Measuring the Compressibility of Metadata
and Small Files for Disk/NVRAM Hybrid
Storage Systems

Technical Report UCSC-CRL-03-04
Nathan K. Edel Ethan L. Miller Karl S. Brandt Scott A. Brandt

Storage Systems Research Center
Jack Baskin School of Engineering
University of California, Santa Cruz
Santa Cruz, CA 95064

http://ssrc.cse.ucsc.edu/

July 2003



Abstract

File systems combining disk storage with non-volatile RAM (NVRAM) promise large improvements in
file system performance. However, current technology allows for a relatively limited amount of NVRAM,
limiting the effectiveness of such an approach. We are examining in-memory compression techniques that
allow for significantly more efficient utilization of this limited resource. We focus on small objects - meta-
data and small files - and we have measured the compressibility of these objects for a set of representative
file systems. Our results show that inodes are compressible by at least 50-79% at a rate of 1.5-2.2 mil-
lion inodes per second for the best algorithms. For files in the range of 4128 KB, we achieved an average
compressibility of 40-60% at rates of 20-40 megabytes per second. Based on these measurements, we be-
lieve that compression of both metadata and small files should be included in any disk/NVRAM hybrid file
system.



1 Introduction

File systems combining non-volatile memory and disk storage present the possibility of significant improve-
ments in file system performance as compared to traditional disk file systems without the significant limits
on storage capacity inherent in purely memory-resident file systems. Several systems along these lines have
been proposed using both existing non-volatile memory technologies such as battery-backed DRAM and
flash memory as well as new technologies such as magnetic RAM (MRAM). The performance benefits of
a hybrid file system result from storing metadata and small files in memory for fast random accesses, while
allowing relatively unrestricted storage of large files. With typical workstation workloads, the majority of
file system accesses are to metadata and small files, so overall performance will primarily be determined
by the in-memory file system performance [21]. Accesses to small objects are primarily limited by time to
first byte, making RAM-like technologies more attractive. For larger objects, however, bandwidth becomes
a larger concern, making retrieval from disk more cost-effective.

Despite claims to the contrary [28], non-volatile memory capacities can be expected to be limited for
the foreseeable future. While MRAM prices may be comparable to DRAM in the long run, MRAM is an
emerging technology and can be expected to be limited in capacity in the near term. Practical battery-backed
DRAM and SRAM cards are available, but larger-capacity models are specialty products not typically avail-
able through mass-market retailers. Of currently-available non-volatile memory technologies, flash memory
offers the best price-capacity balance, with prices only about twice those of volatile DRAM, but flash mem-
ory has very distinctive characteristics that present separate challenges to file system design [ 11, 25, 33], and
these issues would present similar challenges to designs for hybrid file systems incorporating flash memory.

Since non-volatile memory capacities will remain small relative to overall file-system sizes, hybrid file
systems should use that limited capacity as efficiently as possible. One way to help do so is to incorporate
features such as compression; data compression techniques and characteristics are of particular interest
because of the very high speed of current-generation processors relative to slow improvement of storage
bandwidth and latency [30].

Data compression works by exploiting similarities between pieces of data; conventional algorithms can
be used either on a single stream of data or file, adaptively detecting those similarities within the file/data
stream, or they can be used as static compressors, taking advantage of a priori knowledge regarding the class
of data being compressed. One standard example of the latter is text file compression using a dictionary built
using the known frequency of characters in a given language; another is gamma compression which works
on the assumption that shorter bit strings (lower values) will be more frequent than longer ones (higher
values) [31].

This paper explores the potential space savings and performance cost of compression; we focus on
static compression methods for metadata and adaptive stream-based compression for file data. We do not
present a specific design for the disk/NVRAM hybrid file system, although our research does make certain
assumptions about the sort of system which might be developed. In particular, we make certain assumptions
about the range of systems and applications to be supported by a design intended for PC-class workstations
and low-end servers running Linux or a similar UNIX-like operating system, though we expect that our
results will be applicable to larger file systems as well. We do not assume the use of any particular kind of
non-volatile memory technology, but on a few points assume that the NVRAM can be mapped directly into
the system address space. Finally, we assume that NVRAM has predictable random access performance for
both reads and writes; because of the requirement for block erase, flash memory fails on this point, although
this could be addressed at the cost of some additional complexity.



