Scalable Full-Text Search for Petascale File Systems

Andrew W. Leung
Storage Systems Research Center
University of California, Santa Cruz
Santa Cruz, California 95064
Email: aleung@cs.ucsc.edu

Abstract—As file system capacities reach the petascale, it is
becoming increasingly difficult for users to organize, find, and
manage their data. File system search has the potential to greatly
improve how users manage and access files. Unfortunately,
existing file system search is designed for smaller scale systems,
making it difficult for existing solutions to scale to petascale
files systems. In this paper, we motivate the importance of file
system search in petascale file systems and present a new full-
text file system search design for petascale file systems. Unlike
existing solutions, our design exploits file system properties. Using
a novel index partitioning mechanism that utilizes file system
namespace locality, we are able to improve search scalability and
performance and we discuss how such a design can potentially
improve search security and ranking. We describe how our design
can be implemented within the Ceph petascale file system.

I. INTRODUCTION

As more business, science, government, and other entities
move towards a digital infrastructure, the demand for large-
scale, high-performance storage has drastically increased. This
demand has resulted in an increasing number of file sys-
tems that store petabytes of data, billions of files, and serve
thousands of users. Unfortunately, the scale of these file
systems makes efficiently organizing, finding, and managing
files extremely difficult. Users are forced to manually organize
and navigate huge hierarchies, with possibly billions of files,
which is very slow and inaccurate. A scientist, for example,
whose simulation produces thousands of files may have to
meticulously name and manually navigate thousands of files
to find those with interesting data results. In petascale file
systems, this manual organization and navigation often results
in lost time and productivity as users try and locate files, as
well as, misplaced or permanently lost data.

As file systems have grown in size, file system search has
become increasingly popular because it addresses many file
management problems. File system search has been an active
research topic for two decades [17,20,38] and is becoming
ubiquitous on desktop [4,18,33] and enterprise [15,19,25]
file systems. Full-text (or keyword) search is the foundation
of most modern file system search and the inverted index [22]
is the primary indexing structure. An inverted index consists
of a dictionary of keywords in the file system. Each keyword
in the dictionary points to a posting list that contains the
exact location within files where the keyword occurs, which
are called postings. File system search alleviates many file
organization, location, and management problems by allowing

Ethan L. Miller
Storage Systems Research Center
University of California, Santa Cruz
Santa Cruz, California 95064
Email: elm@cs.ucsc.edu

files to be organized and retrieved using any of their features
or keywords, rather than just their pathname. As a result, much
less time is spent organizing and navigating files and the risk
of losing data is significantly reduced. Thus, search provides a
file retrieval method that can scale with petascale file systems.

Unfortunately, providing efficient file system search at the
petabyte-scale presents a number of challenges. First, the scale
of these systems (billions of keywords and billions of files),
makes providing fast search performance extremely difficult.
Second, ensuring that search results are consistent with a large
and rapidly changing file system is often slow and taxing
on the file system. Third, achieving fast search and update
performance without requiring lots of expensive hardware is
difficult. In existing desktop and enterprise file system search
tools, which only index up to millions of files [24], the
dictionary can often be kept in-memory and posting lists are
usually small enough to be sequential on-disk, making search
and update efficient. In petascale file systems, the dictionary
is too large to simply reside in-memory and must often be
distributed across many machines. Likewise, long posting lists
are difficult to keep sequential on-disk and can require many
disk seeks to retrieve. Current file system search solutions have
had very limited impact in petascale file systems because they
cannot efficiently scale performance and cost with the size of
these systems.

In this paper we propose the design of a novel index for
petascale file system search. Unlike inverted indexes currently
used for file system search that are designed for general-
purpose text retrieval, we exploit the properties of petascale
file systems to improve scalability and performance without
requiring the use of extra hardware and which can be em-
bedded directly within the file system. Our approach uses
an index partitioning method, called hierarchical partition-
ing [30], to decompose the index into many smaller, disjoint
partitions based on the file system’s namespace. Through the
use of an indirect index that manages these partitions, our
approach provides flexible, fine-grained index control that can
significantly enhances scalability and improve both search and
update performance. In addition, we discuss how to leverage
partitioning to enforce file security permissions with only a
limited overhead, provide personalized search result rankings,
and to distribute the index across a cluster.

