
22

Ludo Hashing: Compact, Fast, and Dynamic Key-value
Lookups for Practical Network Systems

SHOUQIAN SHI and CHEN QIAN, University of California, Santa Cruz

Key-value lookup engines running in fast memory are crucial components of many networked and distributed

systems such as packet forwarding, virtual network functions, content distribution networks, distributed

storage, and cloud/edge computing. These lookup engines must be memory-efficient because fast memory is

small and expensive. This work presents a new key-value lookup design, called Ludo Hashing, which costs

the least space (3.76 + 1.05l bits per key-value item for l-bit values) among known compact lookup solutions

including the recently proposed partial-key Cuckoo and Bloomier perfect hashing. In addition to its space

efficiency, Ludo Hashing works well with most practical systems by supporting fast lookups, fast updates,

and concurrent writing/reading. We implement Ludo Hashing and evaluate it with both micro-benchmark

and two network systems deployed in CloudLab. The results show that in practice Ludo Hashing saves 40%

to 80%+ memory cost compared to existing dynamic solutions. It costs only a few GB memory for 1 billion

key-value items and achieves high lookup throughput: over 65 million queries per second on a single node

with multiple threads.
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1 INTRODUCTION
Fast lookups of large-scale key-value items are fundamental functions and design blocks of numer-

ous networked and distributed systems. These in-memory key-value lookup engines serve as the
indices to store and find the locations, addresses, or directions of the destination devices or queried

data. The representative applications of these lookup engines include:

(1) The forwarding information bases (FIBs) on network routers and switches run in SRAM.

Many FIBs uses key-value lookup engines to forward packets by searching flat network

addresses, as such MAC, in data center networks [27–29, 58], metropolitan networks [45],

LTE [61], software defined networks (SDNs) [59, 62], and future Internet designs [47]. The

values of the lookups are packet outgoing ports.
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(2) In a content distribution network (CDN) or edge network, a number of proxy servers cache

popular Internet contents [36, 48, 57]. A lookup table can be used to find the server that

stores a particular content [22].

(3) In a distributed file system, an index is required to maintain metadata and the location of file

storage [42, 54]. The lookup keys are usually file names or IDs, and the values are locations

where the files are stored.

(4) Cloud load balancers are important components of a data center, which distribute packets

to replicated backend servers [16, 38, 43]. Here the lookup engine stores the flow states and

each key is a 5-tuple and each value is a server index. Network address translation (NAT)

also stores flow states and performs lookups based on 4-tuple for every packet.

(5) In embedded IoT devices, lookup tables are required for sharing sensing data and public keys

[32, 51].

The important requirement of these in-memory lookup engines is space efficiency. It is because
they are hosted in high levels of the memory hierarchy or special network devices, where the

memory is fast, small, expensive, and power-hungry. Another requirement is to support dynamic
updates that allow the tables to work in practice, including key-value insertions, deletions, and

changes.

Hash tables are the conventional solutions of fast in-memory key-value lookups. To resolve hash

collisions, the item keys should be stored to tell which value belongs to which key. For example,

the widely used version of Cuckoo Hashing [41] allows up to 8 key collisions [17, 19, 34, 61, 62].

Hence Cuckoo Hashing must store the keys or at least the digests of keys [35]. Storing keys may
cost more space than storing the values in the above applications. For example, a typical file ID in a

storage system has hundreds of bits and each value (disk address) is only tens of bits. For FIBs the

network addresses (48 to > 100 bits) are longer than the port values (⩽ 8 bits). In a CDN the keys

(URLs) could be thousands of bits.

Hence, recent efforts have been made to use minimal perfect hash functions (MPHFs) [10, 18, 26]
for in-memory key-value lookups, which significantly reduce the space cost by avoiding storing

keys. For a set of n key-value items where each item is a tuple (ki ,vi ) of key ki and value vi , a
minimal perfect hash functionH ′ maps the n keys to integers 0 to n−1 without collision. The lookup
table can simply use the MPHF and an array of n values, where the i-th value corresponds to the key

that is mapped to i by H ′. The lookup table does not need to store keys. Unfortunately, none of the

existing MPHFs support fast dynamic updates. When there is a single item insertion/deletion, the

MPHF and whole array need reconstruction. Bloomier filters [13, 15] and SetSep [21, 61] are two

alternative perfect hash tables that have been used for network applications [21, 49, 51, 56, 59–61].

However, Bloomier filters spend > 2x space to store the values, and SetSep is also difficult to update.

This paper presents Ludo Hashing, a space-efficient lookup engine based perfect hashing, which

supports O(1) lookups and dynamic updates. To our knowledge, Ludo Hashing costs the least
space compared with existing solutions of dynamic key-value lookups. We show the numerical

comparison of these solutions in Table 1 and Fig. 1. Unless explicitly sourced, empirical values in

Table 1 are based on experiments of n = 64M , and l = 20, as explained in § 6.

Ludo Hashing gains the space saving by removing the key storage while maintaining a low

amplification factor (AF) on values. AF is the number of more bits taken per item when the length

of values are incremented by 1 bit. The core idea of Ludo Hashing can be presented in two steps.

Step i): We first use a properly designed method to divide all key-value items to a number of

small groups. Each group only contains at most four items. Step ii): For each group we find a hash

function H such that H maps the four keys to integers 0 to 3 without collision. For most modern

random hash function algorithms, we may generate an independent hash function Hs by using a
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Solution

Space cost

(bits per item)

Lookup time

per query

Update time

per operation

MPHF +Array > 1.44 + l (∗) O(1), >67ns [18] Not allowed

SetSep [21, 61] 0.5 + 1.5l O(1), 212ns >120ms
Partial key Cuckoo [35] 1.05(L′ + l) O(1), 163ns >46ns [49]

Bloomier/Othello [13, 15, 59] 2.33l O(1), 187ns 173ns

Ludo Hashing (this work) 3.76 + 1.05l O(1), 303ns 163ns

Table 1. l : bit length of each value. L: bit length of each key. L′: bit length of each key digest. (∗)The most
compact version of MPHF [18] costs 1.56 + l bits per item, already at a prohibitively high construction time
cost: 2ms per item. The SetSep papers [21, 61] include neither clear update function nor experimental results
of updating. We designed an update function in our best effort.
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Fig. 1. Numerical space comparison of dynamic key-value lookups. n = 1 billion, L = 100 bits, L′ = 30 bits.
Ludo uses Bloomier for l < 4. n: number of items in table.

different seed s . Hence we find the right hash function for each group by trying different seeds

with brute-force. Since each group contains only 4 keys, the seed can be found within a limited

number of attempts — and costs only a few bits. Within each group, it is only necessary to store

one seed s and four values that are in the order of the result of Hs (k) for each key k . Both steps cost

O(1) time during lookups and each insertion/deletion/change can be updated in O(1) amortized

time. Eventually, we save the space of storing four keys — hundreds of bits or more — by using a

seed that costs only 5 bits!

The main contribution of this work is a dynamic key-value lookup engine that works well in

practical systems and achieves the least memory cost among existingmethods to our knowledge. It is

based on our discovery of aminimal perfect hashingmethodwithO(1) update cost. The compactness

under dynamics is achieved via a novel combination of Bloomier filters, Cuckoo hashing, and brute-

force based slot arrangement. We have implemented the complete software of Ludo Hashing with

dynamic updates and single writer/multiple readers concurrency. We implement and evaluate Ludo

Hashing in two working systems deployed in a real cloud environment. Experimental and analytical

results are available for each design choice to inspire future methods and tools. The source code
of Ludo Hashing is available for results reproducing [3].

The rest of this paper is organized as follows. Section 2 presents the related work. Section 3

defines the problem and system model. We present the detailed design of Ludo Hashing in Section 4

and the analysis results in Section 5. The system implementation and evaluation results are shown

in Section 6. We have discussions in Section 7 and conclude this work in Section 8.
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Fig. 2. (2,4)-Cuckoo Hash Table

2 RELATEDWORK
In-memory key-value lookup engines with small memory footprint support vital functions of many

networked and distributed systems, including network forwarding [58, 59, 61, 62], distributed

storage [42, 54], cloud load balancers [38], and content distributions [22, 36]. Space efficiency is the

most significant requirement of these applications because they are all running in fast and small

memory, such as cache, DRAM, or ASICs, in order to serve frequent lookups.