2 Related Work

The use of non-volatile memory for file systems is not new; Wu and Zwaenepoel [33] and Kawaguchi,
et al. [15] presented designs for flash memory-based file systems, and existing flash memory devices may
use any one of a number of file systems, including the Microsoft Flash File System [11, 16] and JFFS2 [32].
While these file systems are, to some degree, optimized to run on flash memory, most lack several important
features such as the ability to use disk for large files and the ability to compress information to save space.
JFFS2 is a log-structured file system [22] optimized for flash memory usage that does support compression
of data and metadata, but it still cannot support mixed flash and disk storage, and there is little information
on the effectiveness of its compression algorithms. JFFS2 is not the first file system to use compression;
other disk-based file systems have done so as well [4].

Douglis, et al. [11] studied storage alternatives for mobile computers, including two types of flash mem-
ory. They noted that flash memory was slow, particularly for writes. This has not changed; even a laptop
hard drive is faster than most compact flash memory cards. In such a system, compression is useful even for
small objects because it reduces transfer time in addition to reducing space requirements.

There has been some recent work in hybrid disk/NVRAM file systems, particularly as compact flash
memory has dropped in price and alternative technologies such as MRAM [2, 26, 36] and Ovonyx Unified
Memory [9] have come closer to reality. The HeRMES file system [ 18] and the Conquest file system [28] are
current examples of hybrid disk/NVRAM file systems under development. However, the two systems have
different assumptions about the type and quantity of available non-volatile memory. HeRMES, developed
to take advantage of MRAM, assumes a relatively modest amount of memory and a possible difference
in performance between file system NVRAM and main memory. Conquest, developed to take advantage
of battery-backed-up DRAM, assumes a copious amount of NVRAM and uniform access times. Neither
system uses a technology with wide mainstream availability, although the Conquest system does simulate its
ideal technology and provide some degree of battery-backup for memory by using a UPS to provide backup
power to the system as a whole. The HeRMES project suggests the use of compression or compression-
like techniques in order to minimize the amount of memory required for metadata; by contrast, Conquest
minimizes the required memory used for metadata purely by using a stripped-down version of the standard
on-disk metadata structures.

There have been a number of studies of the distribution of file sizes, and file lifetimes[ 1, 23, 21]. There
has also been some discussion of the distribution of file ownership and permissions as it relates to file system
security [13, 20].

Beyond work on file systems, there has been considerable work evaluating the use of compression
techniques for in-memory structures. Douglis proposed the use of a compression cache, which would im-
plement a layer of virtual memory between the active physical memory and secondary storage using a pool
of memory to store compressed pages [10]. This idea has been expanded upon in several directions; Wilson,
Kaplan, and Smaragdakis evaluated the use of different compression mechanisms for memory data [ 14, 30],
and Cortes, et al. evaluated the performance of using such techniques on a modern system [ 7]. Finally, there
is an ongoing effort to implement a compressed page cache on Linux [8].

A number of compression mechanisms could be used to compress metadata, including any of the block-
or stream-based mechanisms evaluated by Wilson, ef al. [30] and used in the Linux-Compressed project [8].
However, simpler mechanisms such as Huffman coding using a pre-computed tree [6], gamma compres-
sion [31], and other prefix encodings [31] can all be used to good effect without the same degree of runtime
processing overhead.



3 Experimental Methodology

To study the compressibility of metadata and small files, we first had to gather data on current systems to
serve as a sample on which to try different compression algorithms. All of the systems we analyzed used
a version of UNIX; thus, we decided to use UNIX metadata for our study. Metadata in UNIX is stored in
inodes; in widely-used file systems such as the Berkeley Fast File System (FFS) [17] and the Linux ext2 file
system [3], each file has a single 128-byte inode that contains information such as owning user ID (UID)
and group ID (GID), permission bits, file sizes, and various timestamps. In addition, each inode in FFS and
ext2 contains pointers to several individual file blocks. In this section, we describe how we collected our
raw data, and the details of the compression algorithms we used.

