e e et e i g e s

— ety i vt i e

Skyhook: Towards an Arrow-Native
Storage System

Jayjeet Chakraborty
University of California, Santa Cruz
Santa Cruz, CA, USA
jayjeetc @ucsc.edu

Alexandru Uta
Leiden University
Leiden, Netherlands
a.uta@liacs.leidenuniv.nl

Abstract—With the ever-increasing dataset sizes, several file
formats such as Parquet, ORC, and Avro have been developed
to store data efficiently, save the network, and interconnect
bandwidth at the price of additional CPU utilization. However,
with the advent of networks supporting 25-100 Gb/s and storage
devices delivering 1,000, 000 reqs/sec, the CPU has become the
bottleneck trying to keep up feeding data in and out of these
fast devices. The result is that data access libraries executed
on single clients are often CPU-bound and cannot utilize the
scale-out benefits of distributed storage systems. One attractive
solution to this problem is to offload data-reducing processing
and filtering tasks to the storage layer. However, modifying
legacy storage systems to support compute offloading is often
tedious and requires an extensive understanding of the system
internals. Previous approaches re-implemented functionality of
data processing frameworks and access libraries for a particular
storage system, a duplication of effort that might have to be
repeated for different storage systems.

This paper introduces a new design paradigm that allows ex-
tending programmable object storage systems to embed existing,
widely used data processing frameworks and access libraries
into the storage layer with no modifications. In this approach,
data processing frameworks and access libraries can evolve
independently from storage systems while leveraging distributed
storage systems’ scale-out and availability properties. We present
Skyhook, an example implementation of our design paradigm
using Ceph, Apache Arrow, and Parquet. We provide a brief
performance evaluation of Skyhook and discuss key results.

Index Terms—programmable storage, computational storage,
storage systems, data management, distributed systems, data
processing systems

I. INTRODUCTION

Over the last decade, a variety of distributed data process-
ing frameworks like Spark [1] and Hadoop [2] have come
into existence. These frameworks were built to efficiently
query vast quantities of semi-structured data and get insights
quickly. Unlike standard relational database management sys-
tems (RDBMS) such as MySQL [3], which are optimized
to manage both data storage and processing, these systems
were designed to read data from a wide variety of data
sources, including those in the cloud like S3 [4]. These systems

978-1-6654-9956-9/22/$31.00 ©2022 IEEE
DOI 10.1109/CCGrid54584.2022.00017

Ivo Jimenez
University of California, Santa Cruz
Santa Cruz, CA, USA
ivotron@ucsc.edu

Jeff LeFevre
University of California, Santa Cruz
Santa Cruz, CA, USA
jlefevre @ucsc.edu

81

Sebastiaan Alvarez Rodriguez
Leiden University
Leiden, Netherlands
s.f.alvarez.rodriguez @umail.leidenuniv.nl

Carlos Maltzahn
University of California, Santa Cruz
Santa Cruz, CA, USA
carlosm@ucsc.edu

Application < > Data Access Libraries
'extensionI
[
A
POSIX Interface \'VDOAL method

Direct Object Access Layer (DOAL) ‘

[-

1 extension |

Object Store
Fig. 1: High-level design of Skyhook.

Data Access Libraries

depend on different file formats like Parquet [5], Avro [0],
and ORC [7] for efficiently storing and accessing data. Since
storage devices have been the primary bottleneck for data
processing systems for a long time, the main focus of these
file formats has been to store data efficiently in a binary
format and reduce the amount of disk I/O required to fetch the
data. However, with recent advancements in storage devices
with NVMe [8] drives and network devices with Infiniband
networks [9], the bottleneck has shifted from the storage
devices to the client machine’s CPUs, rendering the notion
of ”A fast CPU and slow disk” invalid, as shown by Trivedi
et al. [10]. The serialized and compressed nature of these
file formats makes reading them CPU-bound in systems with
high-speed network and storage devices, resulting in severely
reduced scalability.

An attractive solution to this problem is to offload any
computation to the storage layer to achieve scalability, faster
queries, and reduced network traffic. Several popular dis-
tributed data processing systems have explored this approach,

e.g. IBM Netazza [11], Oracle Exadata [12], Redshift [13],
and PolarDB [14]. Most of these systems are built following a
clean-slate approach and use specialized and costly hardware,
such as Smart SSDs [15] and FPGAs [16] for table scanning.
Building systems like these requires in-depth understanding
and expertise in using modern hardware for building database
systems. Also, modifying existing systems like MariaDB [17],
as in the case of YourSQL [18], requires modifying code that
is hardened over the years which may result in performance,
security, and reliability issues. A possible way to mitigate these
issues is to have programmable storage systems with low-level
extension mechanisms that allow implementing application-
specific data manipulation and access in their I/O path.
Customizing storage systems via plugins results in minimal
implementation overhead and increases the maintainability of
the software.