Hash Tables are conventional tools for in-memory key-value lookups. Most existing hash

table implementations require storing the complete keys. In particular, Cuckoo Hashing [41] is

a key-value mapping data structure that could achieve O(1) lookup time in the worst case and

amortized O(1) update time. As shown in Fig. 2: a (2,4)-Cuckoo has a number of buckets, each

bucket has 4 slots, and every key-value pair is stored in one slot of the two alternate buckets based
on the two hash values h0(k) and h1(k). The lookup of the value for a key k is to fetch the two

buckets and match the keys in all 8 slots until a key matches k correctly. For an item insertion

with key k1, a single empty slot should be found in bucket h0(k1) or h1(k1). If both the buckets are

full, one existing item (e.g., the one with key k ′ in Fig. 2) will be relocated to the other alternate

bucket of k ′, and k1 takes the slot of k
′
. If the alternate bucket of k ′ is full as well, an item in that

bucket will be relocated recursively. This process stops when every item is placed in a slot. Many

recent system designs choose the (2,4)-Cuckoo to achieve high memory utilization and fast lookups,

such as the memory cache system MemC3 [19], the software switch CuckooSwitch [62], the LTE

FIB ScaleBricks [61], and the cloud load balancer Silkroad [38]. The amortized insertion time of

(2,4)-Cuckoo is proved to be constant [39, 55] and empirically shown [19, 41]. The insertions are

proved to be successful asymptotically almost surely (a.a.s.) for load factor < 98.03% and n →∞
[12, 23].

Partial key Cuckoo hashing (PK Cuckoo) costs less space by storing the key digests instead

of full keys. A basic version of PK Cuckoo is proposed in [20], and a more compact version, Vacuum

filter, is proposed in [52]. SILT [35], an index for flash storage, proposes to use 15-bit key digests

instead of the full keys. Using key digests is not a trivial solution. Short key digests incur hash

collisions and false mappings, and a nontrivial two-level design is proposed in [49] to address the

collisions.

EMOMA [44] is a lookup data structure with a full version of (2,4)-Cuckoo holding the key-value

mappings. A counting block bloom filter (CBBF) is placed in cache to maintain the bucket choice of

each key, such that each lookup costs exactly one off-chip memory load. There are three major

differences between Ludo and EMOMA: 1) Ludo aims to reduce the memory cost while EMOMA

requires significantly more memory cost – even higher than a full (2,4)-Cuckoo. The key reason

is that Ludo resolves collisions within a bucket via a very short seed, instead of storing full keys

in EMOMA. 2) EMOMA optimizes the lookup throughput while Ludo does not. 3) Ludo records

the bucket choice of all keys without any error, while EMOMA uses a CBBF, which exhibits false
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positives and counter overflows. 4) On a single insertion, keys in EMOMA may be inserted into

and deleted from the CBBF multiple times, which hurt the update speed.
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Fig. 3. Othello maintenance structure to build and update a and b

Bloomier filters [14, 15] are instances of minimal perfect hashing (MWHC) [9, 14, 15, 37, 59],

originally proposed for static lookup tables. Othello Hashing is a data structure and a series of

algorithms based on Bloomier filters designed for dynamic forwarding information bases [59].

Othello Hashing extends the Bloomier filter-based data plane by supporting runtime updates in

programmable networks. Coloring Embedder [56] is a recent work with a similar design of Bloomier.

Its space cost is also close to that of the Bloomier and Othello. Othello hashing includes both the

lookup structure running in fast memory such as switch ASICs and a maintenance structure running

in resource-rich platforms such as servers. For n key-value items and values with l bits, the Othello
lookup structure only includes the two arrays a and b, each includingm elementsm > n. Each
element in a and b is l bits. The lookup result of a key k is τ (k) = a[ha(k)] ⊕ b[hb (k)], where ha
and hb are two uniform hash functions. The Othello maintenance structure helps to compute the a
and b to provide correct values as shown in Fig. 34. A good setup in practice is to allow a having

1.33n elements and b having n elements. The expected time cost of a construction of n keys isO(n),
and the expected time to add, delete, or change a key is O(1) [59]. More detailed explanation and

examples can be found in Appendix A.

SetSep [21, 61] is a lookup table that uses brute force to resolve collisions. Suppose the key set

has cardinality n, and all values are of the same length l . During SetSep construction, a global hash

function distributes the keys across ⌈n/4⌉ buckets, each of which contains 4 keys on expectation,
with high variations. 256 consecutive buckets form a block, and blocks are built independently. To

build a block, a greedy algorithm is used to map its buckets to 64 groups, each holding 16 keys

on expectation. For the i-th value bit in each group, a 16-bit arraym and a 8-bit hash seed s are
found by brute-force, such that for every key value pair (k,v) in the group,m[hs (k)] = vi , where
v0,v1, · · · ,vl−1 are bits of v . All key-value items of the failed groups are put into a small plain

hash table. Ludo Hashing provides two major advantages over SetSep. First, Ludo Hashing can be

updated in O(1) complexity, while a single insertion into SetSep may cause reconstructions of the

involved group, block, or even the whole data structure. The main challenge of its updates is that

SetSep has no theoretical or empirical bound on the average number of group/block/global level

reconstructions per update. Experimental results show that SetSep takes 10x construction time and

>1000x update time compared to Ludo. Second, Ludo Hashing has small space cost when the value

length is > 7, which is the case for most applications.

3 PROBLEM DEFINITION AND MODELS
We formally define the problem in this work. Given a set of key-value items S and |S | = n. Each
item in S is a tuple ⟨ki ,vi ⟩ of key ki and value vi . Every key is unique in S . All values have the
same size (i.e., number of binary digits), denoted by l . The goal of this work is to find a key-value

lookup engine that provides the following functions, with minimized time and space costs.
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(1) The lookup function query(k) returns the corresponding value v for the query key k , where
⟨k,v⟩ ∈ S .

(2) The construction function construct(S) constructs a table for the set S .
(3) The insertion function insert(k,v) inserts the item ⟨k,v⟩ to the current table.

(4) The deletion function delete(k) deletes the item with key k from the current table.

(5) The value change function remap(k,v ′) changes the value of the item with key k to v ′, in
the current table.

System model. The proposed Ludo Hashing includes the lookup structure and maintenance
structure.
• The lookup structure in fast memory focuses on the lookup function. Its space cost and

lookup time are minimized.

• The maintenance structure maintains the full key-value state and performs construction and

update functions. It can run in a different thread or even on a different machine from where

the lookup structure runs.

• Necessary update information will be constructed by the maintenance structure and sent to

the lookup structure. The time complexity of each update is an important metric.

For space-efficient lookup engines that do not store full keys, a separate maintenance structure

is necessary to support updates. Otherwise, update correctness cannot be guaranteed. In practice,

the lookup structure is hosted in fast and small memory, while the maintenance structure can

be hosted in slower but larger memory. This model has been extensively used in system designs

[21, 22, 32, 35, 36, 38, 59–61].

4 DESIGN OF LUDO HASHING
4.1 Challenges and the main idea
A typical MPHF consists two-level hashing [10]. The first level hashing д : U → [0, r −1] divides the
entire set K of n keys randomly into r buckets. The numbers of keys in all buckets vary significantly

and the maximum number of keys in a bucket is much bigger than n/m based on the ‘balls into

bins’ results [46]. The buckets are sorted in descending order of their size. In this order, the second

level finds a hash function fi : U → [0,m − 1] for each bucket Bi such that the hash result of every

key in Bi does not collide with any other key in all previous buckets. Let ϵ =m/n − 1 and λ = n/r ,
the time complexity of the above construction isO(n(2λ + (1/ϵ)λ)) [10]. In most cases, an insertion

will cause the reconstructions of O(r ) second level hashes fi .
Our main contribution is to allow each update to finish in O(1) time by a novel utilization of

(2,4)-Cuckoo and Othello, which has not been discovered before. Ludo first uses (2,4)-Cuckoo and

Othello together to build a function F that divides the keys into r buckets, each of which has up

to 4 keys, and then find a seed to resolve the collisions among each bucket. This design provides

two unique benefits: 1) each insertion only affect O(1) buckets (proved by [39, 55] and empirically

< 6 among all our experiments), while in other MPHFs this number is unbounded; 2) within each

bucket Ludo only needs to find a hash that maps four keys to [0, 3] without collision, which is

significantly easier than other MPHFs that need the results to be collision-free across all buckets.

Step 1: Uniform-sized grouping. By observing the (2,4)-Cuckoo Hash Table as shown in Fig. 2,

we find that it includes a number of buckets, each containing up to 4 keys. This organization is close

to our requirement of uniform-sized grouping. However, each key could be placed to any of its two

alternate buckets based on the insertion process of (2,4)-Cuckoo. If we use a simple hash function

to map keys to buckets, then the sizes of buckets suffer from a high variation. Resolving collisions

of different numbers of keys will cause a significant waste of space, as shown in § 4.3.3. Hence, our

idea is to combine a Bloomier filter [13, 59] and the bucket information of keys in the (2,4)-Cuckoo
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as the uniform-sized grouping function F . In a (2,4)-Cuckoo, each key k can only stay in one of the

two alternate buckets, indexed h0(k) and h1(k). Given a already constructed (2,4)-Cuckoo, we only

need a Bloomier filter to maintain only 1 bit information per key: whether the key stays in the

bucket h0(k) or h1(k). Recall that Othello Hashing is a dynamic extension to the original Bloomier

filter, and Othello supports key-value lookups with 100% correctness using 2.33 bits per key for

1-bit values [59]. Hence, we need 2.33 bits per key to locate each key to the bucket holding it, in a

constructed (2,4)-Cuckoo.