Our contributions include motivating the importance of
efficient search in petascale file systems, discussing an initial

This paper appeared in the Proceedings of the 2008 Petascale Data Storage Workshop (PDSW 08), November 2008.

petascale file system search design, and describing how it
can be integrated within a real-world petascale file system.
Our current and future work includes the following. First, we
are collecting and analyzing a data set of file keywords from
several large-scale file systems. To date, no data set exists for
file system search as most are targeted towards databases and
the web and do not reflect file system properties. Second, we
are in the process of completing our index and algorithms
designs. Third, we are exploring how such a system can be
implemented within the Ceph petascale file system [45] in
order to evaluate its performance.

II. BACKGROUND

In this section we motivate search for petascale file systems,
discuss the challenges with petascale file system search, and
describe related work.

A. Extended Motivation

Today’s file systems can store petabytes of data, spread
amongst billions of files, are composed of thousands of devices
and can serve data to thousands of users. These file systems
may store exabytes of data in the coming future as the
digital universe is expected to expand to several zetabytes by
2011 [16].

One of the key challenges for file systems at the petascale is
effectively organizing, finding, and managing the growing sea
of files. Currently, file systems users are forced to manually
organize and navigate huge directory hierarchies that can
contain billions of files. Managing these hierarchies requires
significant time and diligence by users to organize and name
large numbers of files in a meaningful manner. Then users
must spend more time later navigating these hierarchies with
only the hope of finding their data. This at best this wastes
time and at worst can effectively lead to data loss. In essence,
file systems lack an file retrieval method that can scale with
the file system’s size. Fortunately, two decades of file system
and information retrieval research have shown that file system
search provides a scalable retrieval method that can mitigate
many of these problems by allowing files to be retrieved using
their features or keywords rather than just their pathnames [17,
20,31,35-38]. Similarly, full-text search has revolutionized
the way web pages are organized and accessed on the Internet,
demonstrating its ability to scale to very large systems.

To further motivate the importance of search in petascale
file systems, we describe several use case examples taken from
discussions with real large-scale file system users.

1) Managing scientific data. A single scientific simulation can
often generate thousands of files containing experiment data.
However, finding files with interesting results amongst the vast
collection can be extremely difficult. As a result, scientists
often take great care to name files with experiment results,
such as, naming a file run_10_succ_1h30m_22uj.data
for an experiment that was the 10* run, finished successfully,
took 1 hour and 30 minutes and calculated 22 microjoules
of energy. Later locating results requires sifting through thou-
sands of files to locate those with names containing useful

keywords. This approach requires significant time to name and
then sort through files, while not guaranteeing files will be
found. However, efficient file system search can greatly ease
this process, as scientists can simply issue queries for files
containing the results they are interested in, also making it
easier to share results with others.

2) Archival data. Often petascale file systems employ tiered
storage architectures because storing petabytes of data on high-
end disks is too expensive [32]. Files not recently used are
often archived on cheaper, lower-tier tape storage. This makes
retrieving archived data very difficult as data is often accessed
much later, file organizations are often long forgotten, and a
third party is retrieving the data [6]. As a result, finding archive
data requires manual navigating the file system, which often
amounts to a full scan of the file system and can take days or
weeks. However, file system search allows significantly easier
and faster exploration of the archive by trading slow, brute
force navigation for simple and fast queries.

3) Legal compliance data. With increasing legal data regu-
lations [41,42], petascale file systems often store data that
must be kept for a given period of time, unmodified, and
be able to produce it in response to litigation. Finding and
producing files when legally required to do so is extremely
difficult in petascale file systems since manually navigating
huge hierarchies is very slow and inaccurate. However, search
enables much simpler response to litigation as files pertaining
to the case can simply be recalled through a query with much
higher accuracy.

These use cases represent some specific scenarios where
search is extremely useful, though may not represent the most
common user operations. However, several other works have
shown that in most cases search is a far more intuitive and
scalable method of file retrieval than traditional hierarchy
navigation [14,39,40].

B. Petascale Search Challenges

While search is important in petascale file systems, the scale
of these systems present a number of challenges that make
designing an efficient solution difficult. Here were discuss
some of these challenges.