Programmable object storage systems such as Ceph [19],
[20], Swift [21], and DAOS [22] often provide a POSIX
filesystem interface for reading and writing files which are
mostly built on top of object storage access libraries such
as “librados” in Ceph and “libdaos” in DAOS. Being
programmable, these systems provide plugin-based extension
mechanisms that allow direct access and manipulation of
objects within the storage layer. We leverage these features
of programmable storage systems and develop a new design
paradigm that allows embedding widely-used data access
libraries inside the storage layer. As shown in Figure 1, the
extensions on the client and storage layers allow an application
to execute data access library operations either on the client
or via the direct object access layer in the storage server.

We implement Skyhook, an instantiation of our design
paradigm using RADOS [23] as the programmable object
storage backend, CephFS [24] as the POSIX layer, Apache
Arrow [25] as the data access library, and Parquet as the file
format. We evaluate the performance of Skyhook by scaling
out the cluster measuring metrics such as query latency, CPU
utilization, and network traffic. The evaluations show that
Skyhook scales by offloading CPU usage for common data
processing tasks to the storage layer, freeing the client for other
processing tasks. Additionally, since compute units are co-
located with storage nodes in Skyhook, the crash recovery and
consistency semantics of the storage layer apply naturally to
the query processing layer, and Skyhook queries become fault-
tolerant. Since Skyhook uses Arrow heavily, we contributed
our source code to the upstream Apache Arrow open-source
project [26] [27].

In summary, our primary contributions are as follows:

o A design that embeds a widely-used data access library
inside storage servers using a plugin infrastructure that
does not require any changes to the data access library
and has no impact on the storage system’s resilience and
failure management.

o A design that extends a widely-used data access library
with a plugin that allows offloading tasks from clients
to storage servers by leveraging existing and unmodified

82

filesystem and object storage interfaces (assuming an
extensible object storage system).

e A brief analysis of the performance gain achieved by
offloading dataset scans to the storage servers. We demon-
strate that offloading dataset scan operations to the stor-
age layer results in faster queries, enhanced scalability,
and reduced network traffic.

1I. BACKGROUND
A. Ceph

Ceph is an open-source software-defined storage platform
that implements a distributed object storage layer and provides
3-in-1 interfaces for object, block, and file-level storage. One
of the main properties of Ceph is that it does not have
a single point of failure because of its CRUSH [28] map
feature. On a high-level, a CRUSH map contains object-
OSD mappings, which are downloaded to the client when
connecting to a Ceph cluster. The client uses the mapping
information to calculate the location of an object in the cluster
and accesses the object directly. The object storage layer of
Ceph, RADOS, is programmable as Ceph provides a plugin-
based extension mechanism with its Object Class SDK [29]
that allows extending the object storage layer with custom
plugins written in languages such as C++ and Lua. These
plugins are embedded in the form of shared libraries inside
Ceph OSDs and provide the ability to access and manipulate
RADOS objects on the fly within the RADOS I/O path. The
Object Class SDK offers a small subset of POSIX APIs such as
read, write, and stat. Several Ceph components, such as
the RADOS Gateway (RGW) and the RADOS Block Device
(RBD), use the Ceph Object Class SDK. We refer to this SDK
as the Ceph CLS in the rest of the paper.

B. Apache Arrow

Arrow is a zero-copy columnar in-memory format for stor-
ing structured data optimized for efficient analytics operations
on modern hardware. Arrow’s uniform disk, memory, and
wire format allow applications to overcome any serializa-
tion and deserialization overhead while transferring Arrow
data between different processes and systems. Apart from
being a highly-efficient in-memory format, Arrow is also a
collection of several modular data processing components,
collectively utilizing which allows building parts or all of a
data processing system. Some of the data-processing pieces
that Arrow provides are as follows: Gandiva, A LLVM-based
expression compiler [30]; Flight, A gRPc-based data transport
interface [31]; Dataset API, A datasets abstraction [32]; Arrow
IPC, A binary data transfer protocol. Popular data processing
systems such as Spark, Dask [33], and Ray [34] support the
Arrow in-memory format.

C. Apache Parquet

Parquet is an open-source columnar file format for efficient
and long-term storage of tabular data. Parquet supports sev-
eral encoding schemes such as Dictionary and Run-Length
Encoding (RLE) and compression schemes such as Snappy,

— T

‘ Dataframe API ~ N
’ Analytics Functions Dataset Af'_ . Data Index 5
- Textension | Q2 %
\ Query Engine 0 S - Object Object 5
> c
Y | 3f £ 3
Ceph POSIX Interface ‘ ; gaI Arrow FileFragment API E 2
€8 ol
) i 8 =0
Librados API ‘ < RandomAccessObject =
R NVA Executef Interface °
v Query » &
— T o m
I Chunk Store K/V Store 9,: ‘g
Object Storage Device o« g

v/v

Fig. 2: Architecture of Skyhook.

