24

ANDREW W. LEUNG, MINGLONG SHAO,
TIMOTHY BISSON, SHANKAR PASUPATHY,
AND ETHAN L. MILLER

Spyglass: metadata
search for large-scale

storage systems

Andrew W. Leung is a PhD student at the University
of California, Santa Cruz. His advisor is Ethan L.
Miller. He is currently researching new techniques
for large-scale data management, with a particular
emphasis on storage system search. He received his
BS from the University of California, Santa Barbara.

aleung@cs.ucsc.edu

Minglong Shao is a member of the Advanced
Technology Group at NetApp. She received a Ph.D. in
Computer Science from Carnegie Mellon University
in 2007. Her research interests are in the area of
database and storage systems, with an emphasis
on database system behavior on modern storage
devices.

minglong@netapp.com

Tim Bisson is a software engineer at NetApp in
Sunnyvale, California. He received his Ph.D. in
computer science from the University of California,
Santa Cruz, in 2007.

tbisson@netapp.com

Shankar Pasupathy is a member of NetApp’s
advanced technology group, where he leads the in-
dexing project. He is involved in research related to
indexing petabyte-scale storage, as well as building
large content repositories.

Shankar.Pasupathy @netapp.org

Ethan Miller is a professor of computer science at
the University of California, Santa Cruz, where he
is the Associate Director of the Storage Systems
Research Center. His research interests include ar-
chival storage systems, scalable metadata manage-
ment, file system reliability and security, scalable
distributed storage systems, and file systems for
non-volatile memories.

elm@cs.ucsc.edu

ARE OUR GROWING STORAGE SYSTEMS
a blessing or a curse? As storage systems
expand to billions of files they become
increasingly difficult to manage. Effective
management requires quickly searching

the metadata of the files being stored.
Unfortunately, tools such as find and grep
and off-the-shelf databases cannot easily
scale to billions of files. Spyglass is a new
approach to metadata search, which lever-
ages file and query properties to improve
performance and functionality and to allow
people to focus on using rather than merely
managing their data.

The Growing Data Problem

Our ever-growing storage systems have become an
escalating problem for storage users and adminis-
trators. Increasing amounts of digital data coupled
with decreasing storage costs have yielded systems
that store petabytes of data and billions of files.
Managing this rising sea of data is difficult because
users and administrators need to efficiently answer
a variety of questions about the files being stored.
For example, a user may need files that he/she has
forgotten the location for (e.g., “Where are my re-
cently modified presentation files?”), or an admin-
istrator may need to reduce storage capacity (e.g.,
“Which files can be migrated to second-tier stor-
age?”). These questions are extremely difficult to
answer when one must sift through billions of files.
Moreover, answering data management questions
requires complex query functionality. Consider a
scenario where a buggy script accidentally deletes
a number of users’ files. To fix the problem, an
administrator would like to answer the question,
“Which files should be restored from backup?” Re-
storing the entire backup takes enormous amounts
of time and destroys any changes made since then.
Ideally, an administrator would like to be able to
search both the current and previous file versions,
search for just those files affected by the script, and
determine which critical files should be restored
first.

Metadata search can greatly aid users and admin-
istrators in answering these questions. Metadata
search allows ad hoc queries over file properties.
These properties are structured attribute,value pairs
and consist of metadata such as inode fields (e.g.,
size, owner, timestamps) and extended attributes

;LOGIN: VOL. 34, NO. 3

;LOGIN: JUNE 2009

(e.g., document title, retention policy, backup dates). Metadata search helps
users and administrators understand the kinds of files being stored, where
they are located, how they got there (provenance), and where they belong,
and is a key step towards improving how we manage our data. Table 1
shows examples of some popular metadata search queries from a survey we
conducted, which we detail later in the article.