1) Cost. Today’s large-scale search engines, such as Google
and Yahoo!, use large, dedicated clusters of machines to
achieve high-performance [5]. Index updates are applied off-
line on a separate cluster and the index is re-built weekly.
However, dedicated hardware can cost millions of dollars,
which is often as much as an entire file system budget, and
weekly updates make file system search results too stale.
Even enterprise file system search appliances can cost tens
of thousands of dollars and index only millions of files [24].
Petascale file system search should require only minimal
resources, reducing costs and allowing it to be integrated
directly with the file system.

2) Performance. Most large-scale search engines and database
systems make significant trade-offs between search and update
performance [1,28]. File system search must, however, strike
a balance between the two, as it must quickly search through

billions of files, as well as, frequently update the index to
reflect constant changes in the file system [29,44]. As the
file system scales to petabytes, the dictionary becomes too
large fit in-memory and posting lists become too long to be
kept sequential on-disk, resulting in numerous disk seeks for
a single search. Posting list update algorithms either try and
maintain on-disk sequentially at a significant cost to update
performance or vice versa [28]. As a result, it is difficult
to efficiently scale search and update performance without
requiring significant hardware additions.

3) Ranking. Searching the web has been greatly improved
through successful search result ranking algorithms [9]. These
algorithms often only need to return the few top-K results
to satisfy most queries. However, such algorithms do not
yet exist for file systems, particularly, petascale file systems.
Current desktop and enterprise file systems often rely on
simplistic ranking algorithms that require users to sift through,
possibly, thousands of search results. In petascale file systems,
a single search can return millions of files, making accurate
ranking critical. Previous work has looked at how to use
personalization [3,26] and semantic links [21,37,38] in the
file system to improve accuracy.

4) Security. Petascale file systems often store highly secure
data, such as nuclear test data. It is critical that file system
search not leak privileged data. Unfortunately, current file
system search tools either do not enforce file permissions
or significantly degrade performance [12] to do so. In most
cases, a separate index is built for each user, which can
require prohibitively high disk space, or permission checks
(i.e.,stat () calls) are required for every search result, which
is very slow.

5) Distributed design. Petascale file systems are naturally
distributed and can be composed of thousands of devices.
This requires the index, which can grow to be 20% of the
file system’s size [8], to be distributed as well. Distributed file
system search must be able to handle the frequent addition and
removal of devices, effectively utilize file system resources
while balancing load with the file system’s workload.

C. Related Work

As file systems have grown in scale, more research has
looked at improving file system search performance. However,
only a few have looked at re-designing index structures for file
systems. The Inversion file system [36] used a PostgreSQL
database to index files, rather than traditional file system inode
structures. Inversion allows database-style queries over files,
however, general-purpose databases have only limited scalabil-
ity for large-scale file system search [30]. The GLIMPSE [31]
file search system uses an inverted index to route queries to
parts of the namespace where results are located and agrep
is then used to find files that match the search. While this
approach greatly reduces index size, only requiring 2% to 4%
of the total text size, it is much slower since many files must
be read and processed. Likewise, Diamond [23] does not use
an index at all, instead, using a method, called Early Discard,
to more quickly scan files. As disk capacity has become much

e proj
Y\
distmeta reliability include
1
/ \ I ‘
‘ . . J
I

¥ Keyword 1's
| | Posting List
Segments

Ca.

Hard
Disk

Fig. 1: Segment Partitioning. The namespace is broken into par-
titions that represent disjoint sub-trees. Each partition maintains
posting list segments for keywords that occur within its sub-trees.
Since each partition is relatively small, these segments can be kept
sequential on-disk.

cheaper, for many systems it is preferable to sacrifice capacity
and construct an index for faster search performance. The
Wumpus desktop search system [10] introduces a number of
improvements to conventional inverted index design, which
improves full-text search on desktop file systems. However, its
current design targets desktop file systems and lacks a number
of features critical to petascale file system search.

III. OUR APPROACH

While petascale file systems present a number of challenges
that make search difficult, they also have properties that can
be leveraged. In particular, our inverted index design utilizes
hierarchical partitioning, an index partition mechanism that
exploits file system namespace locality [30]. Namespace lo-
cality implies that location within the file system’s namespace
influences the properties of files within it. That is, different
sub-trees in the namespace have different access patterns
(e.g.frequently vs rarely accessed, metadata vs I/O workloads
and read vs write workloads) [29,43], grow at different
rates [2,13], and are often accessed by only a small fraction of
users [29]. Namespace locality follows logically from the fact
that the file system’s namespace is already a neatly organized
and classified hierarchy of files and directories, where different
sub-trees usually have different uses.