Step 2: Collision resolution. Given a bucket B of four keys, we want to find a function F ′B
that maps the four keys to four different slots without collision. In this way, we can match all

keys to their corresponding values without storing keys. Note that we may sample sufficiently

many independent random hash functions from a universal hash function familyH . For example,

Google’s Farm Hash [2] accepts a ‘seed’ as input, and different seeds will result in independent hash

functions. The probability that a randomly seeded hash function maps 4 keys to 4 slots without

collision is 4!/44 = 3/32. Therefore, by trying different hash functions with brute force, we can find

a hash function that maps the 4 keys without collision in a limited number of attempts. Once a

function is found for a bucket, the seed value is stored along the bucket. In our implementation, the

seed costs 5 bits, i.e., 1.25 bits per key — a significant space saving comparing with storing the keys.

4.2 System overview
The complete Ludo Hashing includes two components, the Ludo lookup structure and Ludo

maintenance structure. The Ludo lookup structure, considered as the data plane, runs in fast

memory and supports lookup queries. The Ludo maintenance structure, considered as the control

plane, can run in a slower memory, possibly on a separate machine. The lookup structure receives

update information from the maintenance structure and updates accordingly.

Ludo lookup structure. As shown in Fig. 4, a Ludo lookup structure is a tuple ⟨O,B,h0,h1,H⟩
where B is an array of buckets, each bucket B[i] includes a hash seed s and 4 slots storing up to 4

values; h0 and h1 are two uniform hash functions; O is an Othello lookup structure that returns

1-bit value to indicate whether a key k is mapped to bucket h0(k) or h1(k); andH is a universal

hash function family. The query of a key k will output the value vk . Ludo lookup structure will

query two locators in turn: the bucket locator to indicate the bucket that stores the value, and

the slot locator to determine the slot that stores the value. The bucket locator will lookup k in

Othello and get a result b ∈ {0, 1}. Then v is in bucket hb (k). The slot locator computes t = Hs (k)
where s is the seed stored in this bucket and t ∈ {0, 1, 2, 3}. Finally, the value in slot t of bucket
hb (k) is returned as vk .

Ludo maintenance structure. As shown in Fig. 5, a Ludo maintenance structure is composed

of two main parts: 1) a complete (2,4)-Cuckoo holding all inserted key-value items, and each bucket

stores a seed for the slot locator; 2) an Othello maintenance structure that stores whether each key

is in bucket h0(k) or h1(k). It can produce an Othello lookup structure used in the bucket locator.

The seed s is found by brute force such that Hs maps the keys in the bucket to different slots

without collision. We name the full (2,4)-Cuckoo as the ‘source Cuckoo table’ of the lookup structure.
To generate the Ludo lookup structure, the maintenance program first generates an Othello lookup

structure and sets it as the bucket locator. Then it builds a table where each bucket includes the

seed and only the four values in the order of theHs (k). The Ludo maintenance structure supports

updates including item insertions, deletions, and value changes (Sec. 4.5) and will reflect them in

the lookup structure. Multiple Ludo lookup structures can be produced from and associated with

the maintenance structure to receive update messages and update locally.
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We define the load factor of a Ludo Hashing as the number of slots storing values to the number

of total slots. We use load factor 95% as the target load factor of Ludo. The total space cost of Ludo

Hashing is 3.76 + 1.05l for l-bit values.

4.3 Ludo lookup structure
We show the pseudocode of the Ludo Hashing lookup algorithm in Algorithm 1. This algorithm is

simple and fast. It contains two steps: querying the bucket locator and the slot locator respectively.

Each step takes O(1) time.

4.3.1 The bucket locator. The bucket locator, implemented with an Othello lookup structure,

maintains the bucket location of all inserted key-value items and serves in the uniform-sized
grouping step. Given a query key k , the Ludo lookup structure locates k to a bucket by querying

Othello. The return value b is 0 or 1, denoting the value of k is stored in the first alternate bucket

h0(k) or the second one h1(k). The proposed bucket locator has the following properties.

1) It locates every inserted key-value item to the bucket holding it without error.

2) It costs amortized O(1) time for dynamic updates, at a high throughput in practice (over 10

million operations per second [49]). During updates, it still supports fast lookup [59].

3) The current design is a good tradeoff among solutions that are fast in lookup and updates,

and compact in mapping keys to {0, 1}, such as SetSep [21], Bloom filter cascades [32].
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Input: The Ludo lookup structure and the key k
Output: The lookup result v of k
begin

// Step I: compute bucket location

1 b ← Othello lookup result of k

2 B ← hb (k)-th bucket of the table

// Step II: compute slot location

3 s ← seed stored in B

// Hs (k) ∈ {0, 1, 2, 3}

4 v ← B.slot[Hs (k)]

end
Algorithm 1: Ludo Hashing lookup algorithm
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We compare their space cost in Fig. 6. Note that the filter cascades [32] cost different space when

the distribution of keys to 0 and 1 changes. We collect the statistics of a (2,4)-Cuckoo with 100

million keys from 10 independent runs. The distribution of items stored in the bucket (h0(k),h1(k))
is (0.7175, 0.2825) with the standard deviation 0.0008. By looking at 0.28 in Fig. 6, SetSep and filter

cascades cost less space than Othello by about 0.3 bits per key. The reason for choosing Othello is

that SetSep is difficult to update, as shown in § 6, and filter cascades are slow in lookup because

each lookup costs higher number of memory loads on average. Fig. 7 shows the lookup throughput

for different number of key-value items, where each key is a 32-bit integer and each value is 0 or

1 at the probability 0.7175 or 0.2825, respectively. Perfect hashing algorithms like CHD [10] and

RecSplit [18] are also compared here, but they are not compact enough because an additional bit

array is required to store the values, which costs 1 bit per item.

4.3.2 The slot locator. After locating the bucket, Ludo Hashing retrieves the bucket content that

includes a seed s and 4 value slots. Ludo Hashing then calculatesHs (k) and gets a result in range

{0, 1, 2, 3}. H is a universal hash family and each seed produces an independent random hash

function. Finally, it returns the value that stored in theHs (k)-th slot.

It should be noted that the order of the values in each bucket of a Ludo lookup structure

does not necessarily follow the order in the source Cuckoo table of the Ludo maintenance

program. The order of the key-value items in a bucket of the source Cuckoo table is determined

by the insertion and relocation processes. In Ludo lookup structure, however, we only need a

collision-free key-to-slot mapping and the order of keys makes no difference.

The brute-force seed searching starts from s = 0. It increases s by 1 at each time untilHs (·)maps

the 4 keys of the bucket to {0, 1, 2, 3} without collision (called a valid seed). This design is much

less complex than finding the seed that produces the same order of the items in the source Cuckoo

table. Our experimental studies show that it saves around 4.6 bits per key and use 4.2% time.
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ForO(1) time lookups, each bucket should have the same size. Hence, the space to store the seed

in every bucket should also be the same. For e-bit seed space, if the brute-force searching cannot

find a valid seed by up to value 2
e − 2, the seed space will store 2

e − 1 (i.e., all 1 bits) to indicate

that it is an overflow seed. Overflow seeds will be stored in a separate but much smaller table. We

show the memory cost breakdown of seeds in buckets and the overflow table for different seed

lengths in Fig. 8. Our implementation uses 5-bit seeds for minimal space cost.

The bucket and slot locators in total use 3.76 bits per key, including 2.33 bits for the bucket

locator, 1.31 bits for the slot locator (assuming 95% load factor), and 0.12 bits for the overflow table.

Each lookup takes 4 hash function calls and 3 memory loads — small constant time.

4.3.3 Design optimizations. The current design of Ludo lookup structure is chosen from a number

of variants that achieves similar tasks, as shown in Fig. 9. We show the current design is more

optimized than the others in the following.

Recall that each key can be mapped to two alternate buckets h0(k) and h1(k). For each bucket B,
we define the ‘T0 keys’ of B as the keys whose h0(k) buckets are B and the ‘T1 keys’ as the keys
whose h1(k) buckets are B.

Design option 1: Single locator (‘Single’).We do not use the bucket locator. At each bucket,

a hash seed is stored. For each key k , we always retrieve the seed s stored in the bucket h0(k). If
the value of k is stored in the bucket h0(k),Hs (k) should be the correct slot position from 0 to 3. If

the value is in the bucket h1(k),Hs (k) should be from 4 to 7 indicating one of the 4 slots in bucket

h1(k). Hence, the seed s of bucket B is used for all T0 keys of B.
This method is simple to implement and requires fewer memory loads for each lookup: only one

memory load with 71.75% possibility versus 3 for Ludo. However, the numbers of T0 keys of all

buckets are not uniformly distributed and could possibly have high variation. In our experiments

of 100 million items, some buckets may have > 20 T0 keys and thus the brute force process could
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be very time-consuming and result in very long seeds. This introduces a dilemma: setting a short

seed length leads to a large portion of seed overflow while setting a long seed length incurs big

memory waste.