3.1 Data Collection

Our data collection was done in two stages. To initially verify the assumption that there is a high level
of similarity among file metadata on the class of systems being examined, we used a short Perl script to
produce statistics from directory dumps.

The Perl script was run on a total of eight systems: 5 general-purpose Linux workstations, one “clean
install” of Redhat Linux 8.0, one Windows 2000 system, and one large multi-user UNIX server. Of these, all
but the Windows 2000 system provided useful information. The data from the Windows 2000 system proved
mostly unusable because the directory dump provided by the Cygwin version of 1s we were using did not
accurately reflect the NTFS permissions or ownership information. The file size distributions extracted were
similar to the file size distributions of the Linux systems and to the results found in previous studies of file
sizes [21, 25].

All six Linux systems followed a very similar pattern, with permissions and file ownership very highly
weighted to system files owned by the superuser (root). File sizes, as with the Windows 2000 system,
roughly corresponded with the distributions found by previous studies [21, 25]. Because the distributions
were based on the entire directory tree, and not simply one file system, they were skewed somewhat by
entries in the dynamically generated /proc and /dev Linux file systems, which are typically very small.

The large UNIX system, which was running SCO Openserver, a commercial x86 UNIX implementa-
tion, had approximately 1.1 million user files owned by 160 UIDs. The number of system files and their
distribution of combinations of UID, GID, and permission bits were similar to those of the Linux systems,
although their number on this server was dwarfed by the number of user files. Overall, the number of per-
mission combinations was somewhat greater for the large system, though the distribution of file sizes was
very similar.

Based on our initial analyses, reported in Section 4.1, we collected another set of inode dumps from
three file systems, and used a tool in Perl to generate simulated inodes for a fourth system. We directly
dumped one of the Linux workstations from our initial study, and ran the Perl script on the large UNIX
server. We also collected inodes from the root and home directories file system of a low-end Linux server
running NNTP (netnews) and file services. Table 1 shows various characteristics of each of the four file
systems: the number of files (active inodes with more than one link to them), percentage of system files as
determined by the number of files owned by root, adm, or bin, the number of UIDs owning at least 0.1%
of all files, and the most common size grouping of files grouped by bit width.

3.2 Compression Mechanisms

We evaluated six different compression techniques. As a control, we used a conventional adaptive compres-
sor, deflate, from the z1ib compression library [12]. We tested this algorithm for file compression, and
ran both on binary copies of individual inodes and on a single binary file containing the full set of inodes.



System | Files | System files | UIDs | Average file size |

Linux workstation root 213569 98.8% 5 4-8 KB
Linux server root 431615 59.5% 4 1-2KB
Linux home directories 378842 4.5% 4 64-128 KB
UNIX server (all files) | 1618855 28.8% 158 0.5-1 KB

Table 1: File system profiles.

| Type | Compress field if value: | Compressed representation | Uncompressed representation
A | Matches the single most-common case | Single bit: ‘0’ ‘1’ followed by entire field
B Can be represented in n bits or fewer ‘0’ followed by n bits ‘1’ followed by entire field

Table 2: Rules for the all-or-nothing compressor. There are two different types of fields, A and B. User
ID would likely be an A-type field (single most common value—root), while file length would likely
be a B-type field (most file lengths can be represented in relatively few bits).

Three of the remaining compressors were standard static compressors, tuned specifically for inodes; the last
two were alternative adaptive compressors for data file compression.

The first compression mechanism we evaluated for compressing inodes was a very simple all or nothing
prefix compressor that encoded fields as shown in Table 2.

The second compression mechanism we evaluated for inode compression was the use of pre-generated
Huffman codes, based on the distribution of frequencies of values in various inode fields across all of the
inodes in each file system. For fields with a limited set of discrete values, such as UID/GID pairs, the
Huffman codes represented the actual values for those fields. For fields with a range of bit lengths, the
Huffman codes represented prefixes which were followed by the indicated number of data bits.

In order to handle variation between the file system profiled to generate the tree and the file system where
inodes were being compressed, we added a value to the tree to indicate OTHER with a certain minimum
frequency, which would be used to represent values not known at the time the tree was generated for discrete-
value codes, or to represent the full standard length of the field in a regular ext2 inode for bit-length codes.
In either case, the OTHER code would be followed by the full regular value for an ext2 inode.

