactions
(e. g., writes and attribute updates on multiple objects),
and update functions return when the in-memory caches
are updated, while providing asynchronous notification
of commits.

A user space approach, aside from providing greater
flexibility and easier implementation, also avoids cum-
bersome interaction with the Linux VFS and page cache,
both of which were designed for a different interface and
workload. While most kernel file systems lazily flush
updates to disk after some time interval, EBOFS aggres-
sively schedules disk writes, and opts instead to cancel
pending I/O operations when subsequent updates ren-
der them superfluous. This provides our low-level disk
scheduler with longer I/O queues and the correspond-
ing increase in scheduling efficiency. It also affords us
convenient access to the scheduler, making it simple to
eventually prioritize workloads (e. g., client I/O versus
recovery) or provide quality of service guarantees [32].

Central to the EBOFS design is a robust, flexible, and
fully integrated B-tree service that is used to locate ob-
jects on disk, manage block allocation, and index collec-
tions (placement groups). Block allocation is conducted
in terms of extents—start and length pairs—instead of
block lists, keeping metadata compact. Free block ex-
tents on disk are binned by size and sorted by location,
allowing EBOFS to quickly locate free space near the
write position or related data on disk, while also limit-
ing long-term fragmentation. With the exception of per-
object block allocation information, all metadata is kept
in memory for performance and simplicity (it is quite
small, even for very large volumes). Finally, EBOFS ag-
gressively performs copy-on-write: with the exception of
superblock updates, data is always written to unallocated
regions of disk.

6 Performance and Scalability Evaluation

We evaluate our prototype under a range of microbench-
marks to demonstrate its performance, reliability, and
scalability. In all tests, clients, OSDs, and MDSs are
user processes running on a dual-processor Linux clus-
ter with SCSI disks and communicating using TCP. In
general, each OSD or MDS runs on its own host, while
tens or hundreds of client instances may share the same
host while generating workload.

8

Write Size (KB)
4 16 64 256 1024 4096

P
er

−
O

S
D

 T
hr

ou
gh

pu
t

(M
B

/s
ec

)

0

10

20

30

40

50

60

no replication
2x replication
3x replication

Figure 5: Per-OSD write performance. The horizon-
tal line indicates the upper limit imposed by the physi-
cal disk. Data replication has minimal impact on OSD
throughput, although if the number of OSDs is fixed,n-
way replication reduces totaleffectivethroughput by a
factor ofn because replicated data must be written ton

OSDs.

I/O Size (KB)
4 16 64 256 1024 4096 16384

P
er

−
O

S
D

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

0

10

20

30

40

50

60

ebofs
ext3
reiserfs
xfsreads

writes

Figure 6: Performance of EBOFS compared to general-
purpose file systems. Although small writes suffer from
coarse locking in our prototype, EBOFS nearly saturates
the disk for writes larger than 32 KB. Since EBOFS lays
out data in large extents when it is written in large incre-
ments, it has significantly better read performance.

6.1 Data Performance
EBOFS provides superior performance and safety se-
mantics, while a balanced distribution of data by CRUSH
and the delegation of replication and failure recovery al-
low aggregate I/O performance to scale with the size of
the OSD cluster.

6.1.1 OSD Throughput
We begin by measuring the I/O performance of a 14-node
cluster of OSDs. Figure 5 shows per-OSD throughput
(Y) with varying write sizes (X) and replication. Work-
load is generated by 400 clients on 20 additional nodes.
Performance is ultimately limited by the raw disk band-
width (around 58 MB/sec), shown by the horizontal line.
Replication doubles or triples disk I/O, reducing client
data rates accordingly when the number of OSDs is fixed.