Design option 2: Separate seeds (‘Separate’). This method stores two hash seeds s1 and s2 in
each bucket: Hs1 (·) computes an 1-bit value for all tier-1 keys, indicating whether the key is in

bucket h0(k) or h1(k); andHs2 (·) maps all keys in this bucket to 4 slots without collision. Hence,

s1 works as the bucket locator and s2 works as the slot locator. Compared to the Ludo Hashing

design, it moves the time and space costs of Othello to the calculation ofHs1 (·) and the storage of

s1. However, s1 still needs to handle T0 keys with large variations.

Design option 3: Grouped buckets (‘Grouped’). This method applies an additional optimiza-

tion to save space for the seed s1 in Separate. We combine the space of 4 consecutive buckets as a

group and use a shared space for their s1 seeds (4 is a number chosen for good cache locality and

space saving). The shared space is used to store a long seed to filter all T1 keys in all 4 buckets.

This method is designed to amortize the large variation of T0 keys in every bucket.

Design comparisons. We conduct the experiments of the 4 design choices Single, Separate,
Grouped, and Ludo Hashing, and compare their results. We generate 1 million uniformly distributed

32-bit integers as keys and set the load factor of Ludo Hashing to 95%. To make the evaluations

finish in a reasonable time, we set an upper bound 2
16
for the number of seed attempts per bucket.

We denote the seed length for the bucket locator of Separate as ‘Separate-bucket’, the seed length for

the slot locator of Separate as ‘Separate-slot’, and the seed length per bucket for the bucket locator

of Grouped as ‘Grouped-bucket’. Note that the seed lengths of the slot locators of Ludo Hashing and
Grouped are both equal to Separate-slot.
Fig. 10 shows the cumulative distribution of the memory overhead (seed size) of each bucket

and Fig. 11 shows the number of attempts to find the right seeds for each bucket. Single requires
much longer seed sizes and higher computation overhead than other solutions. Note that Grouped
fails to construct more than 30% groups in 2

16
attempts as shown in Fig. 11. The sudden increase of

the Grouped curve indicates the bound of this design. For Separate to work, the seed of the bucket

locator requires 8 bits, allowing a small portion of overflow. This cost is thus about 2.11 bits per key,

slightly less than using Othello. However, as shown in Fig. 11, Separate takes 3x time to compute

the seeds compared to Ludo. Hence we believe the current design selects a good tradeoff.

Overflow seeds. As shown in Fig. 10, more than 98% slot locator seeds can be stored in 5 bits.

Hence we set the seed length in each bucket to 5 bits. If a seed is larger than 30, it is marked overflow

by storing the seed as 31. The map from the bucket index to the overflow seed is inserted into a

small (2,4)-Cuckoo, called the overflow table, both in the maintenance structure and the lookup

structure. According to the experiments in § 6, we show two facts: 1) We have never observed any

seed that needs more than 8 bits. Hence, the value length is just 1 byte in the overflow table; 2) The
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overflow rate is always around 1.2% and independent from the number of items in the table. The

amortized cost of overflow seeds is around 0.12 bit per key.

Insertion fallback table. Recall we set the target load factor of the source Cuckoo table to

95%, which is a load factor in our experiments that never introduce a single insertion failure in

breadth-first search (BFS) within 5 steps. For the strong robustness as a system, we set aside another

small hash table to store the full key-value mapping for all items failed to be inserted, although

in practice we have never seen failed insertions during the experiments for load factor < 95%.

The fallback table is similar to the stash approach used in Cuckoo [30, 31]. We store a fallback

bit along with ha and hb . At the beginning of each lookup, if the fallback bit is 1, it means the

fallback table stores some items. Hence the fallback table is first queried, and the corresponding

value is returned if there is a match. If the fallback bit is 0, the query goes through the normal

lookup procedure as shown in 4. In theory as long as the load factor < 98.03%, the insertions are
successful asymptotically almost surely (a.a.s.) assuming n → ∞ [12, 23] as explain in Section 5

and Appendix C. This is the main reason why we never encounter a single insertion failure during

our experiments. When the load factor reaches an application-dependent threshold (such as 94%)

during system execution, the Ludo maintenance program will start to build a new Cuckoo table

with higher capacity, which will be used to replace the original lookup table as soon as its load

factor exceeds 95%. The implementation of this fallback table can be standard hash tables such as

C++ unordered_map. The rebuild happens in the maintenance server, not on the query devices.

Why (2,4)-hash table? We conclude (2,4) is the best configuration for Ludo, based on the

following reasons. 1) (2,4)-Cuckoo is almost optimal in load factor (maximum load ≈ 98% in

theory [12, 23] and ⩾ 96% in practice). 2) (2,4)-Cuckoo minimize the space costs of the bucket and

slot locators. Recall the bucket locator costs 2.33⌈log
2
d⌉ bits per key, where d is the number of

alternative buckets. Any increment in d will cost at least 2.33 bits per key, over 60% of the current

overall overhead 3.72 bits per key. Besides, 5 or more slots in one bucket contributes little to the

load factor [12, 23] but the expected number of slot locator tries grows from ∼ 4
4/4! ≈ 10.7 to

∼ 5
5/5! ≈ 130 or even higher.

4.4 Ludo Hashing construction algorithm
We design the Ludo maintenance structure to support fast construction and updates to the Ludo

lookup structure. The construction takesO(n) forn key-value items and each update takes amortized

O(1) time.

As shown in Fig. 5, the Ludo maintenance structure includes 1) a (2,4)-Cuckoo, which maintains

all the inserted key-value items and decides their key-to-bucket mapping; 2) a seed in each bucket

to determine the slot positions of the values; 3) an Othello maintenance structure to keep track

of the current Othello lookup structure. As shown in Fig. 12, constructing a Ludo maintenance

structure and Ludo lookup structure from scratch consists of the following steps.

Step 1. We start a standard (2,4)-Cuckoo construction. All key-value items are serially inserted

into the Cuckoo table whose size is estimated by a load factor 0.95.
Step 2. For every bucket, a valid seed s is one that hashes keys to slots without collision. Numbers

0, 1, · · · , 30 are tested in order, to see if any is a valid seed. If all s from 0 to 30 are invalid, the

algorithm stores 31 to indicate an overflow.

Step 3. For every key, get the 1-bit bucket placement information: 0 indicates the item is stored in

bucket h0(k) and 1 indicates it is stored in bucket h1(k). The algorithm then constructs the Othello

maintenance structure O to track this information for all keys.

Step 4. Construct the Othello lookup structure by simply copying the two data arrays from the

Othello maintenance structure. Hence, the Othello lookup and maintenance structures give the

same lookup result for every input key.
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Step 5. Construct a table with the same number of buckets as the source Cuckoo table. For each

bucket in the source Cuckoo table (called the source bucket), copy the seed s to the bucket in the

same position of the target table (called the target bucket). For each key-value item ⟨k,v⟩ in the

source bucket, copy v into theHs (k)-th slot of the target bucket.

4.5 Ludo Hashing update algorithm
As a part of a practical system, Ludo Hashing at runtime consists two kinds of processes: the

Ludo maintenance program holding a Ludo maintenance structure to maintain the full system

state, possibly duplicated for robustness, and the Ludo maintenance program running as multiple

instances (e.g., multiple lookup servers or routers), as shown in Fig. 13. The Ludo maintenance

program and multiple Ludo lookup programs, receives update reports from applications, constructs

update messages according to its current state, and sends them to all Ludo lookup programs. Each

Ludo lookup program answers the lookup queries from applications and updates its memory

according to the messages from the Ludo maintenance program. Similar to other key-value lookup

tables, Ludo Hashing has three kinds of updates: key-value item insertions, item deletions, and

value changes. We discuss the three update algorithms separately.
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Item insertion. The Ludo maintenance program takes three steps to construct the update mes-

sage for an item insertion. 1) It first inserts this key-value item ⟨k,v⟩ into the source Cuckoo table,

and records the cuckoo path. The cuckoo path of an item insertion is defined as the sequence of

the positions of key relocations, where each position is determined by (bucket_index, slot_index)
[19]. In the example of Fig. 14, ⟨k9,v9⟩ is inserted to the table. ⟨k2,v2⟩ is relocated to from posi-

tion (b4, s3) to (b2, s3) and ⟨k8,v8⟩ is relocated from (b2, s3) to (b0, s3). Hence the cuckoo path is

(b4, s3), (b2, s3), (b0, s3). 2) For each relocated key-value item, its position is switched between its

alternate buckets h0(k) and h1(k). In Fig. 14, both k2 and k8 have switched between their alternate

buckets. Ludo maintenance program updates the corresponding value in the Othello maintenance

structure, and makes the changes in the Othello lookup structure. 3) For each modified bucket,

Ludo maintenance program finds a new slot locator seed by brute force. The pseudocode is shown

in Appendix B.