One downside to Huffman codes is that, given a distribution with many low-frequency values, the tree
used to generate prefix codes can become quite deep. To limit the maximum depth and size of the tree, we
eliminated values with frequencies below a certain threshold, which we set at below 0.1%, and added the
total frequency of all eliminated values to the OTHER value when it was inserted. This appears to have had
little effect on the average case, because the items being replaced were very low frequency to begin with.
On the other hand, it dramatically limited the length of the longest codes, reducing the worst-case length
of each field. Although this may be less than optimal, we believe the tradeoff is reasonable to guarantee a
lower maximum length for a compressed inode.

The third mechanism we evaluated for compressing inodes was gamma compression, a method of ef-
ficiently coding variable-length numeric values [31]. It represents each value as a unary prefix (k 1 bits
followed by a single 0 bit) followed by a binary field of length determined by looking at entry k entry in a
small table. Gamma compression further reduces sizes by offsetting the start of “bucket” k by the sum of
the size of the buckets for smaller values of k. Gamma compression is particularly efficient for certain com-
mon types of distributions: those that have large quantities of small values. We used a very simple method
of building the tables using the frequency distributions collected for the Huffman tables which produced
very good results for the distribution of values on most fields; we did not specifically examine whether an
algorithm to develop an optimal table exists.

The three adaptive compressors we evaluated for file data compression were all block compressors of



the Lempel-Ziv family. Deflate from the zlib library [12] is a relatively recent variant of LZ77 [34]
intended for general purpose file compression. We compared the effectiveness and speed of deflate
against two compressors which which are specifically optimized for speed and low resource requirements,
LZ0 (Lempel-Ziv-Oberhumer) [19] and LZRW1 (Lempel-Ziv-Ross-Williams) [29] . The selection of these
particular compressors was motivated in part in order to parallel prior work on swap compression; both
LZRW1 and LZO have been evaluated for that purpose [7, 10, 30].

3.3 Inode compression implementation

The ext2 file system uses a 128-byte inode, similar to several other UNIX implementations. In ext2, 74 bytes
are used for block pointers and reserved free space; the remaining 54 bytes contain information that must be
kept for each file. This is very close to the size of inodes used by the Conquest file system—Conquest’s file
metadata is 53 bytes long, and consists of only the fields needed to conform to POSIX specifications [28].
This was used as a baseline for the memory requirements of an in-memory inode, and represents a reduction
in size of 46% simply by stripping out the unused fields. Note, however, that some replacement for the
block pointers will be necessary for larger files which would spill over to disk. If these are kept in memory,
compression techniques would be applicable to them as well.

The first piece of code we implemented was an inode scanner, which dumped a raw binary copy of
the file system’s in-use inodes to a one file and a text listing of the inodes’ fields to another file. This
used the 1ibext2fs library, and was loosely based on the e2image utility [27]. We also modified the
same scanner to compress the inodes with z11ib using both the block-compression and stream-compression
modes [12], and to output 54-byte Conquest-like uncompressed in-memory inodes.

We wrote a small Java application to scan the text file of inode fields and produce frequency lists and
Huffman trees for each of the interesting fields. After examining the output for correctness, we modified
the output to produce a machine-parseable source file with array representations of the Huffman trees for
the decoder; this was later modified to also produce gamma-compression tables. It should be noted that no
effort was made to optimize or time the process of assembling frequency lists and building Huffman trees.
In a production environment, this process would be done infrequently—only during the one-time creation
of a static compressor, in which case performance is not a significant issue.

Finally, we wrote a compression test harness in C++. The first version simply calculated the effectiveness
of all-or-nothing compression, without actually doing any compression, and provided some preliminary
results. The second version implemented all three compression mechanisms and was also better suited to
doing compression-rate estimates; additionally, we implemented a decompressor for Gamma compression
in order to verify the correct functioning of at least one of the compressors and to confirm our expectation
that decompression would be quicker than compression.