Figure 6 compares the performance of EBOFS to that
of general-purpose file systems (ext3, ReiserFS, XFS)
in handling a Ceph workload. Clients synchronously

Write Size (KB)
4 16 64 256 1024

W
rit

e
La

te
nc

y
(m

s)

0

5

10

15

20
no replication
2x replication
3x replication

sync write
sync lock, async write

Figure 7: Write latency for varying write sizes and repli-
cation. More than two replicas incurs minimal additional
cost for small writes because replicated updates occur
concurrently. For large synchronous writes, transmis-
sion times dominate. Clients partially mask that latency
for writes over 128 KB by acquiring exclusive locks and
asynchronously flushing the data.

write out large files, striped over 16 MB objects, and read
them back again. Although small read and write per-
formance in EBOFS suffers from coarse threading and
locking, EBOFS very nearly saturates the available disk
bandwidth for writes sizes larger than 32 KB, and signifi-
cantly outperforms the others for read workloads because
data is laid out in extents on disk that match the write
sizes—even when they are very large. Performance was
measured using a fresh file system. Experience with an
earlier EBOFS design suggests it will experience signifi-
cantly lower fragmentation than ext3, but we have not yet
evaluated the current implementation on an aged file sys-
tem. In any case, we expect the performance of EBOFS
after aging to be no worse than the others.

6.1.2 Write Latency

Figure 7 shows the synchronous write latency (Y) for a
single writer with varying write sizes (X) and replica-
tion. Because the primary OSD simultaneously retrans-
mits updates to all replicas, small writes incur a mini-
mal latency increase for more than two replicas. For
larger writes, the cost of retransmission dominates; 1 MB
writes (not shown) take 13 ms for one replica, and 2.5
times longer (33 ms) for three. Ceph clients partially
mask this latency for synchronous writes over 128 KB
by acquiring exclusive locks and then asynchronously
flushing the data to disk. Alternatively, write-sharing
applications can opt to useO LAZY. With consistency
thus relaxed, clients can buffer small writes and submit
only large, asynchronous writes to OSDs; the only la-
tency seen by applications will be due to clients who fill
their caches waiting for data to flush to disk.

6.1.3 Data Distribution and Scalability

Ceph’s data performance scales nearly linearly in the
number of OSDs. CRUSH distributes data pseudo-
randomly such that OSD utilizations can be accurately

9

OSD Cluster Size
2 6 10 14 18 22 26

P
er

−
O

S
D

 T
hr

ou
gh

pu
t

(M
B

/s
ec

)

30

40

50

60

crush (32k PGs)
crush (4k PGs)
hash (32k PGs)
hash (4k PGs)
linear

Figure 8: OSD write performance scales linearly with
the size of the OSD cluster until the switch is saturated
at 24 OSDs. CRUSH and hash performance improves
when more PGs lower variance in OSD utilization.

modeled by a binomial or normal distribution—what one
would expect from a perfectly random process [?]. Vari-
ance in utilizations decreases as the number of groups
increases: for 100 placement groups per OSD the stan-
dard deviation is 10%; for 1000 groups it is 3%. Fig-
ure 8 shows per-OSD write throughput as the cluster
scales using CRUSH, a simple hash function, and a linear
striping strategy to distribute data in 4096 or 32768 PGs
among available OSDs. Linear striping balances load
perfectly for maximum throughput to provide a bench-
mark for comparison, but like a simple hash function,
it fails to cope with device failures or other OSD clus-
ter changes. Because data placement with CRUSH or
the hash is stochastic, throughputs are lower with fewer
PGs: greater variance in OSD utilizations causes request
queue lengths to drift apart under our entangled client
workload. Because devices can become overfilled or
overutilized with small probability, dragging down per-
formance, CRUSH can correct such situations by of-
floading any fraction of the allocation for OSDs specially
marked in the cluster map. Unlike the hash and linear
strategies, CRUSH also minimizes data migration under
cluster expansion while maintaining a balanced distribu-
tion. CRUSH calculations areO(log n) (for a cluster of
n OSDs) and take only tens of microseconds, allowing
clusters to grow to hundreds of thousands of OSDs or
more.