When the Ludo maintenance program finishes updating by the above steps. It creates an update

message including three fields: type tells the updatemessage type (insertion, deletion, or change),val
is the value of the new item for insertion, andupdate_sequence is a sequence of nodes, representing
the updates applied to the Ludo lookup structure. Each node in update_sequence corresponds to
a position in the cuckoo path and includes the following: the bucket index bIdx , slot index sIdx ,
the new seed of this bucket s , the new order of values in the slots of this bucket vodr , and the

changes made to the Othello lookup structure Ochд. The pseudocode of the update steps is shown
in Appendix.B.

All associated Ludo lookup programs receive the same update message and follow the update

sequence in that message to perform the insertion. Each Ludo lookup program traverses the nodes

of the update sequence reversely, and takes three steps at each node: 1) Copy the bucket indicated in

the node to a temporary memory. 2) Write the new seed into the bucket, reorder values according

tovodr . 3) Atomically write the bucket back to the table and apply the change to the Othello lookup

structure. The pseudocode of the update steps is shown in Appendix.B. The compiler barriers and

version array are necessary for concurrent reads during updates.

Item deletion. In the Ludo maintenance program, deletions serve for space reclaim for future

new items, and a deletion is achieved by deleting the item in the source Cuckoo table and the

associated bucket location information in the Othello maintenance structure. There is no change to

the Ludo lookup structure. If the number of items are lower than a threshold, e.g., the load factor

< 80%, a reconstruction can be triggered on the maintenance program to reduce the size of the

lookup structure. During that process, the lookups are still on the existing lookup structure.

Value change. A value change only involves an update to a single slot and does not require any

change in the bucket/slot locators. The Ludo maintenance program will perform a lookup in the

source Cuckoo table to locate the bucket/slot position of the item, change the corresponding value,

and send out a value change message to the lookup structure, specifying the new value and its
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location in the target table. The Ludo lookup program will perform the value change according to

the message.

Consistency under concurrent read/write.We design Ludo Hashing as a dynamic key-value

lookup table under the single writer multiple reader model. To make the Othello lookup structure

work well under concurrency, all modifications to the nodes belonging to the same key should

appear atomic to the lookup threads. To allow concurrency in the lookup table, the value re-ordering

should use the reverse order in the update sequence, and sequential writes of a single bucket should

be atomic to the lookup threads. We extend the version-based optimistic locking scheme proposed

in [19] and [59] for the target Cuckoo table and Othello lookup structure, respectively. Besides,

we use the lock striping method proposed in [19] to reduce the size of the version array from

the number of buckets to a constant 8192 at a 0.01% false retry rate. The pseudocode is shown in

Appendix.B.

Ludo reconstruction. In very rare cases, such as table resizing, the Ludo maintenance program

needs to reconstruct the Ludo lookup structure. During the reconstruction time, the data plane

still queries the old lookup structure and use the fallback table to guarantee the correctness. When

reconstruction finishes, the new lookup structure is sent from the maintenance program to the

data plane. The update operations on the lookup structures are atomic. The new lookup structure

is loaded from the update message and the old lookup structure is immediately discarded. Since

then the queries will be based on the new lookup structure.

Parallel updates. The update algorithm on the maintenance program can be in some level of

parallelism. If two updates do not touch the same bucket, then they can be computed in two threads

without violating the correctness. The requirement is to have a shared array to store the locks of

the buckets. If a bucket is currently in writing, the lock is set to 1 and other threads must wait to

visit this bucket. We do not implement the parallel version of updates because the current update

speed (>1M operations per second) is sufficiently high.

5 ANALYSIS
We summarize the performance analysis of Ludo Hashing: 1) The space cost of the Ludo Hashing

is 3.76 + 1.05l bits per item; 2) Each lookup costs 3.02 memory loads on average; 3) Each insertion,

deletion, or value change costs O(1) time on average; 4) the communication cost for each update is

O(1) on average. The following presents the details.

5.1 Space cost of Ludo lookup structure
A Ludo lookup structure consists of three parts: the Bloomier filter for the bucket locator, the

lookup table storing values and seeds, and a small table for the overflow seeds. The Bloomier filter

costs 2.33 bits per key. The seeds cost 5 bits per bucket, i.e., 1.25 bits per key. The overflow table

contains 1.2% of the seeds statistically, and each entry in the overflow table costs 29 + 8 = 37

bits. Since the load factor of the Ludo lookup structure is 95%, it costs 1.05l bits per item, where

l is the length of each value in bits. In total, the average memory cost per key-value item is:

2.33+ 5× 1.05/4+ 37× 1.05× 0.012/4+ 1.05l = 3.76+ 1.05l bits. The space cost of the fallback table
is O(nf ), where nf is the number of fallback keys and nf → 0 based on the insertion correctness

analysis below. Also our experiments never find a single fallback key. When the lookup structured

is updated, the load factor may be set to an application-specific threshold (such as 94%) hence the

space cost may increase to 3.78 + 1.06l .

5.2 Lookup overhead
A key-value lookup in Ludo lookup structure always requires 3 memory loads: two for the Bloomier

filter, and one to fetch the bucket including the value. If the seed overflows (with probability 1.2%),

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.



22:16 Shouqian Shi and Chen Qian

another 1 or 2 random loads are required in the overflow table to get the seed. Hence we get the

average number of memory loads 3 + 0.012 × (1 × 0.71 + 2 × 0.29) = 3.016.

5.3 Insertion correctness
From existing theoretical results of random graphs presented by Cain et al. [12] and independently

Fernholz and Ramachandran [23], it has been proved that all n keys can be inserted to a (2,4)-Cuckoo

table asymptotically almost surely (a.a.s.) such that each bucket has at most 4 keys if the load factor

< 98.03%, assuming uniform hashing and n →∞. This result has been confirmed by later studies

[24, 25, 33, 55]. Detailed explanation can be found in the Appendix. In practice, our design sets the

load factor threshold to 95% to avoid hitting the tight threshold. In fact we have not observed a

single failure case among over 20 billions of insertions during our tests.

When the load factor < 95%, the insertions are unlikely to fail from the above results. When the

Ludo maintenance program detects the current load factor reaches 94%, it will start to build a new

Cuckoo table with a higher capacity. The insertion failures (if any) will be stored in the fallback

table. This design guarantees the correctness via these properties: 1) the runtime load factor will

not be higher than 95% in most time; 2) even if the load factor temporarily exceeds 95% while the

rebuild of Ludo with higher capacity has not finished, most insertions are still successful as the

theoretical threshold is 98%; 3) even if there is an insertion failure, the fallback table is able to store

it and guarantees the correctness of lookups.

5.4 Update overhead
Item insertion. The time complexity of each insertion to Ludo includes three parts: 1) the time

to addition the item to Othello; 2) the number of nodes in the update sequence of each Cuckoo

insertion; and 3) the time of updating the bucket of each node. We show the time of each insertion

to Ludo is amortized O(1) and independent of n based on the facts that all these three parts are

either O(1) or amortized O(1). Inserting an item to Othello is proved to be amortized O(1) [59].
From the theoretical results in [39], for a (2,k)-Cuckoo with load factor 1/(1+ϵ) and k ≥ 16(ln(1/ϵ)),
each insertion costs amortized constant time ((1/ϵ)O (log log(1/ϵ ))) by breadth-first search [39, 55].

Our design uses k = 4, which is less than 16(ln(1/ϵ)). There is no proof of constant-time insertion

for this setting. In our experiments, all insertions finish within 5 levels of breadth-first search.

For each node in the update sequence, the update includes re-compute a seed (up to 31 attempts)

and re-ordering the values (up to 4). It costs constant time for each node. We list the lengths of

the update message fields. type: 1 bit; For each node in the update sequence, bIdx : 30 bits; sIdx :
2 bits; seed : 8 bits; vorder : 2 bits for each slot and 8 bits in total; Bchд contains the indices of the

influenced nodes in the Bloomier filter, 32 bits for each index.

Each item deletion or value change costs O(1) time and communication cost.

We discussed the average case above. In the worst case (very rare), an update may cause re-

construction of Othello, but it only happens with probabilityO(1/n) as proved in [59]. The Cuckoo

table will not experience re-construction when the load factor is no more than 95% as shown above.

6 IMPLEMENTATION AND EVALUATIONS
6.1 Evaluation methodology
In this section we conduct two types of performance evaluation of Ludo Hashing: 1) Evaluation of

the in-memory lookup tables on a commodity workstation with two Intel E5-2660 v3 10-core CPUs

at 2.60GHz, with 160GB 2133MHz DDR4 memory and 25MB LLC; 2) Case study of Ludo Hashing

on two real network systems, namely distributed content storage and packet forwarding.
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We implement the Ludo maintenance structure and Ludo lookup structure prototypes in 3272

lines of C++ code. We also make use the open source implementation of Cuckoo Hashing (pre-
sized_cuckoo_map in the Tensorflow repository [7]) and Othello Hashing (its authors’ implementa-

tion [4]), with several major modifications to implement bucket/slot locator, update, and concurrent

reading/writing. The buckets of Ludo lookup structure are stored as an array of 64-bit integers by

carefully applying a series of bit-wise operations, such that there is no single bit waste on storing

the buckets. The source code of Ludo Hashing is available for results reproducing [3].