A. Index Design

Our index design consists of two-levels. At the first level is
a single inverted index, called the indirect index, that points
to the locations of posting list segments rather than the entire
posting list itself. The indirect index is similar to the inverted
index used in GLIMPSE [31]. At the second level is a large
collection of posting list segments. A posting list segment is

Indirect Index

Keyword 1

Keyword 2
Keyword 3
Keyword 4

(¢ ——
00 0 -0

Posting List Segments for Partition 1|

1
i
i
i
[l
1
!
1

- -

i

Posting List Segments for Partition 2

.-

Fig. 2: Indirect Index Design. The indirect index stores the dictionary
for the entire file system and each keyword’s posting lists contain
locations of partition segments. Each partition segment is kept
sequential on-disk.

a region of a posting list that is stored sequentially on-disk.
Posting lists are partitioned into segments using hierarchical
partitioning. Thus, a segment represents the postings for a key-
word that occurs within a specific sub-tree in the namespace.
An illustration of how the a posting list is partitioning into
segments is shown in Figure 1. The namespace is partitioned
so that each sub-tree’s partition is relatively small, on the order
of 100,000 files. By partitioning the posting lists into segments
we ensure fast performance for searching or updating any one
partition, as posting lists are small enough to efficiently read,
write, and cache in-memory. In essence, partitioning makes
the index namespace locality-aware and allow the index to be
controlled at the granularity of sub-trees.

The purpose of the indirect index is to identify which
sub-tree partitions contain any postings for a given keyword.
Doing so allows search, update, security, and ranking to
operate at the granularity of sub-trees. The indirect index
maintains the dictionary for the entire file system. The reason
to maintain a single dictionary is that keeping a dictionary per-
partition would simply require too much space overhead since
many keywords will be replicated in many dictionaries. Each
keyword’s dictionary entry points to a posting list that contains
the on-disk address of segments that contain actual postings.
We illustrate the design of the indirect index in Figure 2. Since
the indirect index only maintains a dictionary and posting
lists containing segment pointers, it can be kept in-memory if
properly distributed across the nodes in the file system, which
we will discuss later in this section.

B. Query Execution

All search queries go through the indirect index. The
indirect index identifies which segments contain the posting
data relevant to the search. Since each segment is sequential

on-disk, retrieving a single segment is fast. A disk seek will
often be required between segments.

While retrieving a keyword’s full posting list (i.e.,all seg-
ments or all occurrences of the keyword in the entire file sys-
tem) requires a disk seek between each segment, our use of hi-
erarchical partitioning allows us to exploit namespace locality
to retrieve fewer segments. Many keywords and phrases have
namespace locality and only occur in a fraction of the parti-
tions (which we plan to quantify in future our future work). For
example, the Boolean query storage/AresearchA\santa/\cruz
requires (depending on the ranking algorithm) that a partition
contain files with all four terms before it should be searched. If
it does not contain all four terms, often it does not need to be
searched at all. Using the indirect index, we can easily identify
the partitions that contain the full intersection of the query
terms. By taking the intersection of the partitions returned,
we can identify just the segments that contain files matching
the query. Reading only these small segments can significantly
reduce the amount of data read compared to fetching postings
from across the entire file systems. Likewise, by reducing
the search space to a few small partitions, with disk seeks
occurring along partition boundaries, the total number of disk
seeks can be significantly reduced.

The search space can also be reduced when a search query
is localized to part of the namespace. For example, a user
may want to search only their home directory or the sub-tree
containing files for a certain project. In existing systems, the
entire file system is searched and then results are pruned to
ensure they fall within the sub-tree. However, through the use
of a look up table that maps pathnames to their partitions, our
approach reduces the scope of the search space to only the
scope specified in the query. For example, a query scoped to a
user’s home directory eliminates all segments not within their
home directory from the search space. Thus, users can control
the scope and performance of their queries, which is critical
in petascale file systems. Often as the file system grows, the
files a user cares about searching and accessing grows at a
much slower rate. Our approach allows search to scale with
what the user wants to search, rather than the total size of the
file system.