File Management Question Metadata Search Query

Which files can I migrate to tape? |size > 50 GB, atime > 6 months

How many duplicates of this file | owner = john, datahash =
are in my home directory? 0xE431, path = /home/john

Where are my recently modified owner = john, type =
presentations? (ppt | keynote), mtime < 2 days

Which legal compliance files can retention time = expired, mtime
be expired? > 7 years

Which of my files grew the most | Top 100 where size(today) >
in the past week? size (1 week ago), owner = john.

How much storage do these users | Sum size where owner = john,
and applications consume? type = database

TABLE 1: USE-CASE EXAMPLES. METADATA SEARCH USE-CASES
COLLECTED FROM OUR USER SURVEY. THE HIGH-LEVEL QUESTIONS
BEING ADDRESSED ARE ON THE LEFT. ON THE RIGHT ARE THE
METADATA ATTRIBUTES BEING SEARCHED AND EXAMPLE VALUES.

Metadata search is becoming increasingly popular and is common on desk-
top and small-scale enterprise storage systems. Most desktop file systems
ship with a search tool that supports metadata search [1, 11]. Enterprise
search appliances, such as FAST [4] and Google Enterprise [5], provide
metadata search for relatively small-scale storage systems (e.g., up to tens of
millions of files). These tools are becoming more prevalent; recent studies
show that 37% of enterprise businesses already use such tools and that 40%
plan to use them in the near future [6].

Unfortunately, it appears that we are still not ready to address metadata
search at large scales. Searching storage systems with billions of files gives
rise to a number of challenges that existing solutions do not address. First,
cost and resources must be efficiently utilized. Existing enterprise-scale so-
lutions address performance through dedicated CPU, memory, and disk
hardware, which quickly becomes prohibitively expensive at large scales.

It can cost tens of thousands of dollars just to search tens of millions of

files [8]. An effective solution should be able to reside directly within the
storage system, sharing resources without degrading search or native storage
performance.

Second, there must be a way to quickly gather metadata changes. Large sys-
tems can produce millions of metadata changes per minute. However, ex-
isting solutions often gather metadata changes with a brute-force crawl of
the storage system, which is not only prohibitively slow but also extremely
resource-intensive. We have observed commercial systems take 22 hours to
crawl 500GB and 10 days to crawl 10TB. Other approaches, such as inter-
cepting file system requests, are often not possible because enterprise appli-
ances are not integrated with the storage system.

Third, search and update performance must be highly scalable. It is very dif-
ficult to search billions of files in a timely manner. Poor search and update
performance directly impacts overall effectiveness and usability. Existing

SPYGLASS: METADATA SEARCH FOR LARGE-SCALE STORAGE SYSTEMS 25

26

solutions rely on basic off-the-shelf solutions—in most cases, general-pur-
pose relational databases (DBMSes). While privy to decades of performance
research, DBMSes are not designed or optimized for storage system search.
As a result, they make few metadata search optimizations and have extrane-
ous functionality that adds overhead. Our results show that a simple DBMS-
based solution often requires many minutes and sometimes hours to search
tens to hundreds of millions of files. The concept that a general-purpose
DBMS should not serve as a “one size fits all” solution is not new and is ac-
tually touted by the DBMS community itself [12].

Re-Thinking Metadata Search

Addressing metadata search requires rethinking our approach to the prob-
lem, since we cannot rely on basic off-the-shelf solutions. As with any good
system design, the key to improving performance and scalability is to under-
stand and leverage metadata search properties. This requires understanding
the properties of the files being searched and the queries being run. To do
this we surveyed over 30 storage users and administrators from NetApp and
the University of California, Santa Cruz, and analyzed metadata from three
storage systems at NetApp. Armed with recent observations, we developed

a new metadata search system, called Spyglass, which was presented at the
7th USENIX Conference on File and Storage Technologies (FAST '09) [9].
Spyglass introduces new approaches to index design, index updating, and
metadata collection that leverage metadata search properties to improve per-
formance and scalability.