We identify the following metrics to be evaluated:

(1) Memory cost, the most important metric to characterize the space efficiency.

(2) Speed of update to characterize the update time.

(3) Lookup throughput for single thread,multiple threads, andwith concurrent reading/writing.

(4) Construction time of the lookup engine.

Each data point shown in the figures is the average of 10 independent experimental runs. We

also use the error bars to show the standard deviation among the 10 results. For lookup throughput

evaluations, the request workloads are in two types: in the uniform distribution and Zipfian

distribution. For the uniform distribution, all items are requested with an equal probability. For

the Zipfian distribution, items are requested with biased probabilities, which better simulates the

workload in most practical systems. We set the Zipfian parameter to be 1.

We compare Ludo Hashing with the following dynamic lookup solutions: (2,4)-Cuckoo [19, 41],

partial key Cuckoo [35, 49], Othello Hashing [59], and SetSep [21, 61]. We implement partial

key Cuckoo based on the Tensorflow repository [7], with several major modifications to support

fingerprint collision resolution. We implement SetSep and made several extensions to allow some

level of updates of SetSep after construction – but still reconstructions are frequently needed. We

use the Google FarmHash [2] as the hash function for all experiments.

6.2 Evaluation of in-memory lookup engines
We denote the number of key-value items as n, the sizes of each value, key, and digest as l , L, and
L′ respectively, all in bits.

Memory cost. Fig. 15 shows the memory cost breakdown of Ludo lookup structure, SetSep,

Othello Hashing lookup structure, Cuckoo hashing, and partial key Cuckoo hashing, where n = 1B,

L = 100, and L′ = 30. We set l as 10 and 20. Clearly, Ludo Hashing needs the least memory cost

among all designs for both l = 10 and 20. By comparing the breakdown parts of each design, we

find that Ludo uses similar space to store the values, which seems unavoidable for every key-value

lookup table. Note that Othello embeds the values in the two arrays A and B. Ludo saves much

space cost by reducing the key storage while maintaining a low amplification on value storage.

Despite being difficult to update, SetSep costs more space than Ludo Hashing, especially for large l .
From the analytical comparison in Fig. 1, Ludo always costs the least memory when l > 3. We

then compare the actual memory cost of the in-memory lookup tables in three practical setups.

1) For the application of indexing distributed contents, we set l = 20, L = 500, L′ = 60, assuming

there are 1M content storage nodes. We set n to be 512M and 1B and show the results in Fig. 16.

Ludo only requires 3.3GB for 1B items, while other designs need at least 6.3GB. Here Ludo saves

almost 50% memory. 2) For the application of network FIBs, we set l = 8, L = 48, L′ = 30, assuming

a switch has 256 ports and MAC addresses are used. The results are shown in Fig. 17. It is known

that a commodity switch has < 100MB SRAM [38], and Ludo only needs 50.5MB for 32M addresses.

3) For the application of indexing key-value storage, we set l = 40, L = 200, L′ = 60 and show the

results in Fig. 18. Ludo only uses 6.1GB memory to support 1B items, while other designs need

> 12GB.
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Dynamic update. We evaluate the update throughput of Ludo Hashing, Othello Hashing, and

SetSep, which characterizes the maximum number of updates a table can support, in the unit of

millions of operations per second (Mops). All experiments are performed in a single thread, with

equal numbers of insertions, deletions, and changes. We set L = 32 and l = 20, change the table

size, and show the results in Fig. 19 where SetSep only performs the updates that do not cause

reconstruction. Each update event may be an insertion, deletion, or value change, with the equal

probability. The results show that Ludo allows > 5Mops updates, which is sufficient for most

applications. Othello shows comparable performance with Ludo, while SetSep performs > 1000x

worse than the other two even if we only consider the updates that do not cause reconstruction.

As shown in the results below, each reconstruction of SetSep may take hundreds of seconds to >5
hours.
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Single-thread lookup throughput.We compare the single-thread lookup throughput of Ludo,

Othello, partial key Cuckoo, and SetSep, in Zipfian (Fig. 20) and uniform (Fig. 21) workload respec-

tively. We set l = 20 and vary n, and the throughputs are in the unit of million queries per second

(Mqps).

The throughput under uniform queries decreases with the growth of table size because the

memory is randomly accessed and larger table incurs higher cache miss rate. The throughput under

Zipfian distribution is less degraded by the table size because the L3 cache satisfies most queries.

Othello/Bloomier shows the highest lookup throughput. Ludo Hashing is slower because for a

single lookup, it requires 1 more hash function calculation and 1 more memory load. However, it

still satisfies > 5M queries per second when n ⩽ 16M and > 3M when n = 1B. The throughput

satisfies most applications and unlikely to become the system bottleneck.

Throughput under updates.We wonder whether concurrent writing/reading would affect the

performance. Fig. 22 shows the lookup throughput of Ludo under concurrent updates (writing) by

varying the update frequency, where L = 64, l = 20, and n = 16M. Our observation is that there is

no noticeable throughput degradation when the update frequency grows to up to 1.6K updates

per second. Since 1.6K updates per second are sufficient for most dynamic applications, we may

conclude that the lookup throughput is stable under concurrent writing.

Multi-thread throughput. We also show the results of multi-thread lookup throughput in

Fig. 23, with up to 20 threads on a single machine and concurrent updates (100 and 1600 times per

second). We find that the throughput scales linearly with the multi-thread. It achieves > 300Mqps

with 20 threads for n = 1B.

Construction time.We also examine the construction time of the lookup engines. Fig. 24 shows

the construction time of different designs by varying n, for L = 64, and l = 20. SetSep is >10x
slower than other tables and takes >5.5 hours to construct for 1B keys. All other tables have similar

construction time. For 1B items, Ludo Hashing can be constructed in 30 minutes.
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6.3 Case studies of real systems
We study the practical system performance with Ludo Hashing for two applications. All experi-
ments in this subsection perform real query packet receiving and forwarding.

6.3.1 Case 1: indexing distributed contents. In this system, a large number of data contents

are stored among the distributed storage nodes. There is an index node that accepts the queries of

contents and forwards them to the correct storage nodes. The index node can be easily replicated

to avoid the single point of failure. This model may be applied to many practical systems such as

distributed data storage in a data center [8], CDNs [36], or edge computing [50]. In our experiments,

the requested keys are uniformly sampled from the std::string representation of the content IDs (45

bytes).

Implementation details.We run the experiments in CloudLab [1], a research infrastructure to

host experiments for real networks and systems. We implement Ludo Hashing, Bloom filter based

lookup table (Summary Cache [22]), partial key Cuckoo hashing, and Othello Hashing to serve as

the content lookup engine. We use two nodes in CloudLab to construct the evaluation platform of

the forwarder prototypes. Each of the two nodes is equipped with one Dual-port Intel X520 10Gbps

NIC, with 8 lanes of PCIe V3.0 connections between the CPU and the NIC. They are denoted by

Node 1 and Node 2 in the following presentation. Each node has two Intel E5-2660 v3 10-core CPUs

at 2.60GHz. The Ethernet connection between the two nodes is 2x10Gbps. The network between

the two nodes provides full bandwidth. Logically, Node 1 works as the index node, and Node 2

works as all storage nodes in the system. The clients generate queries from the content IDs with

Zipfian and uniform distributions.

Throughput of query processing and forwarding. We evaluate the query processing and

forwarding throughput of Ludo Hashing, Bloom filters, partial key Cuckoo, and Othello in the

distributed content storage system, in million queries per second (Mqps). We vary the number of

contents from 16K to 16M. Figures 25 to 28 show the throughput versus number of items, in single

and two threads, with Zipfian and uniform workload, respectively. Ludo Hashing provides the

highest throughput as the index among the four methods. The reason is that the bucket locator of

Ludo Hashing is compact enough to fit into the L3 cache so that it is likely to have only one load

from the main memory for the table bucket access. Other solutions may have two main memory

loads. Another interesting observation is that the capacity of querying processing and forwarding

is bounded by 7 Mqps, which is smaller than the network bandwidth. The throughput does not

grow significantly when we add more threads, which infers computation is not the bottleneck.

Hence we consider the throughput is bounded by the bus bandwidth between CPU and memory.
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6.3.2 Case 2: forwarding information bases (FIBs). A modern data center network includes

a large amount of physical servers [27, 29, 45]. Each server is identified by its network address

(e.g., its MAC address). An interconnection of switches connects the servers. Each switch has

multiple ports connecting neighboring switches and servers. A switch forwards the packet to a

neighbor based on FIB lookups using the packet address. Many modern networks are variants

of this model [27, 29, 45]. For software defined networks [40], the flow ID may be a combination

of source/destination IPs, MACs, and other header fields. The forwarding may be per flow basis,

rather than per destination basis. LTE backhaul networks and core networks can also be regarded

as an instance of this network model, especially for the down streams from the Internet to mobile

phones, where the destination addresses are Tunnel End Point Identifiers (TEIDs) of mobiles [61].