6.2 Metadata Performance
The Ceph MDS cluster offers enhanced POSIX seman-
tics with excellent performance while demonstrating un-
precedented scalability. We measure its performance via
a partial workload lacking any data I/O; OSDs in these
experiments are used solely for metadata journaling and
storage.

6.2.1 Metadata Update Latency

We first consider the latency associated with metadata
updates (e. g., mknodor mkdir). A single client creates
a series of files and directories which the MDS must
synchronously journal to a cluster of OSDs for safety.

Metadata Replication

0 1 2 3 4

U
pd

at
e

La
te

nc
y

(m
s)

0

1

2

3

4

diskless
local disk

(a) Metadata update latency
for an MDS with and with-
out a local disk. Zero corre-
sponds to no journaling.

C
um

ul
at

iv
e

tim
e

(s
ec

)

0

50

100

150

10 files / dir 1 file / dir
fresh primed fresh primed

stat
readdir
readdirplus

(b) Cumulative time con-
sumed during a file system
walk.

Figure 9: The use of a local disk lowers the write latency
by avoiding the initial network round-trip. Reads benefit
from caching as well, whilereaddirplusor relaxed con-
sistency eliminates MDS interaction forstats following
readdir.

We consider both a diskless MDS, where all metadata is
stored in a shared OSD cluster, and one which also has
a local disk serving as the primary OSD for its journal.
Figure 9(a) shows the latency (Y) associated with meta-
data updates in both cases with varying metadata repli-
cation (X) (where zero corresponds to no journaling at
all). Journal entries are first written to the primary OSD
and then replicated to any additional OSDs. With a lo-
cal disk, the initial hop from the MDS to the (local) pri-
mary OSD takes minimal time, allowing update latencies
for 2x replication similar to 1x in the diskless model. In
both cases, more than two replicas incurs little additional
latency because replicas update in parallel.

6.2.2 Metadata Read Latency
The behavior of metadata reads (e. g., readdir, stat, open)
is more complex. Figure 9(b) shows cumulative time (Y)
consumed by a client walking 10,000 nested directories
with a readdir in each directory and astaton each file. A
primed MDS cache reducesreaddir times. Subsequent
stats are not affected, because inode contents are embed-
ded in directories, allowing the full directory contents to
be fetched into the MDS cache with a single OSD ac-
cess. Ordinarily, cumulativestat times would dominate
for larger directories. Subsequent MDS interaction can
be eliminated by usingreaddirplus, which explicitly bun-
dlesstatandreaddir results in a single operation, or by
relaxing POSIX to allowstats immediately following a
readdir to be served from client caches (the default).

6.2.3 Metadata Scaling
We evaluate metadata scalability using a 430 node par-
tition of thealc Linux cluster at Lawrence Livermore
National Laboratory (LLNL). Figure 10 shows per-MDS
throughput (Y) as a function of MDS cluster size (X),
such that a horizontal line represents perfect linear scal-

10

MDS Cluster Size (nodes)
0 16 32 48 64 80 96 112 128

P
er

−
M

D
S

 T
hr

ou
gh

pu
t (

op
s/

se
c)

0

1000

2000

3000

4000

5000
makedirs

makefiles

openshared

openssh+include

openssh+lib

Figure 10: Per-MDS throughput under a variety of work-
loads and cluster sizes. As the cluster grows to 128
nodes, efficiency drops no more than 50% below per-
fectly linear (horizontal) scaling for most workloads, al-
lowing vastly improved performance over existing sys-
tems.