We asked our survey participants, “What kinds of metadata queries would
you like to perform?” Our survey yielded interesting insights, with some

of the popular searches featured in Table 1. Queries almost always contain
multiple metadata attributes, because querying a single attribute returns
too many results to be useful. Also, queries can often be localized to only a
part of the namespace, such as a home or project directory, by using a path-
name in the query. Often participants had some idea where their data was
located, and localizing queries helps to narrow the results. Finally, queries
often involve “back-in-time” search of previous metadata versions to answer
questions about how or when files have changed. Spyglass leverages this
information by using a query execution method that utilizes all of the at-
tributes in the query, embedding namespace information directly into the
index, and versioning index updates.

The first storage system we analyzed served Web server data and stored
about 15 million files. The second hosted engineering build space (source,
object, and support files) and stored about 60 million files. The third stored
employee home directories and contained about 300 million files. All three
systems exhibit two important metadata characteristics: metadata values are
highly clustered in the namespace, and the distribution of metadata values
greatly changes when looking at a single metadata value versus a combina-
tion of values. Metadata clustering means that any particular metadata value,
such as owner,Andrew, occurs only in a tiny fraction of directories (e.g., An-
drew’s home directory) as opposed to being scattered across the namespace.
In fact, most of the values we studied occurred in less than one-tenth of 1%
of the directories! This is not a surprising result, really, since people use

the namespace to group related files. Spyglass leverages this information by
identifying just the few namespace locations that must be searched for in a
query, thereby greatly reducing the scope of the search. Existing solutions
do not utilize namespace information and must consider files from the entire
storage system.

;LOGIN: VOL. 34, NO. 3

;LOGIN: JUNE 2009

Our other observation is that the distributions of single metadata values dif-
fer greatly from those of multiple metadata values. Consider an example
from our engineering storage system. As one might expect, there are many
millions of .c source files, which comprise a large fraction of all file types on
the system (we found that these distributions closely followed the power-
law distribution). However, when we consider multiple attribute values at
once, such as file type,.c and owner,Andrew, there are far fewer files with both
values (we often found orders-of-magnitude fewer files). Spyglass leverages
this knowledge by using all values when executing a query, which greatly
reduces the number of files that must be considered. Existing DBMS-based
solutions often rely on only a single attribute value when executing queries,
and performance often suffers when distributions are skewed [10].

The Spyglass Design

Spyglass is designed to reside directly within the storage system and con-
sists of two main components, shown in Figure 1: the Spyglass index, which
stores metadata and serves queries, and a crawler that extracts metadata
from the storage system.

(N
Storage
system
Query
Resulis «
[Cache] [Crawler]
L | A y,
. /

FIGURE 1: SPYGLASS OVERVIEW. SPYGLASS RESIDES WITHIN THE
STORAGE SYSTEM. THE CRAWLER EXTRACTS FILE METADATA, WHICH
GETS STORED IN THE INDEX. THE INDEX CONSISTS OF A NUMBER
OF PARTITIONS AND VERSIONS, ALL OF WHICH ARE MANAGED BY A
CACHING SYSTEM.

Spyglass introduces several new metadata search designs. First, hierarchi-
cal partitioning partitions the index based on the namespace, allowing the
index to exploit metadata clustering and allowing fine-grained index con-
trol. Second, signature files [3] are used to automatically identify the parti-
tions that are relevant to a query. Third, partition versioning versions index
updates, which improves update performance and allows “back-in-time”
metadata search. Finally, Spyglass utilizes snapshots in WAFL [7], the file
system on which it was built, to collect metadata changes by crawling only
files whose metadata has changed. In this article we briefly describe the de-
sign of the Spyglass index and how it uses hierarchical partitioning and sig-
nature files. A complete description of the design can be found in our FAST
'09 paper [9].