Once in-memory, segments are managed by an LRU cache.
Though there have been no studies of file system query
patterns, web searches [7,27] and file access patterns [29] both
exhibit Zipf-like distributions. This implies skewed popularity
distributions for partitions and that an LRU algorithm will be
able to keep popular partitions in-memory, greatly improving
performance for common-case searches. Additionally, this
enables better cache utilization since only index data related
to popular partitions is kept in-memory, rather than data from
all over the file system. Efficient cache utilization is important
for direct integration with the file system since it will often
be shared by the file system.

C. Index Updates

One of the key challenges with file system search is
balancing search and update performance. Inverted indexes

traditionally use either an in-place or merge-based update strat-
egy [28]. An in-place update strategy is an update-optimized
approach. When postings lists are written to disk, a sequential
region on-disk is allocated that is larger than the required
amount. When new postings are added to the list they are
written to the empty region. However, when the region fills
and new posting needs to be written, a new sequential region
is allocated elsewhere on-disk and the new postings are written
to it. Thus, in-place updates are fast to write since they can
usually be written sequentially and do not require much pre-
processing. However, as posting lists grow they become very
fragmented which degrades search performance. Alternatively,
a merge-based update strategy is a search-optimized approach.
When a posting list is modified it is read from disk, modified
in-memory, and written out sequentially to a new location.
This strategy ensures that posting lists are sequential on-disk,
though requires the entire posting to be read and written in
order to update it, which can be extremely slow for large
posting lists.

Our approach achieves a better balance in two ways. First,
since posting list segments only contain postings from parti-
tions, they are small enough to make merge-based updates
efficient. When modifying a posting list, we are able to
quickly read the entire list, modify it in memory, and quickly
write it out sequentially to disk. Doing so keeps segment
updates relatively fast and ensures that segments are sequential
on-disk. An in-place approach is also feasible since small
segments often will not need allocate more than one disk
region. However, the space overhead from over-allocating disk
regions can become quite high. Second, our approach can
exploit locality in file access patterns to reduce overall disk
I/Os. Often only a subset of file system sub-trees are frequently
modified [2,29]. As a result, we often only need to read
segments from a small number of partitions. By reading fewer
segments, far less data needs to read for an update compared
to retrieve an entire posting list, cache space is better utilized,
and we are able to better coalesce updates in-memory before
writing them back to disk.

D. Additional Functionality

In addition to improving scalability, hierarchical partitioning
can potentially improve how file permissions are enforced, aid
result ranking, and improve space utilization.

Secure file search is difficult because either an index is kept
for each user, which requires a huge amount of disk space, or
permissions for all search results need to be checked, which
can be very slow [11]. However, most users only have access
privileges to a limited number of sub-trees in the names-
pace (we plan to quantify this in future work). Hierarchical
partitioning, through the use of additional metadata stored
in the indirect index, can eliminate sub-trees a user cannot
access from the search space. Doing so prevents users from
searching files they cannot access without requiring any addi-
tional indexes and reduces the total number of search results
returned, limiting the number of files whose permissions must
be checked.

Ranking file system search results is difficult because most
files are unstructured documents with little semantic informa-
tion. However, sub-trees in the namespace often have distinct,
unique purposes, such as a users home directory or a source
code tree. Using hierarchical partitioning, we can leverage
this information to improve how search results are ranked
in two ways. First, files in the same partition may have a
semantic relationship (i.e.files for the same project) that can
be used when calculating rankings. Second, different ranking
requirements may be set for different partitions. Rather than
use a one-size-fits-all ranking function for all billion files in the
file system, we can potentially use different ranking functions
for different parts of the namespace. For example, files from
a source code tree can be ranked differently than files in a
scientist’s test data, potentially improving search relevance for
users.

Both file system access patterns and web searches have Zipf-
like distributions. Assuming these distributions hold true for
file system search, a large set of index partitions will be cold
(i.e.not frequently searched). Our approach can allow us to
identify these cold partitions and either heavily compress them
or migrate them to lower-tier storage (low-end disk or tape)
to improve cost and space utilization. A similar concept has
been applied to legal compliance data in file systems and has
shown the potential for significant space savings [34].