Implementation details. In the CloudLab prototype, we implement the FIBs as software

switches [59, 62] that are running on the end hosts. We implement the FIBs using Ludo Hashing,

Bloom filter based method (Buffalo [58]), partial key Cuckoo hashing [62], and Othello Hashing [59].

For each FIB implementation, we make several major modifications to support Dijkstra routing. The

prototypes work with Intel Data Plane Development Kit (DPDK) [5] to support packet forwarding

using end hosts. DPDK is a series of libraries for fast user-space packet processing [5] and is

useful for bypassing the complex networking stack in Linux kernel, and it has utility functions for

huge-page memory allocation and lockless FIFO, etc. We modify the code of the key-value lookup

tables and link them with DPDK libraries. The query keys are in four types: 32-bit IPv4 addresses,
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Fig. 31. FIB throughput with uniform workload
(single thread)
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Fig. 32. FIB throughput with uniform workload
(two threads)

48-bit MAC addresses, 128-bit IPv6 addresses, and 104-bit 5-tuples. We still use the two nodes in

CloudLab (denoted by Nodes 1 and 2) for this prototype. The Ethernet connection between the

two nodes is 2x10Gbps. The switches between the two nodes support OpenFlow [40] and provide

full bandwidth. Logically, Node 1 works as a switch in the network, and Node 2 works as the

neighboring switches and end hosts in the network.

Node 2 uses the DPDK official packet generator Pktgen-DPDK [6] to generate random packets

and sends them to Node 1. The packets sent from Node 2 carry the destination addresses with

Zipfian or uniform distributions. Each FIB prototype is deployed on Node 1 and forwards each

packet back to Node 2 after determining the outbound link of the packet. By specifying a virtual

link between the two servers, CloudLab configures the OpenFlow switches such that all packets

from Node 1, with different destination addresses, will be received by Node 2. Node 2 then records

the receiving bandwidth as the throughput of the whole system. The maximum network bandwidth

is 28.40 million packets per second (Mpps).

Packet forwarding throughput. Figures 29 to 32 show the packet forwarding throughput of

the four solutions, by vary the number of addresses stored in the FIB, with Zipfian and uniform

distributions, for single thread and two threads, respectively. While Othello Hashing performs the

best on a single thread, two threads of Ludo Hashing, partial key Cuckoo hashing, and Othello

Hashing are sufficient to fill the full network bandwidth (called line rate) for a 16M FIB. For all

cases, FIBs with Ludo Hashing, Othello Hashing, and partial key Cuckoo hashing performs >2x
higher throughput than Bloom filters.
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Fig. 33. Memory cost and collision rate

6.4 Summary of evaluation
Memory footprint. Ludo Hashing is the most compact among all dynamic in-memory lookup

tables, under all configurations.

Lookup throughput. Ludo lookup structure achieves 5 to 20 Mqps single-thread throughput

for up to 1B items. The throughput scales linearly with the number of threads and can achieves

65Mqps on one node.

Runtime update. Ludo lookup structure performs > 6M updates per second. The throughput

of Ludo lookup structure is stable with concurrent updates.

Construction time. Ludo Hashing can be constructed for 1B items in 10 minutes.

Performance in real systems. Ludo Hashing provides higher throughput than other methods

in the content lookup system. In the packet forwarding system, Ludo Hashing can easily achieve

maximum network bandwidth with two threads.

7 DISCUSSION
Partial-key Cuckoo. One may consider setting short digests in partial-key Cuckoo [35] is a

straightforward solution. However, short digests cannot be used because the key collision rate

grows. Assuming values are l-bit long and l = 20, we change the key digest bit length L′ from 1

to 20 for partial key Cuckoo, and observe the relation between the extra memory cost and key

collision rate. The extra memory cost is defined as the overall memory cost of the lookup data

structure minus nl , where n is the number of keys. We insert 1M random MAC addresses into

different partial key Cuckoos, and the results are shown in Fig. 33.The right figure zooms in and

shows the results near 1% of key collision. If we configure the PK Cuckoo to take no more than the

memory of Ludo, > 40% keys will be mapped to more than one values. If we control the collision

rate under 0.1%, the PK Cuckoo takes > 3x extra memory than Ludo.

Alien keys. Let K be the set of the keys of all items. An alien key (kα ) is defined as a key that

was never inserted to the item set, i.e., kα < K . The lookup of an alien key may result in an arbitrary

value by a perfect hash table, and we denote this as the ‘alien key problem’. The alien key problem is

not unique for Ludo. It exists for all perfect hashing based designs that do not store keys, including

SetSep [21], Bloomier filters [11], and Othello [59]. This is a simple trade-off: either store the keys

with several times higher memory cost, or accept the alien key problem and try to limit its impact.

However, for any key k ∈ K , the lookup by Ludo Hashing will always be correct. Hence there is no

false lookup result.

Most applications in the context of this work are not sensitive to alien keys, namely the

distributed content index, network forwarding, and storage index. For a distributed content index,

querying an alien key will make the index forward the request to an arbitrary storage node. The

storage node will then find that no data in the node match this key. Hence it simply notifies the

client a ‘not exist’ message. For a network forwarding device, a packet with an alien address will be
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forwarded to an arbitrary port. Note that every packet will carry the time-to-live (TTL) field that

will decrease by 1 after each forwarding action. Hence a packet will either be dropped when the

TTL becomes 0 or dropped at a destination that does not match the address. Also, most networks

will have firewalls that can filter all packets with alien addresses. In the above situations, an alien

key has limited negative impact.

Alien keys will become a problem for applications that need to filter keys such as firewalls. Hence

none of the perfect hashing method can be used for firewalls. For applications that really need to

filter alien keys, a filter function can be added to the lookup table. Ludo Hashing can be perfectly

combined with a Cuckoo filter [20, 53] that have a better trade-off between false positives and

memory, compared to Bloom filters. Other methods such as Othello and SetSep will need either

extra memory or lookup time to work with a filter. This topic is beyond the scope of this work, and

we skip the details due to page limit.

8 CONCLUSION
Ludo Hashing is a practical solution for space-efficient, fast, and dynamic key-value lookup engines

that can fit into fast memory. Its core idea is to use perfect hashing and resolve the hash collisions

by finding the seeds of collision-free hash functions, instead of storing the keys. We present the

detailed design of Ludo Hashing, including the lookup, construction, and update algorithms under

concurrent reading and writing. The analytical and experimental results show that Ludo Hashing

costs the least memory among known solutions that can be used for in-memory key-value lookups,

while satisfying > 65 million queries per second for 1 billion key-value items on a single node.

Ludo allows fast updates. We further demonstrate that Ludo Hashing achieves high performance

in practice by implementing it in two working systems deployed in CloudLab.
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APPENDIX
A. Bloomier filters and Othello hashing
We propose to use Othello Hashing [59] for the bucket locator of Ludo Hashing. Othello Hashing

is a data structure and a series of algorithms based on Bloomier filters [14, 15]. Bloomier filters

are instances of minimal perfect hashing (MWHC) [9, 14, 15, 37, 59], originally proposed for static

lookup tables.
1
The recently proposed Othello Hashing [59] is an application of Bloomier filters

for dynamic forwarding information bases. Othello Hashing includes the construction, update,

and consistency maintenance of the Bloomier filter based data plane in programmable networks.

Othello finds a setting of Bloomier filters to achieve good time/space trade-off for dynamic network

environments.

An Othello Hashing is used as a mapping for a set of key-value pairs. Let S be the set of keys

and n = |S |. A basic version of Othello Hashing supports the key-value pairs with 1-bit value. The

lookup of each key returns an 1-bit value corresponding to the key. An advanced version of Othello

supports l-bit values.
Othello maintenance structure construction. We use an example in Fig. 34 to show the

construction process, which results in an Othello maintenance structure of a set of five key-value

pairs. Each of the keys k1 to k5 has a corresponding value 0 or 1. We build two bitmaps a and b,

1
Bloomier filters are completely different from the well-known Bloom filters.
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each withm bits andm > n. In this examplem = 8. For every bit i in a we place a vertex ui and for

every bit j in b we place a vertexw j . In this examplem =ma =mb = 8. Two hash functions ha and

hb are used to compute the integer hash values in [0,m − 1] for all keys. Then, for each key, an

edge is placed between the two vertices that correspond to its hash values. For example, ha(k1) = 6

and hb (k1) = 5, so an edge is placed to connect u6 andw5.Each vertex is colored by black or white

to represent the corresponding bit to be 1 or 0 respectively. For a key with value 0, the two vertices

of the edge should have the same color. For a key with value 1, the two vertices of the edge should

have different colors, so that the two bits have different values. k1 is with value 1, hence u6 andw5

are with different colors. Gray color vertices represent “not care” bits. Note that after placing the

edges for all keys, the bipartite graph G needs to be acyclic. IfG is acyclic, a valid coloring plan is

easily built by traversing each connected component of G , and setting bits based on corresponding

values [59]. If a cycle is found, Othello needs to find another pair of hash functions to re-buildG . It
is proved that during the construction of n keys, the expected total number of re-hashing is < 1.51
when n ≤ 0.75m [59]. The expected time cost to construct G of n keys is O(n), and the expected

time to add, delete, or change a key is O(1).The design can be trivially extended to l > 2.