SPYGLASS: METADATA SEARCH FOR LARGE-SCALE STORAGE SYSTEMS 27

28

home proj usr
re SN o
john jim / distmeta reliability include
/\ / N\
thesis scidac w) R
-
" Spyglass index
Y On disk
N O i

FIGURE 2: HIERARCHICAL PARTITIONING EXAMPLE. SUB-TREE
PARTITIONS, SHOWN IN DIFFERENT COLORS, INDEX DIFFERENT
STORAGE SYSTEM SUB-TREES. EACH PARTITION IS STORED
SEQUENTIALLY ON DISK. THE SPYGLASS INDEX IS A TREE OF SUB-
TREE PARTITIONS.

Hierarchical partitioning indexes files from separate parts of the namespace
into separate partitions, providing flexible, fine-grained index control at the
granularity of sub-trees. Figure 2 shows an example where files from sepa-
rate sub-trees are indexed in separate partitions. The key idea is that we
can now search only the parts of the storage system that are relevant to our
query, without concerning ourselves with files from other parts of the sys-
tem. Our finding that metadata values are highly clustered in the namespace
indicates that in most cases we can search only a small fraction of the par-
titions. Spyglass keeps partitions relatively small (on the order of 100,000
files) and stores them sequentially on disk. This layout ensures very fast
access to any one partition. Each partition indexes its metadata in a K-D
tree [2].

Spyglass search performance is a function of the number of partitions that
must be searched. Thus, when executing a query the question becomes,
“Which partitions must be searched?” Spyglass can identify partitions in two
ways. First, users can localize their queries (which we found to be common
in our survey) and thereby control the number of partitions searched. Spy-
glass also uses signature files [3] to determine which partitions may have
files relevant to a query. A signature file is a bit array with an associated
hashing function that is a compact representation of a partition’s contents.
Each partition has a signature file for each attribute that it indexes, which
are kept small so that they may fit in memory. Metadata values that are in-
dexed in the partition have associated signature file bits set to one. If and
only if all metadata values in a query map to one bits in the signature files
is a partition read from disk and searched. Spyglass leverages the fact that
there are far fewer files matching all query values than if only a single value
is used. Since signature files are probabilistic, false positives can occur.

An evaluation of our Spyglass prototype shows significant performance im-
provements compared to a simple DBMS-based solution. Our evaluation was
done using the real-world metadata we collected and sets of queries derived
from our survey. We evaluated the performance of two popular DBMSes,
PostgreSQL and MySQL, to serve as relative comparison points to DBMS-
based solutions used in other metadata search systems. We found that Spy-
glass satisfies most queries in less than a second even as the system scales

;LOGIN: VOL. 34, NO. 3

from 15 to 300 million files. Few queries took less than a second with our
reference DBMSes. In fact, many queries require well over five minutes on
the largest data set. A key reason for the performance difference is that Spy-
glass leverages hierarchical partitioning to greatly reduce the overall search
space and often only requires a few small, sequential disk reads to answer a
query. We also found that localizing a query to only a part of the namespace
enhances performance to the point where Spyglass is up to four orders of
magnitude faster than our reference DBMSes in some cases.

The Role of Search in the Storage System

Spyglass takes a first step towards improving how we manage our grow-

ing storage systems through new metadata search designs that leverage stor-
age system properties. However, easily and effectively managing billions of
files remains a daunting task. A key reason for this is that we must rethink
the relationship between search and the file system. While becoming more
common, file search (Spyglass included) remains an application that is often
completely distinct from the file system. Yet search and file systems share a
common goal: organizing and retrieving file data. Keeping search completely
separate from the file system leads to duplicate functionality (e.g., each stores
and maintains separate file index structures) and contention for resources
(e.g.,a file requires memory and disk resources in both the file system index
and search index). It's not hard to imagine the problems that will arise in
the future when trying to index hundreds of billions of files in both the file
system and a search index. Additionally, users are forced to interact with
multiple interfaces (e.g.,the POSIX file system interface and the search inter-
face), which needlessly complicates interactions with the storage system.