E. Integration within Ceph

Since addressing file system search performance with ad-
ditional hardware can be prohibitively expensive at the petas-
cale, it is important search can be efficient integrated within
the file system. File system search should provide scalable
performance while not interfering with normal file operation.
We discuss how our approach can be integrated with the Ceph
petascale file system [45].

Ceph is an object-based parallel file system. A cluster of
metadata servers (MDSs) handles metadata operations while
a cluster of object storage devices (OSDs) handles data oper-
ations. The MDS cluster manages the namespace and stores
all file metadata persistently on the OSD cluster. Since the
OSD cluster is used for metadata storage, MDS nodes can
generally afford a significant amount of main memory (tens
of gigabytes).

We intend for the indirect index to be distributed across the
MDS cluster and across enough nodes so that it can be kept
in-memory. Since a significant amount of query pre-processing
takes place in the indirect index, keeping it in-memory will
significantly improve performance. Posting list segments will
be stored on the OSD cluster and since they are small they
can map directly to physical objects. The indirect index will be
partitioned across the MDS cluster using a global inverted file
(I Fg) partitioning approach. In this approach keywords are
used to partition the index such that each MDS stores only a
subset of the keywords in the file system. For example, with
two MDS nodes A and B, A may index and store all keywords
in the range [a — ¢] and B may index and store all remaining
keywords. Using an I Fz partitioning approach limits network

bandwidth requirements as messages are sent only to the MDS
nodes responsible for query keywords.

In our design, the example Boolean query storage Asanta/
cruz will be evaluated as follows. A user will issues the query
through a single MDS node (possibly of their choosing) which
will shepherd the query execution. This shepherd node will
query the MDS nodes responsible for the keywords “storage”,
“santa”, and “cruz” based on the [Fg partitioning. These
nodes with return their indirect index posting lists, which
are stored in-memory, and the shepherd with compute the
intersection of these to determine which partitions contain all
three terms and are thus relevant the to query. The shepherd
will cache these posting lists (to improve subsequent query
performance) and then query the three MDS nodes for the
segments that correspond to the relevant partitions. These
segments will be read from the OSD cluster, cached at the
three MDS nodes, and the returned to the shepherd. The
shepherd will aggregate the results from the segments and rank
them before returning them to the user.

IV. CONCLUSIONS AND FUTURE WORK

As file systems continue to grow, scalable file retrieval is
emerging as one of the key challenges. As a result, file system
search has becoming increasingly popular because it greatly
improves how users organize and retrieve files. Unfortunately,
existing file system search solutions have difficulty scaling
cost and performance to petascale file systems. To address this
problem, we presented an initial petascale file system search
design. Our design exploits file system properties to improve
search scalability and performance while not requiring sig-
nificant hardware additions. While we presented some initial
ideas, there is much future work.

1) To the best of our knowledge no large-scale file system
keyword data sets exist. Those available, such as those
from TREC, are designed for database and web search.
We are planning to collect keyword data sets from real-
world large-scale file systems using a secure approach
that anonymizes keywords while preserving namespace
locality.

2) Our design assumes that file system keywords exhibit
namespace locality, which has been shown to be the
case for file metadata [2,30]. To validate and quantify
keyword namespace locality we plan on analyzing the
keyword data sets we collect.

3) We have presented a number of initial index designs.
However, our design is far from complete. We will use
the results of our keyword analysis to guide and finalize
our design.

4) To better understand how search and file systems can be
integrated we are planning to implement and evaluate
our design in the Ceph petascale file system.

ACKNOWLEDGEMENTS

This work was supported in part by the Department of En-
ergy under award DE-FC02-06ER25768 and by the industrial
sponsors of the Storage Systems Research Center (SSRC),

including Data Domain, DigiSense, LSI Logic, NetApp, Sea-
gate, and Symantec. We thank Shankar Pasupathy, Tim Bisson,
Minglong Shao, and the other members of NetApp’s Advanced
Technology Group, as well as, the members of the SSRC,
whose advice helped guide this research. Finally, we thank
the anonymous reviewers for their insightful feedback.

REFERENCES

[1] D. J. Abadi, S. R. Madden, and N. Hachem, “Column-Stores vs. Row-
Stores: How different are they really?” in Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, Vancouver,
BC, Canada, June 2008.