4 Experimental Results

4.1 Inode Compression

Our initial results came from the first version of the scanner and test harness. In particular, it estimated
the size of all-or-nothing compressed inodes as a proof of concept, but did not perform actual compression
using bitwise operations. This was tested against only one of the file systems we eventually tested against,
the root file system of a Linux workstation; the overall number of inodes in-use was 213,569 (out of 641,280
total) of which 3,541 were non-files with no blocks. The vast majority (about 98%) of these were system
files owned by the root user (UID 0); home directories for were on a separate file system. Copied to a disk
file, the total space taken by the in-use inodes was about 27 MB (27,336,832 bytes) uncompressed. The
process of reading in all inodes, both in-use and not in-use, took approximately 3.5 seconds, averaged over
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Figure 1: Initial compression results. “CQ-like” inodes are those stripped in a way similar to that in
Conquest [28].

10 runs measuring to the nearest second, without writing any of the dump files to disk. When we repeated
this test with Conquest-like in-memory inodes, the space used was about 11 MB (11,532,726 bytes). These
runs were not timed, as no processing was being done on the inodes; fields were simply dropped.

To test compressibility and establish a control, we tried compressing the entire file of raw inodes and the
file of stripped inodes with gzip and bz ip2 to gauge the likely limits of compressibility. Our initial results
for the first suite of compression tests are shown in Figure 1. We found that gz ip achieved roughly 8:1
compression, and bzip2 achieved approximately 10:1 compression. This is corresponds to about 9 bytes
per inode on the Conquest-like inodes. While it is still beyond what our compressors can achieve, it is a
reasonable, if perhaps unreachable, goal.

The simple all-or-nothing compression algorithm reduced space utilization to about 5.1 MB, or an av-
erage of just less than 23 bytes per inode—an improvement of about 55% over the 54-byte Conquest-like
stripped inodes. It is also more than an 80% improvement over the standard 128-byte inode, but most of
this is simply a matter of dropping the disk-specific information. Running this compressor, without any file
writes, took roughly 3.5 seconds, averaged over 10 runs as before. This was identical to the time required to
read the inodes without compressing them. In order to have a comparison to the z 1 ilb-compressor’s perfor-
mance, the test was repeated writing the compressed inodes, and over 10 runs the compressor consistently
ran in 6 seconds.

We repeated the scan, compressing the raw ext2 inodes using the z1ib deflate compressor. Initially,
we used the z11ib block-at-a-time call on each inode, but the resulting performance was poor—two test
runs took 115 and 116 seconds. The scanner was revised to open a z11ib compressed file and write each
inode to the stream. This was almost 20 times faster, taking approximately 6.5 seconds, averaged over 10
runs. Interestingly, the output produced by both methods was identical; the compressed stream was appar-
ently treating each write call as a separate block, but the performance was vastly improved. The z1ib
compressed image was roughly 5.9 MB, somewhat larger than the results of our all-or-nothing compressor.
However, according to the z1 ib documentation, there is a 12 byte header per block [12], so nearly 50% of
the compressed file was block headers.

Based on the encouraging results from our first set of compression tests, we proceeded to run more
extensive tests using different compression mechanisms. As discussed in Section 3.1, we first gathered
more complete inode information on four, more diverse UNIX systems. We generated profiles—frequencies,
gamma tables, and Huffman trees—for each of the four file systems, and then manually coded all-or-nothing
compressors for each of the four file systems. For each file system, we tested each compressor, using first
using the profile produced from that file system, and then the other three profiles. For each, we measured
the total elapsed time to compress all the inodes and the total size of the compressed inodes; from these we
calculated the average bytes per inode and the compression rate for that file system/compressor/profile.

As expected, the best compression was achieved in all four cases when the profile matched the file
system being compressed. In two cases—the Linux workstation and the news server home file system—
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Figure 3: Compression rate, in millions of inodes per second, for the best and worst profiles on each
file system. The top of the shaded bar is the rate for the worst profile, and the top of the thin bar is
the rate for the best profile.

the greatest space reduction was achieved by All-or-Nothing, and in the other two, gamma compression
performed best. In three cases out of four, the Huffman compressor had the lowest space reduction of the
compressors, although it was the second best for the news server home directories. As shown in Figure 2,
compressed inode sizes using the profile generated from the original file system, ranged from 23 to 30 bytes.
Selecting the worst possible profile for each file system/compressor combination resulted in a compressed
inode size that ranged from 30 to 37 bytes.