We believe improving the relationship between file search and the file sys-
tem is key to improving how we manage our growing storage systems. We
plan to explore this issue in our on-going Spyglass work. Our main goal is
to explore how search can be integrated within the file system as first-class
functionality. From an abstract level, Spyglass closely resembles a file system
in which directory and file metadata are embedded together in partitions.
Any file’s metadata can be accessed in Spyglass by hierarchically traversing
the partitions until the partition containing the file is reached, similar to a
file system. The key differences from a file system are that in Spyglass files
are grouped on disk by partitions rather than directories and that Spyglass
versions each partition’s file modifications (discussed in our FAST "09 paper)
rather than perform in-place updates. Our on-going work looks at how an
architecture like Spyglass may be used as the main metadata store for a stor-
age system. Using an approach like Spyglass for all metadata storage means
that only a single data structure, the Spyglass index, needs to be maintained,
updated, cached, and searched. Doing so has the potential to improve over-
all performance by more efficiently utilizing resources and can greatly
improve the functionality offered by the file system. The key research chal-
lenges will be achieving good performance for more general metadata work-
loads and achieving efficient real-time index updates.

ACKNOWLEDGMENTS

We would like to thank our colleagues in the Storage Systems Research Cen-
ter and NetApp’s Advanced Technology Group for their input and guidance.
We also owe thanks to Remzi Arpaci-Dusseau, Stavros Harizopoulos, Jiri
Schindler, and our FAST ’09 shepherd, Sameer Ajmani, and the FAST "09 re-
viewers whose comments significantly improved this work.

;LOGIN: JUNE 2009 SPYGLASS: METADATA SEARCH FOR LARGE-SCALE STORAGE SYSTEMS 29

30

This work was supported in part by the Department of Energy’s Petascale
Data Storage Institute under award DE-FC02-06ER25768 and by the Na-
tional Science Foundation under award CCF-0621463. We thank the indus-
trial affiliates of the SSRC for their support.

REFERENCES

[1] Apple, “Spotlight Server: Stop Searching, Start Finding”:
http://www.apple.com/server/macosx/features/spotlight.html, 2008.

[2] J.L. Bentley, “Multidimensional Binary Search Trees Used for Associative
Searching,” Communications of the ACM, 18(9): 509-517 (1975).

[3] C. Faloutsos and S. Christodoulakis, “Signature Files: An Access Method
for Documents and Its Analytical Performance Evaluation,” ACM Transactions
on Information Systems, 2(4): 267-288 (1984).

[4] FAST—Enterprise Search: http://www.fastsearch.com/, 2008.
[5] Google Enterprise: http:/www.google.com/enterprise/, 2008.

[6] E.S. Groups, “ESG Research Report: Storage Resource Management on
the Launch Pad,” 2007.

[7] D. Hitz, J. Lau, and M. Malcom, “File System Design for an NFS File
Server Appliance,” Proceedings of the Winter 1994 USENIX Technical Confer-
ence, USENIX Association, 1994, pp. 235-246.

[8] Goebel Group, Inc., “Compare Search Appliance Tools™ http:/www
.goebelgroup.com/sam.htm, 2008.

[9] A. Leung, M. Shao, T. Bisson, S. Pasupathy, and E.L. Miller, “Spyglass:
Fast, Scalable Metadata Search for Large-Scale Storage Systems,” Proceed-
ings of the 7th USENIX Conference on File and Storage Technologies (FAST *09),
USENIX Association, 2009, pp. 153-166.

[10] C.A. Lynch, “Selectivity Estimation and Query Optimization in Large
Databases with Highly Skewed Distribution of Column Values,” Proceedings
of the 14th Conference on Very Large Databases (VLDB), 1988, pp. 240-251.

[11] Microsoft Windows Search 4.0: http:/www.desktop.google.com/, 2007.

[12] M. Stonebraker and U. Cetintemel, “‘One Size Fits All": An Idea Whose
Time Has Come and Gone,” Proceedings of the 21st International Conference on
Data Engineering (ICDE), 2005, pp. 2-11.

;LOGIN: VOL. 34, NO. 3