ing. In themakedirsworkload, each client creates a tree
of nested directories four levels deep, with ten files and
subdirectories in each directory. Average MDS through-
put drops from 2000 ops per second with a small clus-
ter, to about 1000 ops per MDS per second (50% effi-
ciency) with 128 MDSs (over 100,000 ops/sec total). In
thewritefilesworkload, each client creates thousands of
files in the same directory. When the high write levels
are detected, Ceph hashes the shared directory to dis-
tribute the workload across all MDS nodes. Theopen-
sharedworkload demonstrates read sharing by having
each client repeatedly open and close ten shared files. In
theopensshworkloads, each client replays a captured file
system trace of a compilation in a private directory. One
variant uses a shared/lib for moderate sharing, while
the other shares/usr/include, which is very heavily
read. Theopensharedandopenssh+includeworkloads
have the heaviest read sharing and show the worst scal-
ing behavior, we believe due to poor replica selection by
clients. openssh+libscales better than the trivially sep-
arablemakedirsbecause it contains relatively few meta-
data modifications and little sharing. Although we be-
lieve that contention in the network or threading in our
messaging layer further lowered performance for larger
MDS clusters, our limited time with dedicated access to
the large cluster prevented a more thorough investigation.

Figure 11 plots latency (Y) versus per-MDS through-
put (X) for a 4-, 16-, and 64-node MDS cluster under
the makedirsworkload. Larger clusters have imperfect
load distributions, resulting in lower average per-MDS
throughput (but, of course, much higher total through-
put) and slightly higher latencies.

Ceph offers significantly greater scalability and effi-
ciency than existing distributed file systems by several
orders of magnitude, despite imperfect linear scaling. A

Per−MDS throughput (ops/sec)
0 500 1000 1500 2000

La
te

nc
y

(m
s)

0

10

20

30

40

50
4 MDSs
16 MDSs
128 MDSs

Figure 11: Average latency versus average per-MDS
throughput for different cluster sizes (makedirswork-
load).

128-node MDS cluster running our prototype can ser-
vice more than a quarter million metadata operations per
second (128 nodes at 2000 ops/sec). Because metadata
transactions are independent of data I/O and metadata
size is independent of file size, this corresponds to in-
stallations with potentially many hundreds of petabytes
of storage or more, depending on average file size. For
example, scientific applications creating checkpoints on
LLNL’s Bluegene/L might involve 64 thousand nodes
with two processors each writing to separate files in the
same directory (as in themakefilesworkload). While the
current storage system peaks at 6,000 metadata ops/sec
and would take minutes to complete each checkpoint,
a 128-node Ceph MDS cluster could finish in two sec-
onds. If each file were only 10 MB (quite small by HPC
standards) and OSDs sustain 50 MB/sec, such a clus-
ter could write 1.25 TB/sec, saturating at least 25,000
OSDs (50,000 with replication). 250 GB OSDs would
put such a system at more than six petabytes. More
importantly, Ceph’s dynamic metadata distribution ap-
proach allows an MDS cluster (of any size) to reallocate
resources based on the current workload, even when all
clients access metadata previously assigned to a single
MDS, making it significantly more versatile and adapt-
able than any static partitioning strategy.

7 Experiences

We were pleasantly surprised by the extent to which re-
placing file allocation metadata with a globally known
distribution function (originally, RUSH [9]) became a
simplifying force in our design. Although this placed
greater demands on the function itself, once we realized
exactly what those requirements were, CRUSH was able
to deliver the necessary scalability, flexibility, and relia-
bility. This vastly simplified our metadata workload and
on-disk layout, providing both clients and OSDs with
complete and independent knowledge of the data dis-
tribution. The latter enabled us to delegate responsibil-
ity for data replication, migration, failure detection, and
recovery to the OSDs, distributing these mechanisms in
a way that effectively leveraged their bundled CPU and

11

memory. RADOS has also opened the door to a range of
future enhancements that elegantly map onto our OSD
model, such as bit error detection (as in the Google File
System [6]), dynamic replication of data based on work-
load (similar to AutoRAID [30]), and OSD-managed ob-
ject locks for improved write-sharing performance.

Although it was tempting to use existing kernel file
systems for local object storage (as many other systems
have done [3, 8, 6]), we recognized early on that a file
system tailored for object workloads could offer better
performance [24]. What we did not anticipate was the
disparity between the existing file system interface and
our requirements, which became evident while develop-
ing the RADOS replication and reliability mechanisms.
EBOFS was surprisingly quick to develop in user-space,
offered very satisfying performance, and exposed an in-
terface perfectly suited to our requirements.