LZ4, and ZSTD, which makes it highly space-efficient. One
of the essential features of Parquet is its ability to push
down predicates. Parquet files contain row group statistics
and column offsets in their footer metadata, allowing Parquet
file readers to skip over row groups and column data pages
containing non-relevant data. In this way, using Parquet for
data storage greatly minimizes the I/O required for reads.
These characteristics of Parquet make it the de-facto choice
for most data processing systems in the Hadoop ecosystem.

III. DESIGN AND IMPLEMENTATION

In this section, we discuss our design paradigm, the mo-
tivation behind it and provide an in-depth description of
the internals of Skyhook. Additionally, we also discuss the
portability of our design paradigm to other storage systems
and data access libraries.

A. Design Paradigm

One of the most critical aspects of our design is that
it allows building in-storage data processing systems with
minimal implementation effort. Our design extends the client
and storage layers of programmable object storage systems
with widely-used data access libraries requiring absolutely no
modifications. We achieve this by (1) creating a filesystem
shim in the object storage layer so that data access libraries
embedded in the storage layer can continue to operate on files,
(2) mapping client requests-to-be-offloaded directly to objects
using filesystem striping metadata, and (3) mapping files to
logically self-contained fragments by using standard filesystem
striping. As shown in Figure 2, we developed one instantiation
of our design paradigm using Ceph as the storage system,
Arrow as the data access library, and Parquet as the file format.
We expose our implementation called Skyhook via the Arrow
Dataset API by creating a new file format abstraction named
the SkyhookFileFormat, that extends the FileFormat
API [35] in Arrow. In the next section, we discuss the internals
of Skyhook in detail.

B. Skyhook: An Example Implementation

Extending the Ceph Object Store. In the storage layer,
using the Ceph CLS, we create a “scan_op” object class

83

method that reads a RADOS object containing tabular data
encoded in binary file formats such as Parquet and ORC,
scans it using Arrow APIs by applying the query parameters
received from the client and returns the scanned result in the
form of an Arrow table. Reading from binary files requires a
filesystem shim (a filesystem-like random access interface) to
seek around in a file and read from any offset. Since the Ceph
CLS does not provide a full POSIX-like API, for example,
with a “seek” method, we utilize the Ceph CLS APIs to
create a filesystem shim that allows seeks by keeping track of
the file pointer, thereby providing a file-like view over objects.
Arrow provides a FileFragment API that wraps a file and
allows applying scan operations to it. It takes predicates and
projections as inputs, applies them to a file, and returns the
result in the form of an Arrow table. Since the filesystem shim
allows interacting with objects as files, it seamlessly plugs into
the FileFragment APL

Tunneling through CephFS. In Skyhook, files are written
to Ceph using the CephFS POSIX interface, which stripes files
over fixed-size objects stored in the RADOS layer. During the
read phase, to execute the “scan_op” Ceph CLS method on
a RADOS object, Skyhook must first map a file to a RADOS
object. This mapping is achieved by leveraging the file striping
metadata provided by the Metadata Server (MDS) of CephFS
to calculate object IDs from file names. We implement a direct
object access (DOA) API on the client-side that facilitates this
translation and invokes the Ceph CLS method “scan_op”
on the corresponding RADOS object. The DOA API takes
as input a serialized flatbuffer [36] which comprises the scan
request and contains the parameters as shown in Listing 1. The
“scan_op” method is invoked with the serialized scan re-
quest as input. Using the DOA API, the client can interact with
RADOS objects and manipulate them directly in application-
specific ways while also having a filesystem view over the
objects. It is almost impossible to implement reads without
the DOA API because the dynamically generated result data
inside the storage servers is not byte-addressable, implying a
filesystem interface cannot be used.

Extending the Arrow Dataset API. The Arrow framework
provides a FileFormat API that plugs into the Dataset

table ScanRequest {
file_size: long;
file_format: short;
filter_expression:
partition_expression: [ubyte];
dataset_schema: [ubyte];
projection_schema: [ubyte];

[ubyte];

Listing 1: Scan request in Skyhook.