The speed of compression is also a very relevant factor because inode compression and decompression
must be fast for the technique to be used in a regular file system. Fortunately, we found that the compression
techniques we choose were sufficiently fast that they would not limit file system throughput. The full battery
of tests we ran on the four file systems from the Linux workstation, news server, and UNIX server were run
on a 1.7 GHz Pentium 4 processor, and both read the full set of inodes into memory and pre-allocated
buffers for the compressed inodes before attempting any compression The rates of compression for the
gamma and all-or-nothing compressors overlapped slightly, with all-or-nothing running at 1.8-2.2 million
inodes per second, and Gamma processing 1.5-1.9 million inodes per second. The Huffman compressor
was significantly slower, compressing 500,000-950,000 inodes per second.

Our gamma and Huffman compressors included variables to track the best, worst, and average bit width
of each field. We retained these for certain interesting fields, and the results show the strengths of each
compressor for certain types of data. Figure 4 compares the best and other cases for the all-or-nothing
compressor with the measured best, average, and worst cases for the Huffman and gamma compressors on
the Linux workstation file system.
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The results for the time values are troubling; the all-or-nothing best lengths, and the typical cases for all
three codes are still quite long for the creation time (CTime), and the average values for the modification
(MTime) and access (ATime) times for both Huffman and gamma are actually degenerate cases longer than
the standard 32-bit value. It is not clear that these values can be compressed significantly on an individual
basis, but one mechanism worth considering is a common point from which files could measure deltas, such
as the directory creation time, possibly improving the degree of compression. Alternatively, if the file system
had some cleaning mechanism for compressed inodes, along the lines of LFS [4, 22], a mechanism which
reduced the timing resolution of older inodes could also be used to save space.

Additional space could be saved by transforming several fields in concert. For example, the mode, UID,
and GID fields could be combined into a “permissions” field. As noted by Reidel, et al. [20], the number of
unique permission sets in a file system is relatively small, and, as shown in Section 3.1, many files fall into
the category of “system files” and could be represented by a small encoding in either Huffman or gamma
compression.

Finally, it is not entirely clear whether it is safe to throw out the deletion time (D7ime) field. Linux
supposedly does not make use of this field, and the scanner did not pick up any in-use inodes with the
DTime field set to a non-zero value. However, when we tried re-running the compressor without the check
for active links on the one of the file systems, we found that DTime does seem to be set for quite a number
of inactive inodes. This test was on the news server root file system, and the number of inactive inodes with
nonzero DTimes exceeded the number of active inodes.

It is interesting to note is that a significant part of the compression—shared across all three compressors—
comes from required fields that are very seldom used on low-end Linux installations, such as the file flags,
the deletion time, and the POSIX file and directory ACL entries. These fields are essentially treated as op-
tional under the current encoding schemes; it would be useful to examine to what extent these are actually
used in production systems, and if so, what kind of distributions they fit. Similarly, any of the encoding
methods allows for very efficient encoding of “extended” fields where upper values are seldom used, such
as the extensions for 32-bit UID and GID or the 64-bit extension for file size.

4.2 Compressing Small Files

Storing only metadata in fast persistent storage would be of limited value if access to the corresponding data
always required a disk access. While compression is normally thought of as a technique that is applied to
large files in order to save storage space on disk, today neither storage space nor bandwidth are particularly



limiting factors compared to latency. Storing files in memory reduces the access latency, but as long as
memory is a relatively limited resource, most large files will need be stored on disk, while smaller files may
be stored in memory. By increasing the effective capacity of the fast but small memory, compression allows
a greater number of files to be stored in memory and thus accessed with reduced latency.

Compressing file data is a somewhat different problem from compressing metadata. While metadata
is structured and relatively regular, file data is neither inherently unstructured nor regular; a file on UNIX
or similar operating systems is simply an arbitrary sequence of bytes. While files of a given type can
be fairly regular, the file’s type is not reliably recorded as part of the file metadata on UNIX-like operating
systems. Without some knowledge of the file’s type, the best option is to use a general-purpose block/stream
compressor. The most popular of these are dictionary-based compressors in the Lempel-Ziv family [34,
35], although one broadly used compression program, bzip2 [24], uses a block-sorting algorithm based on
Burrows-Wheeler transforms [5].