One of the largest lessons in Ceph was the importance
of the MDS load balancer to overall scalability, and the
complexity of choosing what metadata to migrate where
and when. Although in principle our design and goals
seem quite simple, the reality of distributing an evolv-
ing workload among over a hundred MDSs highlighted
additional subtleties. Most notably, MDS performance
has a wide range of performance bounds, including CPU
utilization, memory (and cache efficiency), and network
or I/O limitations, any of which may be limiting per-
formance at any point in time. Furthermore, it is dif-
ficult to quantitatively capture the balance between to-
tal throughput and fairness; under certain circumstances
unbalanced metadata distributions can increase overall
throughput [26].

Implementation of the client interface posed a greater
challenge than anticipated. Although the use of FUSE
vastly simplified implementation by eliminating any ker-
nel work, it introduced its own set of idiosyncrasies.
DIRECT IO bypassed kernel page cache but didn’t sup-
port mmap, forcing us to instead modify FUSE to inval-
idate clean pages as a workaround. FUSE’s insistence
on performing its own security checks results in copi-
ousgetattrs (stats) for even simple application calls. Fi-
nally, page-based I/O between kernel and user space lim-
its overall I/O rates. Although linking directly to the
client avoids FUSE issues, overloading system calls in
user space introduces a new set of issues (most of which
we have yet to fully examine), making in-kernel client
seem inevitable.

8 Related Work

High-performance scalable file systems have long been
a goal of the HPC community, which tends to place a
heavy load on the file system [16, 24]. Although many
file systems attempt to meet this need, they do not pro-
vide the same level of scalability that Ceph does. Large-

scale systems like OceanStore [11] and Farsite [1] are
designed to provide petabytes of highly reliable storage,
and can provide simultaneous access to thousands of sep-
arate files to thousands of clients, but cannot provide
high-performance access to a small set of files by tens
of thousands of cooperating clients due to bottlenecks in
subsystems such as name lookup. Conversely, parallel
file and storage systems such as Vesta [5], Galley [15],
PVFS [12], and Swift [4] have extensive support for
striping data across multiple disks to achieve very high
transfer rates, but lack strong support for scalable meta-
data access or robust data distribution for high reliability.
For example, Vesta permits applications to lay their data
out on disk, and allows independent access to file data on
each disk without reference to shared metadata. How-
ever, like many other parallel file systems, Vesta does
not provide scalable support for metadata lookup. As a
result, these file systems typically provide poor perfor-
mance on workloads that access many small files or re-
quire many metadata operations. They also typically suf-
fer from block allocation issues: blocks are either allo-
cated centrally or via a lock-based mechanism, prevent-
ing them from scaling well for write requests from thou-
sands of clients to thousands of disks. GPFS [22] and
StorageTank [14] partially decouple metadata and data
management, but are limited by their use of block-based
disks and their metadata distribution architecture.

Grid-based file systems such as LegionFS [29] are de-
signed to coordinate wide-area access and are not opti-
mized for high performance in the local file system. Sim-
ilarly, the Google File System [6] is optimized for very
large files and a workload consisting largely of reads and
file appends. Like Sorrento [23], it targets a narrow class
of applications with non-POSIX semantics.

Recently, many file systems and platforms, including
Federated Array of Bricks (FAB) [21] and pNFS [8] have
been designed around network attached storage [7]. Lus-
tre [3], the Panasas file system [28], zFS [19], Sorrento,
and Kybos [31] are based on the object-based storage
paradigm [2] and most closely resemble Ceph. How-
ever, none of these systems has the combination of scal-
able and adaptable metadata management, reliability and
fault tolerance that Ceph provides. Lustre and Panasas
in particular fail to delegate responsibility to OSDs, and
have limited support for efficient distributed metadata
management, limiting their scalability and performance.
Further, with the exception of Sorrento’s use of consis-
tent hashing [10], all of these systems use explicit al-
location maps to specify where objects are stored, and
have limited support for rebalancing when new storage
is deployed. This can lead to load asymmetries and poor
resource utilization, while Sorrento’s hashed distribution
lacks CRUSH’s support for efficient data migration, de-
vice weighting, and separation of replicas across failure

12

domains.