API [32] and allows scanning datasets in a unified manner.
It provides APIs for scanning datasets of different file formats
such as Parquet, ORC, CSV, and Feather [37]. Since Parquet
is the de-facto file format in most modern data processing
systems, we use it as a baseline for our performance evalua-
tions. We extend the FileFormat API in Arrow to create a
SkyhookFileFormat API that leverages the DOA API to
enable offloading fragment scan operations to Ceph OSDs. The
SkyhookFileFormat API serializes the query parameters
and passes them on to the DOA API for sending them to
the storage layer. This API is generic enough to offload scan
operations on every file format supported by Arrow as long as
there is a Ceph CLS method to scan the particular file format
in the storage layer. This API allows client applications using
the Arrow Dataset API to offload file scan operations to the
RADOS layer in Ceph by simply changing the file format
argument in the Dataset API as shown in Listing 2.
Establishing a File Layout Design. Being very efficient in
storing and accessing data, Parquet has become the de-facto
file format for popular data processing systems like Spark and
Hadoop. Since Parquet files are often multiple gigabytes in
size, a standard way to store Parquet files is to store them in
blocks as in HDFS [38], [39], where the typical block size is
128 MB [40]. While writing Parquet files to HDFS, each row
group is stored in a single block to prevent reading across
multiple blocks when accessing a single row group. We aim
to follow a similar file layout for storing Parquet files in Ceph
so that every row group is self-contained within an object.
In our design, a Parquet file with R row groups is split into
R Parquet files, each containing the data and metadata from
a single row group. To retain the optimizations due to the
predicate pushdown capability in Parquet, the footer metadata
and the schema of the parent Parquet file are also serialized
and written to a separate Parquet file ending with a ”.index”
extension. So, for every Parquet file containing R row groups,
R+ 1 small Parquet files are written, each contained within a
single RADOS object. We refer to this set of R+1 Parquet files
as a logical Parquet file. During the dataset discovery phase,
we discover only those files that end with a ”.index” extension
and read out the schema information from them. During the
query execution phase, for every logical Parquet file, first, the
footer metadata from the index file is read. Then, the IDs of
the row groups that qualify for scanning are calculated based
on the row group statistics present in them. Finally, the row
group IDs are translated to the corresponding filenames, and

84

Reading from Parquet
import pyarrow.dataset as ds

format_ = "parquet"
dataset = ds.dataset (
"/dataset", format=format_

)
dataset.to_table()

Reading from Parquet using Skyhook

import pyarrow.dataset as ds

format_ = ds.SkyhookFileFormat (
"parquet", "/ceph.conf"

dataset = ds.dataset (
"/dataset", format=format_

)

dataset.to_table()

Listing 2: Reading from a Parquet dataset with and without
Skyhook using the Arrow Dataset API.

then the underlying objects of these files are scanned in parallel
via the DOA API. Similar to scanning Parquet files containing
data from row groups, the index Parquet file is also scanned
using a Ceph CLS method. The index file feature discussed
here is only a design proposal and is yet to be implemented
in Skyhook. Figure 3 shows the file layout design.

C. Portability

The implementation of Skyhook consists of several plug-
gable and reusable components that make it feasible to port
Skyhook’s design to other systems. In this section, we discuss
how the design paradigm of Skyhook can be applied to other
programmable object storage systems and data-access libraries
by specifying the requirements in both the client and the
storage layers.

We start by discussing the portability of Skyhook’s de-
sign to other programmable object storage systems. The
DOA and the storage connection APIs defined in the
SkyhookFileFormat API on the client-side needs to use
the object storage system specific access library to be able to
connect to the storage layer and execute object class methods
in the storage nodes. On the storage-side, the filesystem shim
defined in the storage plugin needs to use the storage system
specific object class SDK to access the corresponding object
store. Additionally, the storage system should have a POSIX
interface that allows using a user-defined stripe unit while
writing files. This is essential to ensure that every file is backed
by a single object.

Skyhook’s design paradigm can be ported to other data
access libraries. To achieve this, the data access library on
the client-side should have a Dataset API to discover and
instantiate a dataset abstraction over a directory of files. It
should be able to map file scan calls to object class method
calls using the DOA API. Additionally, a format-specific file
writer is required to split large files into object-sized ones and

write them in the POSIX filesystem by manipulating the stripe
unit. In the storage nodes, the data access library should be
embeddable in the form of shared libraries and should compile
with the storage plugin. Most importantly, it needs to use the
filesystem shim as a data source to read from objects as files.

abc.parquet

Header Magic Bytes

Row Group
Row Group
Footer Metadata
Row Group e Row Group

Footer Metadata

Footer Metadata

Index file

xapuroge |-jenbied'oge (-jenbied-oqe

Footer Magic Bytes

Parquet File Single Row Group Parquet Files

Fig. 3: File layout design for Skyhook.

IV. EVALUATIONS

We performed experiments to compare the query latency,
CPU utilization, and network bandwidth usage of accessing
a dataset and filtering at the client or the storage server.
The experiments were performed on CloudLab, the NSF-
funded bare-metal-as-a-service infrastructure [41]. For our
experiments, we exclusively used machines with an 8-core
Intel Xeon D-1548 2.0 GHz processor (with hyperthreading
enabled), 64 GB DRAM, a 256 GB NVMe drive, and a 10 GbE
network interface. These bare-metal nodes are codenamed
“m510” in CloudLab. We ran our experiments on Ceph clusters
with 4, 8, and 16 storage nodes and a single client node.
Each storage node had a single Ceph OSD running on the
NVMe drive. We configured the OSDs to use 8 threads to
prevent contention due to hyperthreading in the storage nodes.
The number of placement groups (PGs) was increased from
128 to 512 while scaling out the cluster to avoid increased
lock contention. A CephFS interface was created on a 3-way
replicated pool and was mounted in user mode using the ceph-
fuse utility.