[2] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch, “A
five-year study of file-system metadata,” in Proceedings of the 5th
USENIX Conference on File and Storage Technologies (FAST '07), Feb.
2007, pp. 31-45.

[3] S. Ames, C. Maltzahn, and E. L. Miller, “QUASAR: Interaction with file
systems using a query and naming language,” University of California,
Santa Cruz, Tech. Rep. UCSC-SSRC-08-03, September 2008.

[4] Apple, “Spotlight Server: Stop searching, start finding,” http://www.
apple.com/server/macosx/features/spotlight/, 2008.

[5] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and S. Raghavan,
“Searching the web,” ACM Transactions on Internet Technology, vol. 1,
no. 1, pp. 2-43, 2001.

[6] M. Baker, M. Shah, D. S. H. Rosenthal, M. Roussopoulos, P. Maniatis,
T. Giuli, and P. Bungale, “A fresh look at the reliability of long-term
digital storage,” in Proceedings of EuroSys 2006, Apr. 2006, pp.
221-234.

[7]1 S.M. Beitzel, E. C. Jensen, A. Chowdhury, D. Grossman, and O. Frieder,
“Hourly analysis of a very large topical categorized web query log,” in
Proceedings of the 27th annual international ACM SIGIR conference
on Research and development in informaion retrieval (SIGIR '04),
Sheffield, UK, June 2004.

[8] T. C. Bell, A. Moffat, C. G. Nevill-Manning, I. H. Witten, and J. Zo-
bel, “Data compression in full-text retrieval systems,” Journal of the
American Soiety for Information Sciences, vol. 44, no. 9, pp. 508-531,
1993.

[9] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web

search engine,” Computer Networks and ISDN Systems, vol. 30, no. 1-7,

pp. 107-117, 1998.

S. Biittcher, “Multi-user file system search,” Ph.D. dissertation,

University of Waterloo, 2007.

S. Biittcher and C. L. A. Clarke, “A security model for full-text file

system search in multi-user environments,” in Proceedings of the 4th

USENIX Conference on File and Storage Technologies (FAST ’05), San

Francisco, CA, Dec. 2005, pp. 169-182.

S. Buttcher and C. L. Clarke, “A security model for full-text file system

search in multi-user environments,” in Proceedings of the 4th USENIX

Conference on File and Storage Technologies (FAST ’05), San Francisco,

CA, December 2005.

J. R. Douceur and W. J. Bolosky, “A large-scale study of file system

contents,” in Proceedings of the 1999 SIGMETRICS Conference on

Measurement and Modeling of Computer Systems, May 1999.

D. Ellard, “The file system interface in an anachronism,” Harvard

University, Tech. Rep. TR-15-03, November 2003.

Fast, “FAST — enterprise search,” http://www.fastsearch.com/, 2008.

J. F. Gantz, C. Chute, A. Manfrediz, S. Minton, D. Reinsel, W. Schlicht-

ing, and A. Toncheva, “The Digital and Exploding Digital Universe:

An updated forecast of worldwide information growth through 2011,

International Data Corporation (IDC), Tech. Rep., March 2008.

D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole, Jr.,

“Semantic file systems,” in Proceedings of the 13th ACM Symposium

on Operating Systems Principles (SOSP ’91). ACM, Oct. 1991, pp.

16-25.

Google, Inc., “Google Desktop: Information when you want it, right on

your desktop,” http://www.desktop.google.com/, 2007.

——, “Google enterprise,” http://www.google.com/enterprise/, 2008.

B. Gopal and U. Manber, “Integrating content-based access mechanisms

with hierarchical file systems,” in Proceedings of the 3rd Symposium

on Operating Systems Design and Implementation (OSDI), Feb. 1999,

pp. 265-278.

[10]

(1]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

K. Gyllstrom and C. Soules, “Seeing is Retrieving: Building information
context from what the user sees,” in Proceedings of the 2008 Inter-
national Conference on Intelligent User Interfaces, Maspalomas, Gran
Canaria, Spain, January 2008.

D. Harman, R. Baeza-Yates, E. Fox, and W. Lee, Information retrieval:
data structures and algorithms. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1992, ch. Inverted files, pp. 28—43.