Our compression tests were performed on three of the file systems used for the inode compression tests,
the Linux workstation file system and the news-server /home and /root file systems because the large
UNIX server was not available for these tests. The compression tests were also performed on an additional
Linux workstation which had a combined file system including both the root and home directories. The
tests consisted of loading each file under a given size limit into memory and then averaging the time across
several compression and decompression cycles while measuring the total space saved by compression for
each file.

We ran these tests for three algorithms described briefly in Section 3.2: deflate, LZO, and LZRW1.
We focused on the compressibility of files containing up to 128 KB of uncompressed data. This threshold
was selected based on two assumptions: first, that a threshold much larger than this would likely require
relatively very large amounts of memory, and second, that files much larger than 128 KB were likely to
include some media files that were likely already compressed. Also, we expected that the very smallest files
would not be particularly compressible.

The results for the two Linux workstation systems, and the root file system of the news server closely
matched expectations. We averaged files across size groups at 512-byte increments; all three compressors
showed very similar curves on all three file systems. The curve showed a flat average degree of compression
for files between 4 KB and 32 KB. Files between 32 KB and 128 KB showed a similar or slightly higher av-
erage degree of compressibility in overall, but had a degree of variation between different size groups. Files
below 4 KB showed a decreased degree of compressibility. Figure 5(a) shows the compression effectiveness
by file size on the Linux workstation root file systems. The rate of compression was also similar across those
three systems, with all three of the compressors reaching their average rate of compression above a certain
minimum size file. Figure 5(b) shows the average compression rates by file size on the same Linux work-
station file system. Decompression rate followed similar patterns, but was much faster, averaging around
125-150 MB/sec.

Figure 5 shows that deflate provided significantly better compression than either LZRW1 or LZO
at the expense of significantly worse performance than either. LZO provided slightly better compression
than LZRW1, at the expense of slightly worse performance. The overall average compression ratio and
the average compression rates in megabytes per second are shown in Table 3. The figures in Table 3 were
measured on the Linux workstation root file system, but results for the other file systems except for the news
server home directories were similar. Note that, even for the slowest compression algorithm, deflate,
the file system would be able to transfer over 600 10 KB files per second. For the faster algorithms, the file
system could transfer 3500—-4000 such files.

Unlike the other file systems, the home directory file system on the news server did not meet our expec-
tations; it had particularly irregular distributions for both compressibility and rate of compression. A close
examination of the disk’s contents, showed this to be because of a very large number of JPEG images rang-
ing from thumbnails (2-6 KB) to much larger files. Compressed file formats such as JPEG typically cannot
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Figure 5: Compressibility and speed of compression for the files on the root file system of the Linux
workstation. Both measurements are calculated across a range of file sizes. For both graphs, LZRW1
is the top line and deflate is the bottom line.

Compressor | Average Compression | Average Rate
Deflate 61% 6.3 MB/sec
LZO 50% 36.8 MB/sec
LZRW1 44% 42.5 MB/sec

Table 3: Average file compression and speed by compression technique.
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Figure 6: Cumulative space required for compressed files.

be compressed further by the lossless compression techniques we were using, and attempting to recompress
them tends to be a relatively slow process. This problem could be usefully addressed if the file system
metadata could reliably be queried for file type, or if the file system had a good heuristic for determining file
type, such as looking at the extension (i. e., . jpg).

Finally, the usefulness of compression can be emphasized by examining the cumulative space taken by
compressed and uncompressed files of a given size, shown in Figure 6. Files of up to 128 KB on the Linux
workstation root file system occupied about 1.3 GB of total space. However, the total compressed size of
the same files ranged from approximately 800 MB with LZRW1 down to 570 MB with deflate. These
savings are very significant, although they also underscore that file data compression on its own may not be
enough; the lowest figure of 570 MB remains sizeable even by the standards of volatile workstation main
memory.