9 Future Work

A variety of core Ceph elements have not yet been im-
plemented, including MDS failure recovery and several
POSIX calls. Two security architecture and protocol
variants are under consideration, but neither have yet
been implemented [17]. We also plan on investigating
the practicality and benefits of client callbacks on names-
pace to inode translation metadata. For static regions of
the file system (e. g., /usr/include), this could allow
opens (for read) to occur without MDS interaction. Sev-
eral other metadata enhancements are planned, including
the ability to create snapshots of arbitrary subtrees of the
directory hierarchy [25].

Although Ceph dynamically replicates metadata when
flash crowds access single directories or files, the same
is not yet true of file data. We plan to allow OSDs to
dynamically adjust the level of replication for individual
objects based on workload, and to distribute read traffic
across multiple OSDs in the placement group. This will
allow scalable access to small amounts of data, and may
facilitate fine-grained OSD load balancing using a mech-
anism similar to D-SPTF [13].

Finally, we are working on developing a quality
of service architecture to allow both aggregate class-
based traffic prioritization and OSD-managed reserva-
tion based bandwidth and latency guarantees. In addition
to supporting applications with QoS requirements, this
will help balance RADOS replication and recovery oper-
ations with regular workload. A number of other EBOFS
enhancements are planned, including an update jour-
nal to reduce commit latency, which will be distributed
among several regions on disk to minimize the impact on
low-level disk scheduling. Data scouring, checksums, or
other bit-error detection mechanisms will also improve
overall data safety.

10 Conclusions

Ceph addresses three critical challenges of storage
systems—scalability, performance, and reliability—by
occupying a unique point in the design space. By shed-
ding design assumptions like allocation lists found in
nearly all existing systems, we maximally separate data
from metadata management, allowing them to scale inde-
pendently. This separation relies on CRUSH, a data dis-
tribution function that generates a pseudo-random distri-
bution, allowing clients to calculate object locations in-
stead of looking them up. CRUSH enforces data replica
separation across failure domains for improved data
safety while efficiently coping with the inherently dy-
namic nature of large storage clusters, where devices fail-
ures, expansion and cluster restructuring are the norm.

We leverage intelligent OSDs to manage data replica-
tion, failure detection and recovery, low-level disk allo-
cation, scheduling, and data migration without encum-
bering any central server(s). Although objects can be
considered files and stored in a general-purpose file sys-
tem, EBOFS provides more appropriate semantics and
superior performance by addressing the specific work-
loads and interface requirements present in Ceph.

Finally, Ceph’s metadata management architecture ad-
dresses one of the most vexing problems in highly
scalable storage—how to efficiently provide a single
uniform directory hierarchy obeying POSIX semantics
with performance that scales with the number of meta-
data servers. Ceph’s dynamic subtree partitioning is a
uniquely scalable approach, offering both efficiency and
the ability to adapt to varying workloads.

Ceph is licensed under the LGPL and is available at
http://ceph.sourceforge.net/

Acknowledgments

This research was funded in part by the Lawrence Liv-
ermore, Los Alamos, and Sandia National Laboratories.
We would like to thank Bill Loewe, Tyce McLarty, Terry
Heidelberg, and everyone else at Livermore who talked
to us about their storage trials and tribulations, and who
helped facilitate our two days of dedicated access time
on alc. We would also like to thank IBM for donating
the 32-node cluster that aided in much of the OSD per-
formance testing, and the National Science Foundation,
who paid for the switch upgrade. Theodore Wong pro-
vided useful feedback on this paper, and we would also
like to thank the students, faculty, and sponsors of the
SSRC for their input and support.