L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satyanarayanan,
G. R. Ganger, E. Riedel, and A. Ailamaki, “Diamond: A storage
architecture for early discard in interactive search,” in Proceedings of
the Third USENIX Conference on File and Storage Technologies (FAST
’04). San Francisco, CA: USENIX, Apr. 2004, pp. 73-86.

G. G. Inc., “Compare search appliance tools,” http://www.goebelgroup.
com/sam.htm, 2008.

Index Engines, “Power over information,” http://www.indexengines.com/
online_data.htm, 2008.

J. Koren, Y. Zhang, S. Ames, A. Leung, C. Maltzahn, and E. L. Miller,
“Searching and navigating petabyte scale file systems based on facets,”
in Proceedings of the 2007 ACM Petascale Data Storage Workshop
(PDSW 07), Reno, NV, November 2007.

R. Lempel and S. Moran, “Predictive caching and prefetching of query
results in search engines,” in Proceedings of the 13th International World
Wide Web Conference, Budapest, Hungary, 2003.

N. Lester, A. Moffat, and J. Zobel, “Efficient online index construction
for text databases,” ACM Transactions on Database Systems, vol. 33,
no. 3, 2008.

A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller,
“Measurement and analysis of large-scale network file system
workloads,” in Proceedings of the 2008 USENIX Annual Technical
Conference, Jun. 2008.

A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. L. Miller, “Spy-
glass: Fast, scalable metadata search for large-scale storage systems,’
in Proceedings of the 7th USENIX Conference on File and Storage
Technologies (FAST '09), February 2009.

U. Manber and S. Wu, “GLIMPSE: A tool to search through entire
file systems,” in Proceedings of the Winter 1994 USENIX Technical
Conference, San Francisco, CA, 1994.

J. Menon, D. A. Pease, R. Rees, L. Duyanovich, and B. Hillsberg,
“IBM Storage Tank—a heterogeneous scalable SAN file system,” IBM
Systems Journal, vol. 42, no. 2, pp. 250-267, 2003.

Microsoft, Inc., “Windows search 4.0,” http://www.desktop.google.com/,
2007.

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]
[42]
[43]

[44]

[45]

S. Mitra, M. Winslett, and W. W. Hsu, “Query-based partitioning
of documents and indexes for information lifecycle management,”
in Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, Jun. 2008.

K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer,
“Provenance-aware storage systems,” in Proceedings of the 2006
USENIX Annual Technical Conference, Boston, MA, 2006.

M. A. Olson, “The design and implementation of the Inversion
file system,” in Proceedings of the Winter 1993 USENIX Technical
Conference, San Diego, California, USA, Jan. 1993, pp. 205-217.

S. Shah, C. A. N. Soules, G. R. Ganger, and B. D. Noble, “Using
provenance to aid in personal file search,” in Proceedings of the 2007
USENIX Annual Technical Conference, Jun. 2007, pp. 171-184.

C. A. N. Soules and G. R. Ganger, “Connections: using context to
enhance file search,” in Proceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP '05). New York, NY, USA: ACM
Press, 2005, pp. 119-132.

C. A. Soules and G. R. Ganger, “Why can’t i find my files? new methods
for automatic attribute assignment,” in Proceedings of the 9th Workshop
on Hot Topics in Operating Systems (HotOS-IX), Sydney, Australia,
1999.

J. Teevan, C. Alvarado, M. S. Ackerman, and D. R. Karger, “The
perfect search engine is not enough: a study of orienteering behavior
in directed search,” in Proceedings of the 2004 Conference on Human
Factors in Computing Systems (CHI '04). ACM Press, 2004, pp.
415-422.

United States Congress, “The health insurance portability and account-
ability act (hipaa),” http://www.hhs.gov/ocr/hipaa/, 1996.

— —, “The sarbanes-oxley act (sox),” http://www.soxlaw.com/, 2002.
W. Vogels, “File system usage in Windows NT 4.0,” in Proceedings
of the 17th ACM Symposium on Operating Systems Principles (SOSP
’99), Dec. 1999, pp. 93-109.

F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller, D. D. E.
Long, and T. T. McLarty, “File system workload analysis for large
scale scientific computing applications,” in Proceedings of the 21st
IEEE | 12th NASA Goddard Conference on Mass Storage Systems and
Technologies, College Park, MD, Apr. 2004, pp. 139-152.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in
Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI). Seattle, WA: USENIX, Nov. 2006.