Key-value lookups in the Othello lookup structure. As shown in Fig. 35 (a), the Othello
lookup structure only includes the two arrays A and B, and does not store the key-value array and

the bipartite graph. To look up the value of k1, we only need to compute ha and hb , which are

mapped to position 6 of A and position 5 of B (starting from 0). Then we compute the bit-wise XOR

of the two bits and get the value 01. Hence, the lookup result is τ (k) = a[ha(k)] ⊕ b[hb (k)].
Lookups of Othello lookup structure are memory-efficient and fast. 1) The lookup structure only

needs to maintain the two arrays. The keys themselves are not stored in the arrays. Hence, the

space cost is small (2m/n per key). 2) Each lookup costs just two memory access operations to read

one element from each of A and B. It fits the programmable network architecture: the data plane

only needs to store the lookup structure, two arrays; the control plane stores the key-value pairs
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and the acyclic bipartite graph G. When there is any change, the control plane updates the two

arrays and let the data plane to accept the new ones. When an Othello performs a lookup of a key

that does not exist during construction, it returns an arbitrary value. For example in Fig. 35(b),

k6 < S and its result may be an arbitrary value.

A lookup structure does not maintain the full states and must be updated by its associated

maintenance structure. During an insertion or a value change, the maintenance structure keeps

a list L of the influenced bits in arrays a and b. Then the list L is input to the update function in

the lookup structure. The lookup structure simply flips the influenced bits to perform the updates.

More details (e.g., read/write concurrency, l-bit updates) are found in [49, 59].

B. Pseudocode
We also show the pseudocode of the insertion algorithm on Ludo maintenance program algorithm

in Algorithm 2, the insertion on the Ludo lookup program in Algorithm 3, the concurrent lookup
algorithm of Ludo in Algorithm 4, and the construct algorithm for Ludo lookup structure from

the Ludo maintenance structure in Algorithm 5. Algorithm 6 shows the subroutine in Ludo control

plane to find a seed for a bucket.

C. Load factor for successful insertions.
From existing theoretical results of random graphs, it has been proved by both [23] and [12] that, if

the average degree d of a random directed graphG of n vertices is no higher than a threshold dk ,
then

lim

n→∞
Pr(G is k-orientable) = 1 if d < dk

We sayG is asymptotically almost surely (a.a.s.) k-orientable. A graph is k-orientable if every vertex
has in-degree at most k . Consider that each bucket of (2,4)-Cuckoo corresponds to a vertex of a

random graph and each key corresponds to an edge. A key stored in a bucket can be considered

an edge contributing to an in-degree to the vertex. Hence, a 4-orientable graph is equivalent to a

(2,4)-Cuckoo where each bucket stores at most 4 keys. The above proved result [12, 23] is equivalent

to the following statement. If the load factor is no higher than d4/8 and the table is sufficiently large,

all inserted keys can be stored in a (2,4)-Cuckoo such that every bucket has at most 4 keys. The

numerical value of d4 is 7.843, meaning the threshold of the load factor can be as much as 0.9803,

provided by both [23] and [12]. Many later studies confirm this result [24, 25, 33, 55]. Note the

extreme cases in practice that cause failed insertions do not conflict with this theoretical result. In

practice, the length of a cuckoo path is within a small constant. We show the experimental results
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of the lengths of cuckoo paths in Fig. 36, for Ludo Hashing with load factor < 95%, 4, 8, and 16

million items, and 10 runs for each setup. We find that all lengths of the Cuckoo paths are ⩽ 5 and

more than 95% are smaller than 3. In our design, we set the load factor threshold to be 95% due to

practical issues such as the maximum number of steps of evictions in implementation. We have not

observed a single failure among over 20 billions of insertions during our tests.

Input: The Ludo maintenance structure ⟨OM ,C⟩ and the item to insert ⟨k,v⟩
Result: The insertion message ⟨val,update_seq, f ailed_key⟩ for Ludo lookup program

begin
1 val ← v

2 update_seq ← new empty list

// I: Insert item and record cuckoo path

3 cuckoo_path ← C .Insert(k,v)

4 if cuckoo_path is empty then
5 Insert to fallback table

6 f ailed_key ← k

7 return
8 for position in cuckoo_path do
9 bIdx, sIdx ← position

10 b ← C .buckets[bIdx]

11 k ← b .keys[sIdx]

12 // II: Reverse the bucket locator record, and record the influenced bits in

Othello

13 Ochд← O .Insert(k, 1 −O .LookUp(k))

// III: Find a new seed

14 b .s ← FindSeed (b)

15 vorder ← Order of the values based on b .s

16 update_seq.add(⟨bIdx, sIdx,b .s,vorder ,Ochд⟩);

end
end

Algorithm 2: insertion algorithm on Ludo maintenance program

Received January 2020; revised February 2020; accepted March 2020
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Input: Ludo lookup structure ⟨OL,T ⟩ and the insertion message ⟨val,update_seq, f ailed_key⟩, the
version array V , a global lock L for fallback

Result: Ludo lookup structure is updated

begin
1 if f ailed_key is set then
2 L.lock()

3 Insert to fallback table

4 L.unlock()

5 return
6 for i = update_seq_size − 1, · · · , 3, 2, 1, 0 do
7 bIdx, sIdx, s,vorder ,Ochд← update_seq[i]

// I: Copy current bucket

8 b ← copy of T .buckets[bIdx]

// II: Update the temporary bucket

9 b .s = s

10 Order values in b according to vorder

// III: Consistency under concurrent R/W

11 V [bIdx mod 8192] ← V [bIdx mod 8192] + 1

12 compiler barrier

13 Othello atomic update (Ochд)

14 C .buckets[bIdx] ← b

15 compiler barrier

16 V [bIdx mod 8192] ← V [bIdx mod 8192] + 1

end
end

Algorithm 3: insertion on the Ludo lookup program
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Input: Ludo lookup structure, the version array V , and the key k to look up

Output: The query result v
begin

// Never entered in practice, under 95% load.

1 if Fallback table has entries then
2 L.lock()

3 v ← read from fallback table

4 L.unlock()

5 return
6 while true do

// Enssure bucket versions are even

7 v0,v1 ← V [h0(k) mod 8192],V [h1(k) mod 8192]

8 compiler barrier

9 if v0 or v1 is odd then continue
// Atomically query bucket locator

10 l ← Othello atomic lookup (k)

// Fetch the bucket holding k

11 b ← hl (k)-th bucket of the table

// Enssure versions have not changed

12 compiler barrier

13 v ′
0
,v ′

1
← V [h0(k) mod 8192],V [h1(k) mod 8192]

14 if v0 , v ′
0
or v1 , v

′
1
then continue

// Fetch the value of k

15 s ← slot locator seed stored in b

16 v ← b .slots[Hs (k) mod 4]

17 break
end

end
Algorithm 4: Concurrent lookup algorithm on the Ludo lookup structure
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Input: The Ludo maintenance structure ⟨OM ,C⟩
Output: The Ludo lookup structure ⟨OL,T ⟩
begin

// I: Othello maintenance to lookup

1 OL ← OM converts to a lookup structure

// II: New empty (2,4)-Cuckoo Hash Table

2 T ← empty table of size C .size

3 for i = 1, 2, 3, · · · ,C .bucket_size do
4 b ← C .buckets[i]

5 b ′ ← T .buckets[i]

// III: Copy locator seeds

6 s ← b .seed

7 b ′.seed ← s

// IV: Copy values to target buckets

8 for ⟨k,v⟩ in valid items of b do
9 sidx ←Hs (k) mod 4

10 b ′.values[sidx] ← v

end
end

end
Algorithm 5: construct algorithm for Ludo lookup structure from the Ludo maintenance structure

Input: The Ludo maintenance structure bucket b
Input: The new seed s
begin

1 for s = 0, 1, 2, · · · do
2 taken ← 4-element boolean array

3 success ← true

4 for k in valid keys of b do
5 sid ←Hs (k)

6 if taken[sid] then
7 success ← false

8 break
9 taken[sid] ← true

end
10 if success then
11 return s

end
end

end
Algorithm 6: Subroutine FindSeed

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 22. Publication date: June 2020.


	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition and Models
	4 Design of Ludo Hashing
	4.1 Challenges and the main idea
	4.2 System overview
	4.3 Ludo lookup structure
	4.4 Ludo Hashing construction algorithm
	4.5 Ludo Hashing update algorithm

	5 Analysis
	5.1 Space cost of Ludo lookup structure
	5.2 Lookup overhead
	5.3 Insertion correctness
	5.4 Update overhead

	6 Implementation and evaluations
	6.1 Evaluation methodology
	6.2 Evaluation of in-memory lookup engines
	6.3 Case studies of real systems
	6.4 Summary of evaluation

	7 Discussion
	8 Conclusion
	9 Acknowledgement
	References