References

[1] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cer-
mak, J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer,
and R. Wattenhofer. FARSITE: Federated, available, and
reliable storage for an incompletely trusted environment.
In Proceedings of the 5th Symposium on Operating Sys-
tems Design and Implementation (OSDI), Boston, MA,
Dec. 2002. USENIX.

[2] A. Azagury, V. Dreizin, M. Factor, E. Henis, D. Naor,
N. Rinetzky, O. Rodeh, J. Satran, A. Tavory, and
L. Yerushalmi. Towards an object store. InProceedings
of the 20th IEEE / 11th NASA Goddard Conference on
Mass Storage Systems and Technologies, pages 165–176,
Apr. 2003.

[3] P. J. Braam. The Lustre storage architecture.
http://www.lustre.org/documentation.html, Cluster File
Systems, Inc., Aug. 2004.

[4] L.-F. Cabrera and D. D. E. Long. Swift: Using distributed
disk striping to provide high I/O data rates.Computing
Systems, 4(4):405–436, 1991.

13

[5] P. F. Corbett and D. G. Feitelson. The Vesta parallel
file system. ACM Transactions on Computer Systems,
14(3):225–264, 1996.

[6] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. InProceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP ’03), Bolton
Landing, NY, Oct. 2003. ACM.

[7] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W.
Chang, H. Gobioff, C. Hardin, E. Riedel, D. Rochberg,
and J. Zelenka. A cost-effective, high-bandwidth stor-
age architecture. InProceedings of the 8th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 92–
103, San Jose, CA, Oct. 1998.

[8] D. Hildebrand and P. Honeyman. Exporting storage sys-
tems in a scalable manner with pNFS. Technical Report
CITI-05-1, CITI, University of Michigan, Feb. 2005.

[9] R. J. Honicky and E. L. Miller. Replication under scal-
able hashing: A family of algorithms for scalable de-
centralized data distribution. InProceedings of the 18th
International Parallel & Distributed Processing Sympo-
sium (IPDPS 2004), Santa Fe, NM, Apr. 2004. IEEE.

[10] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on
the World Wide Web. InACM Symposium on Theory of
Computing, pages 654–663, May 1997.

[11] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An architecture for
global-scale persistent storage. InProceedings of the 9th
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), Cambridge, MA, Nov. 2000. ACM.

[12] R. Latham, N. Miller, R. Ross, and P. Carns. A next-
generation parallel file system for Linux clusters.Linux-
World, pages 56–59, Jan. 2004.

[13] C. R. Lumb, G. R. Ganger, and R. Golding. D-SPTF:
Decentralized request distribution in brick-based storage
systems. InProceedings of the 11th International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 37–47,
Boston, MA, 2004.

[14] J. Menon, D. A. Pease, R. Rees, L. Duyanovich, and
B. Hillsberg. IBM Storage Tank—a heterogeneous scal-
able SAN file system.IBM Systems Journal, 42(2):250–
267, 2003.

[15] N. Nieuwejaar and D. Kotz. The Galley parallel file sys-
tem. InProceedings of 10th ACM International Confer-
ence on Supercomputing, pages 374–381, Philadelphia,
PA, 1996. ACM Press.

[16] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. S. Ellis,
and M. Best. File-access characteristics of parallel sci-
entific workloads. IEEE Transactions on Parallel and
Distributed Systems, 7(10):1075–1089, Oct. 1996.

[17] C. A. Olson and E. L. Miller. Secure capabilities for a
petabyte-scale object-based distributed file system. In
Proceedings of the 2005 ACM Workshop on Storage Se-
curity and Survivability, Fairfax, Virgina, USA, Nov.
2005.