We used a dataset with 1.2 billion rows and 17 columns
consisting of data from the NYC yellow taxi dataset [42] as
our workload. The in-memory size of the dataset was found
to be about 155GB. In this work, we experimented with
64 MB files as we discovered that 64 MB files produced the
best results for both with and without Skyhook cases. The
dataset was generated by replicating a 64 MB Parquet file
460 times. The Parquet files used were uncompressed. The
fact that reading directly from RADOS bypasses any cache
allowed us to replicate the same file without any caching-
related implications on performance. Since a row group is
supposed to be self-contained within a single object and the
unit of parallelism in the Arrow Dataset API when using

85

Parquet is a single row group, we used Parquet files having
a single row group backed by a single RADOS object in all
our experiments. Accordingly, the underlying object size was
also 64 MB. Since the index file feature was not available
in Skyhook, we used similarly configured datasets containing
only single row group 64 MB Parquet files for both with and
without Skyhook experiments. We used the Python version of
the Arrow Dataset API for the experiments and used Python’s
ThreadPoolExecutor for launching scans in parallel, following
an asynchronous I/O model. We measured latency, scalability,
CPU usage, and network traffic of scanning a Parquet dataset
with and without Skyhook.

A. Latency

We ran queries to select 100%, 99%, 75%, 50%, 25%, 10%,
and 1% of the rows from our dataset. The queries were crafted
so that the rows always get selected from the beginning of
the row group in every file. So, 10% of the rows indicates
that the first 10% of the rows were selected from every file.
In the 100% selectivity case, Skyhook reads and returns all
the rows without applying any filters to the dataset. The IO
depth at each storage node was maintained at 2 across all the
experiments. As shown in Figure 4, scanning with Skyhook
is slower than without Skyhook in the 100% scenario since
there is no reduction of data sent over the network, and on
top of that, Skyhook ends up sending more data as it uses
LZA-compressed Arrow IPC format on the wire which has
a slightly larger byte size than the uncompressed Parquet
format. On scaling out from 4 to 8 nodes, the performance
of scans, both with and without Skyhook, improved as there
were still CPU resources available to use. But, on scaling out
from 8 to 16 nodes, the scan without Skyhook bottlenecked
on the client CPU usage and stopped scaling further, whereas
the scans with Skyhook, being not bottlenecked, scaled out.
Skyhook maintains scalability as it can offload and distribute
computation across all the storage nodes rather than staying
CPU bottlenecked on the client. Also, the conversion from
in-memory to wire format of Arrow requires multiple small
memory copies whose overhead add up to cause significant
performance degradation in Skyhook. This performance degra-
dation is visible in the 4 nodes scenario because the without
Skyhook scan is not bottlenecked, and there is nothing to trade-
off the conversion overhead of Skyhook scans as in the 8 and
16 nodes cases.

B. CPU Usage

Figure 5 shows the CPU utilization over time by the
client and the storage layers during a query execution with
100% selectivity on a cluster with 16 storage nodes. The
CPU usage has been recorded using Prometheus’s [43] node
metrics exporter. We observe that Parquet almost exhausts the
client’s CPU even with no filtering involved. This observation
implies that the client would be unable to do any other
processing work, and the query performance is bottlenecked
on the client’s CPU. On the other hand, we observe that with
Skyhook, plenty of CPU is available on the client node, and

4 Nodes

8 Nodes

16 Nodes

1 10 25 50 75

Selectivity (%)

99 100 1 10 25

Selectivity (%)

1 Without skyhook

50 75 99 100 1 10 25 50 75

Selectivity (%)

99 100

E With skyhook

Fig. 4: Query latency variation on scaling out from 4 to 8 and 16 storage nodes.

there is high CPU utilization on the storage layer. The CPU
usage on the client node can be attributed to the decompression
of LZ4-compressed Arrow IPC data received as the result of
scan operations. Hence, with plenty of CPU available on the
client-side, more asynchronous threads can be launched to
improve parallelism, or the client can take other processing
tasks.

Without Skyhook With Skyhook

CPU Usage (%)

400 0

100

200
Timestamp (s)

300

100

200
Timestamp (s)

300 400

Fig. 5: CPU utilization of scans without (left) and with (right)
Skyhook. The thick blue line shows the CPU utilization on
the client, and the thin lines show the CPU utilization on the
storage servers.

C. Network Traffic

While performing our experiments, we recorded the network
traffic received on the client node. Figure 6 shows the network
throughput for query executions with 100%, 10%, and 1%
selectivities on a cluster with 16 storage nodes. On scanning
with Skyhook, the network traffic keeps reducing as we move
from lower (100%) to higher (1%) selectivities. In contrast,
without Skyhook, the network traffic always remains the same,
which implies significant bandwidth wastage. The numbers
recorded show that using Skyhook results in significant data
movement reduction. The network traffic for Skyhook is
slightly higher than without Skyhook for the 100% scenario
because the LZ4-compressed Arrow IPC format that Skyhook
uses for transferring data is slightly larger in byte size than the
uncompressed Parquet binary format, and moving that extra

86

data becomes an overhead since, during 100% selectivity, all
of the data is sent back in both cases.