Compression may be most useful for very small files—those smaller than 16-32 KB. Files smaller than
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16 KB occupied over 750 MB in the uncompressed file system, but required just 325-400 MB using com-
pression. This represents a savings of over $100 in today’s memory prices, with the only drawback being the
inclusion of file compression in the operating system. Compressing files on NVRAM has several additional
advantages: lower transfer time, lower cleaning overhead, and potentially longer NVRAM lifetime. By
keeping less data on potentially slower NVRAM, the file system can reduce the latency to read or write such
files. A log-structured NVRAM file system such as JFFS2 [32] must pay an overhead to clean “segments;”
the cleaning rate is proportional to the rate at which data is written to the file system [22]. By reducing the
size of files via compression, we can reduce the overhead necessary to perform segment cleaning. Similarly,
some NVRAM technologies such as flash memory degrade as they are written repeatedly. Compression re-
duces the total amount of bytes written to the NVRAM, extending its lifetime, without reducing the amount
of user data that can be stored on it.

5 Future Work

There is still work which remains to be done in order to implement this functionality in an actual file
system. Using compression for files and inodes and designing an inode structure for in-memory use is only
the beginning; many engineering decisions remain. For example, how is memory for files allocated? Are
files migrated to disk if space becomes tight? How tightly are inodes packed? If inodes are packed tightly
and a modification that results in an inode “outgrowing” its space, how is that handled? How is on-disk
allocation handled? Even such issues as whether or not to use a log-structured file system on NVRAM are
still unknown, and may depend on the specific characteristics of the NVRAM technology.

In the area of compression techniques, there are a number of possible areas which can still be explored.
Among them are the efficient encoding of time values, which tend to be fairly long bit strings if encoded
individually. Additionally, while all of our tests up focused on using a single type of compressor for every
field in an inode, it might be possible to improve the total reduction in size with a hybrid compressor which
applied the best type of compressor for each particular field. Similarly, for file compression, some advance
knowledge of the file type, perhaps encoded into the inode as done in some file systems, would allow for
more intelligent selection of a compressor.

The use of multiple compression profiles on a single system, either for different file systems or at the
inode or directory level, could yield higher compression rates. This could be further refined with automa-
tion, either with knowledge about different classes of files, or by trying to compress a given inode with
several profiles in parallel and save the smallest resulting compressed inode along with a prefix to indicate
which decompressor to use. Another interesting question is to what degree the description of on-disk data,
either using block pointers or extents, is compressible. Implementation of a fast adaptive block or stream
based compressor on groups of inodes might on the one hand eliminate the high cost of a block header per
individual inode while maintaining low-cost random access to any inode.

6 Conclusions

Compression of small objects such as metadata and small files has long been neglected because there is
little point to compressing small objects that must suffer the long latency of disk storage. As long as such
objects live permanently on disk and are only cached in memory, compression will remain optional. For
disk/NVRAM hybrid file systems, however, compression is an important tool for reducing NVRAM capacity
requirements and system cost.

We have shown that both file metadata and small files are highly compressible at relatively low cost.
By using tuned compression techniques, we can save more than 50% of the space required by previous
disk/NVRAM file systems. Similarly, compressing small files can improve file system performance by
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keeping small, latency-sensitive files in NVRAM while reducing NVRAM capacity requirements by over
50%.

Although there is a cost in CPU cycles associated with compressing or decompressing a piece of data,
our performance numbers indicate that on a modern processor this cost is negligible compared to the latency
of a request to disk. For inodes, the slowest compressor we evaluated averaged less than two microseconds
per inode, an improvement of 500:1 over a 1 millisecond disk access. The fastest compressors we evaluated
were 3—4 times faster still. Similarly, for file data compression, on modern processors the average com-
pression rates for LZRW1 and LZO can match the typical data rates of typical desktop disk systems. With
the higher speeds of all three decompressors, decompression is very nearly free; 1 KB reads decompress in
around 30-100 microseconds, 20-100 fimes faster than a single disk access.

Overall, our results indicate that even with a relatively low cache miss rate, a hybrid file system including
a compressed non-volatile memory component will offer a significant speed improvement over a typical
disk-only file system, while at the same time requiring significantly fewer resources than hybrid file systems
that do not take advantage of compression.
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