[18] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith,
D. Lebel, and D. Hitz. NFS version 3: Design and imple-
mentation. InProceedings of the Summer 1994 USENIX
Technical Conference, pages 137–151, 1994.

[19] O. Rodeh and A. Teperman. zFS—a scalable distributed
file system using object disks. InProceedings of the 20th
IEEE / 11th NASA Goddard Conference on Mass Storage
Systems and Technologies, pages 207–218, Apr. 2003.

[20] D. Roselli, J. Lorch, and T. Anderson. A comparison
of file system workloads. InProceedings of the 2000
USENIX Annual Technical Conference, pages 41–54, San
Diego, CA, June 2000. USENIX Association.

[21] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and
S. Spence. FAB: Building distributed enterprise disk ar-
rays from commodity components. InProceedings of
the 11th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS), pages 48–58, 2004.

[22] F. Schmuck and R. Haskin. GPFS: A shared-disk file
system for large computing clusters. InProceedings of
the 2002 Conference on File and Storage Technologies
(FAST), pages 231–244. USENIX, Jan. 2002.

[23] H. Tang, A. Gulbeden, J. Zhou, W. Strathearn, T. Yang,
and L. Chu. A self-organizing storage cluster for par-
allel data-intensive applications. InProceedings of the
2004 ACM/IEEE Conference on Supercomputing (SC
’04), Nov. 2004.

[24] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller,
D. D. E. Long, and T. T. McLarty. File system workload
analysis for large scale scientific computing applications.
In Proceedings of the 21st IEEE / 12th NASA Goddard
Conference on Mass Storage Systems and Technologies,
pages 139–152, College Park, MD, Apr. 2004.

[25] S. A. Weil. Scalable archival data and metadata man-
agement in object-based file systems. Technical Report
SSRC-04-01, University of California, Santa Cruz, May
2004.

[26] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller.
Dynamic metadata management for petabyte-scale file
systems. InProceedings of the 2004 ACM/IEEE Confer-
ence on Supercomputing (SC ’04), Pittsburgh, PA, Nov.
2004. ACM.

[27] B. Welch. POSIX IO extensions for HPC. InProceed-
ings of the 4th USENIX Conference on File and Storage
Technologies (FAST), Dec. 2005.

[28] B. Welch and G. Gibson. Managing scalability in object
storage systems for HPC Linux clusters. InProceedings
of the 21st IEEE / 12th NASA Goddard Conference on
Mass Storage Systems and Technologies, pages 433–445,
Apr. 2004.

[29] B. S. White, M. Walker, M. Humphrey, and A. S.
Grimshaw. LegionFS: A secure and scalable file sys-
tem supporting cross-domain high-performance applica-
tions. InProceedings of the 2001 ACM/IEEE Conference
on Supercomputing (SC ’01), Denver, CO, 2001.

[30] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The
HP AutoRAID hierarchical storage system. InProceed-
ings of the 15th ACM Symposium on Operating Systems
Principles (SOSP ’95), pages 96–108, Copper Mountain,
CO, 1995. ACM Press.

14

[31] T. M. Wong, R. A. Golding, J. S. Glider, E. Borowsky,
R. A. Becker-Szendy, C. Fleiner, D. R. Kenchammana-
Hosekote, and O. A. Zaki. Kybos: self-management
for distributed brick-base storage. Research Report RJ
10356, IBM Almaden Research Center, Aug. 2005.

[32] J. C. Wu and S. A. Brandt. The design and implemen-
tation of AQuA: an adaptive quality of service aware
object-based storage device. InProceedings of the 23rd
IEEE / 14th NASA Goddard Conference on Mass Storage
Systems and Technologies, College Park, Maryland, May
2006. To appear.

[33] Q. Xin, E. L. Miller, and T. J. E. Schwarz. Evaluation
of distributed recovery in large-scale storage systems. In
Proceedings of the 13th IEEE International Symposium
on High Performance Distributed Computing (HPDC),
pages 172–181, Honolulu, HI, June 2004.

15