800 e L

n

o

@ 600

z

) 100% 1%
24001

<

(o))

3

o

£2001

'_

ol
0 200 400 600 800

Timestamp (s)

Fig. 6: Network bandwidth usage with and without Skyhook.

D. Crash Recovery

To verify the crash recovery functionality while using
Skyhook, we executed a long-running query with 100% row
selectivity and restarted all the OSDs one-by-one in about the
middle of the query execution to simulate a crash. As shown
in Figure 7, the query execution throughput resumed back to
what was before the crash as the Ceph OSDs started restarting.
This result shows that Skyhook queries are naturally fault-
tolerant due to the co-location of query execution units with
fault-tolerant storage nodes.

V. RELATED WORK

Several distributed data processing systems have embraced
the idea of query offloading to the storage layer for perfor-
mance improvement. The paper on the Albis [10] file format
by Trivedi et al. explored that with high-performance storage
and networks, CPUs have become the new bottleneck. Since
the CPU bottleneck on the client hampers scalability, offload-
ing CPU to the storage layer has become more important.
Recently, S3 introduced S3 Select [44], which allows files in
either Parquet, CSV, or JSON format to be scanned inside

B)} o]
o o o
o o o

Throughput (MBps)

N
o
o

0 50 100 150 200

Timestamp (s)

250 300

Fig. 7: Network throughput as perceived from the client in
the event of all OSDs crashing one by one. The steep drop in
throughput is where all the OSDs crashed.

S3 for improved query performance. Many other systems
which already support reading from S3, e.g. Spark [45],
Redshift [13], Snowflake [46], and PushdownDB [47] have
started taking advantage of S3 Select. But being an laaS [48],
the performance of S3 Select cannot be tuned, nor can it
be customized to read from file formats except the ones it
supports. Systems like IBM Netezza [11], PolarDB [14], and
Ibex [49] depend on sophisticated and costly hardware like
FPGAs and Smart SSDs to perform table scanning inside
the storage layer. These systems employ hardware-software
co-design techniques to serve their specific use cases. These
systems generally follow a clean-slate approach and are built
from the ground up specifically tailored for query offloading.
The recent work by Adams et al. [50] shows that near-data
processing can be enabled without requiring modifications by
ensuring that data elements do not cross shard boundaries and
by sharing data layout information with the clients. On a high
level, this approach is somewhat similar to that of Skyhook,
except that the work is in its early stages, and the authors
do not provide any performance evaluation of their prototype
implementation.

In our approach, we take a programmable storage system,
Ceph, and extend its filesystem and object storage layers
to allow offloading queries leveraging the extension mecha-
nisms it provides. Storage systems like OpenStack Swift [21]
and DAOS [22] also provide extension mechanisms via
Storelets [51] and DAOS middleware [52] respectively. We
embed Arrow libraries inside the storage layer to build the
data access logic. Our approach signifies that storage systems
should provide plugin mechanisms so that they can be easily
extended to support ad-hoc functionality and do not need
modification of legacy code or require a complete rebuild.

VI. FUTURE WORK

As discussed in Section IV-A, currently, Skyhook’s perfor-
mance suffers from the in-memory to wire serialization over-
head of Apache Arrow. We believe that employing techniques
such as using RDMA for transferring data over the network

87

can help alleviate this serialization overhead. Implementing
this would require changes in the wire protocols of both Arrow
and Ceph. On the use cases front, we are currently working
on integrating Skyhook with in-memory SQL-based query
engines such as DuckDB [53] and evaluating the performance
over industry-standard benchmarks such as TPC-H and TPC-
DS. We also plan on assessing the performance of Skyhook
with modern distributed computing systems such as Dask and
Ray, as their recent addition of Dataset API support has made
their integration with Skyhook seamless. Another line of future
work deals with using Gandiva to accelerate the query process-
ing performance of Arrow inside the storage layer. Finally, we
plan on implementing a Flight-based communication protocol
in Ceph to make the system faster and more arrow-native.

VII. CONCLUSION

This paper presents a new design paradigm that allows
extending the POSIX interface and the object storage layer
of programmable object storage systems with plugins to allow
offloading compute-heavy data processing tasks to the storage
layer. We discuss how to embed different data access libraries
and processing frameworks inside plugins to build a universal
data processing engine that supports various file formats. We
present an instantiation of this design, Skyhook, implemented
using Ceph for the storage system and Arrow for the data
processing layer. Currently, Skyhook supports reading Parquet
files only, but we can easily add support for other file formats
since we use Arrow as our data access library. We also discuss
our file layout design for storing Parquet files in Ceph, similar
to HDFS that allows efficient querying. We expose our imple-
mentation via a SkyhookFileFormat API, an extension
of the Arrow FileFormat API, and also contributed our
code to the Apache Arrow open-source project. Additionally,
we present a brief performance evaluation of Skyhook and
demonstrate that offloading compute-heavy query execution to
the storage layer helps improve query performance by reducing
data movement significantly.

VIII. ACKNOWLEDGEMENTS

This work was partially funded by the United States
National Science Foundation Cooperative Agreement OAC-
1836650 (IRIS-HEP), CNS-1764102, and CNS-1705021, as
well as by the UC Santa Cruz Center for Research in Open
Source Software (CROSS), and through the Dutch National
Science Foundation NWO Veni grant VI.202.195. We would
also like to thank the members of the Apache Arrow com-
munity for their extensive reviews on our pull request and
to everyone who has contributed code to the project. Finally,
we would like to thank Dr. Julian Kunkel for shepherding
this paper and the anonymous reviewers for their valuable
feedback.

REFERENCES

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica et al.,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

[2] T. White, Hadoop: The definitive guide. O’Reilly Media, Inc.”, 2012.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]
[21]
[22]

[23]

[24]
[25]
[26]

[27]

(28]

“Mysql,” https://www.mysql.com/.

Amazon, “Amazon s3,” https://aws.amazon.com/s3/, Amazon, accessed:
2020-11-16.

“Apache parquet,” https://parquet.apache.org/, Apache Software Foun-
dation.

Apache, “Apache avro,” https://avro.apache.org/, Apache Software Foun-
dation.

“Apache orc: High-performance columnar storage for hadoop,” Apache
Software Foundation, 2018.

Q. Xu, H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi, Z. Guz,
A. Shayesteh, and V. Balakrishnan, “Performance analysis of nvme ssds
and their implication on real world databases,” in Proceedings of the Sth
ACM International Systems and Storage Conference, 2015, pp. 1-11.
G. F Pfister, “An introduction to the infiniband architecture,” High
performance mass storage and parallel I/0, vol. 42, no. 617-632, p. 10,
2001.

A. Trivedi, P. Stuedi, J. Pfefferle, A. Schuepbach, and B. Metzler, “Albis:
High-performance file format for big data systems,” in 2018 { USENIX}
Annual Technical Conference ({USENIX}{ATC} 18), 2018, pp. 615-
630.

M. Singh and B. Leonhardi, “Introduction to the ibm netezza warehouse
appliance,” in Proceedings of the 2011 Conference of the Center for
Advanced Studies on Collaborative Research, 2011, pp. 385-386.
Oracle, “Oracle exadata,” https://www.oracle.com/engineered-systems/
exadata/, Oracle.

A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak, S. Stefani,
and V. Srinivasan, “Amazon redshift and the case for simpler data
warehouses,” in Proceedings of the 2015 ACM SIGMOD international
conference on management of data, 2015, pp. 1917-1923.

W. Cao, Y. Liu, Z. Cheng, N. Zheng, W. Li, W. Wu, L. Ouyang,
P. Wang, Y. Wang, R. Kuan ez al., “{POLARDB} meets computational
storage: Efficiently support analytical workloads in cloud-native rela-
tional database,” in I8th {USENIX} Conference on File and Storage
Technologies ({FAST} 20), 2020, pp. 29-41.

J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt, “Query
processing on smart ssds: Opportunities and challenges,” in Proceedings
of the 2013 ACM SIGMOD International Conference on Management
of Data, 2013, pp. 1221-1230.

Z. A. O. Nasri Sulaiman, M. Marhaban, and M. Hamidon, “Design and
implementation of fpga-based systems-a review,” Australian Journal of
Basic and Applied Sciences, vol. 3, no. 4, pp. 3575-3596, 2009.

F. Razzoli, Mastering MariaDB. Packt Publishing Ltd, 2014.

1. Jo, D.-H. Bae, A. S. Yoon, J.-U. Kang, S. Cho, D. D. Lee, and J. Jeong,
“Yoursql: a high-performance database system leveraging in-storage
computing,” Proceedings of the VLDB Endowment, vol. 9, no. 12, pp.
924-935, 2016.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th symposium on Operating systems design and
implementation, 2006, pp. 307-320.

Wikipedia, “Ceph (software),” https://bit.ly/3mkapHU.

OpenStack, “Openstack swift storlet engine overview,” https://docs.
openstack.org/storlets/latest/, OpenStack.

Z. Liang, J. Lombardi, M. Chaarawi, and M. Hennecke, “Daos: A scale-
out high performance storage stack for storage class memory,” in Asian
Conference on Supercomputing Frontiers. Springer, 2020, pp. 40-54.
S. A. Weil, A. W. Leung, S. A. Brandt, and C. Maltzahn, “Rados: a
scalable, reliable storage service for petabyte-scale storage clusters,”
in Proceedings of the 2nd international workshop on Petascale data
storage: held in conjunction with Supercomputing’07, 2007, pp. 35-44.
G. Borges, S. Crosby, and L. Boland, “Cephfs: a new generation storage
platform for australian high energy physics,” in Journal of Physics:
Conference Series, vol. 898, no. 6. IOP Publishing, 2017, p. 062015.

A. D. Team, “Apache arrow,” https://arrow.apache.org, 10 2018.
“Skyhook in apache arrow,” https:/git.io/JDuxJ, Apache Software Foun-
dation.

“Skyhook: Bringing computation to storage with
apache arrow,” https://arrow.apache.org/blog/2022/01/31/

skyhook-bringing-computation-to-storage- with-apache-arrow/, Apache
Arrow.

S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “Crush: Con-
trolled, scalable, decentralized placement of replicated data,” in SC’06:
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing.
IEEE, 2006, pp. 31-31.

88

[29]

[30]

[31

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

“Ceph object class sdk,” https://docs.ceph.com/en/latest/rados/api/
objclass-sdk/#sdk-for-ceph-object-classes, Ceph.

“Gandiva: A llvm-based analytical expression compiler for apache
arrow,” https://arrow.apache.org/blog/2018/12/05/gandiva-donation/,
Apache Arrow, 2018.

“Introducing apache arrow flight: A framework for fast data transport,”
https://arrow.apache.org/blog/2019/10/13/introducing-arrow- flight/,
Apache Arrow, 2019.

“Arrow dataset api,” https://arrow.apache.org/docs/python/dataset.html,
Apache Software Foundation.

M. Rocklin, “Dask: Parallel computation with blocked algorithms and
task scheduling,” in Proceedings of the 14th python in science confer-
ence, vol. 126. Citeseer, 2015.

P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A
distributed framework for emerging ai applications,” in Proceedings
of the 13th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’18. USA: USENIX Association, 2018, p.
561-5717.

“Arrow file format,” https://arrow.apache.org/docs/cpp/api/dataset.html#
file-formats, Apache Software Foundation.

Google, “Google flatbuffers,” https://google.github.io/flatbuffers/,
Google.

H. Wickham, “Feather: A fast on-disk format for data frames for r
and python, powered by apache arrow,” https://www.rstudio.com/blog/
feather/.

D. Borthakur, “The hadoop distributed file system: Architecture and
design,” Hadoop Project Website, vol. 11, no. 2007, p. 21, 2007.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST). leee, 2010, pp. 1-10.

“Hdfs block size,” http://hadoop.apache.org/docs/r3.0.0/
hadoop-project-dist/hadoop-hdfs/HdfsDesign.html, Apache Software
Foundation.

D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra, “The design and operation of CloudLab,” in Proceedings of
the USENIX Annual Technical Conference (ATC), Jul. 2019, pp. 1-14.
[Online]. Available: https://www.flux.utah.edu/paper/duplyakin-atc19
“Nyc yellow taxi trip record data,” https://www1.nyc.gov/site/tlc/about/
tlc-trip-record-data.page.

“Prometheus,” https://prometheus.io/.

R. Hunt, “S3 select and glacier select — retrieving subsets of objects,”
https://aws.amazon.com/blogs/aws/s3-glacier-select/, 11 2017.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica et al.,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes,
J. Bock, J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang et al.,
“The snowflake elastic data warehouse,” in Proceedings of the 2016
International Conference on Management of Data, 2016, pp. 215-226.
X. Yu, M. Youill, M. Woicik, A. Ghanem, M. Serafini, A. Aboulnaga,
and M. Stonebraker, “Pushdowndb: Accelerating a dbms using s3
computation,” in 2020 IEEE 36th International Conference on Data
Engineering (ICDE). 1EEE, 2020, pp. 1802-1805.

R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente, “Iaas
cloud architecture: From virtualized datacenters to federated cloud
infrastructures,” Computer, vol. 45, no. 12, pp. 65-72, 2012.

L. Woods, Z. Istvan, and G. Alonso, “Ibex: An intelligent storage engine
with support for advanced sql offloading,” Proceedings of the VLDB
Endowment, vol. 7, no. 11, pp. 963-974, 2014.

I. F. Adams, N. Agrawal, and M. P. Mesnier, “Enabling near-data
processing in distributed object storage systems,” in Proceedings of the
13th ACM Workshop on Hot Topics in Storage and File Systems, 2021,

pp. 28-34.

OpenStack, “Storlet’s documentation,” https://docs.openstack.org/
storlets/latest/, OpenStack.

Intel, “Daos client apis, tools and i/o middleware,”

https://github.com/daos-stack/daos/blob/master/scc/README.md#
client-apis-tools-and-io-middleware, Intel.

M. Raasveldt and H. Miihleisen, “Data management for data science-
towards embedded analytics.” in CIDR, 2020.

