
String Figure: A Scalable and Elastic Memory Network Architecture

Matheus Almeida Ogleari∗,�, Ye Yu†, Chen Qian∗, Ethan L. Miller∗,‡, Jishen Zhao�

∗University of California, Santa Cruz †University of Kentucky ‡Pure Storage �University of California, San Diego
∗{mogleari,cqian12,elm}@ucsc.edu †ye.yu@uky.edu �{maogleari,jzhao}@eng.ucsd.edu

Abstract—Demand for server memory capacity and perfor-
mance is rapidly increasing due to expanding working set
sizes of modern applications, such as big data analytics, in-
memory computing, deep learning, and server virtualization.
One promising techniques to tackle this requirements is mem-
ory networking, whereby a server memory system consists
of multiple 3D die-stacked memory nodes interconnected by
a high-speed network. However, current memory network
designs face substantial scalability and flexibility challenges.
This includes (1) maintaining high throughput and low latency
in large-scale memory networks at low hardware cost, (2)
efficiently interconnecting an arbitrary number of memory
nodes, and (3) supporting flexible memory network scale
expansion and reduction without major modification of the
memory network design or physical implementation.

To address the challenges, we propose String Figure1, a high-
throughput, elastic, and scalable memory network architecture.
String Figure consists of (1) an algorithm to generate random
topologies that achieve high network throughput and near-
optimal path lengths in large-scale memory networks, (2) a
hybrid routing protocol that employs a mix of computation
and look up tables to reduce the overhead of both in routing,
(3) a set of network reconfiguration mechanisms that allow
both static and dynamic network expansion and reduction. Our
experiments using RTL simulation demonstrate that String
Figure can interconnect over one thousand memory nodes with
a shortest path length within five hops across various traffic
patterns and real workloads.

Keywords-Memory fabric; 3D die-stacked DRAM; memory
network; scalability; reconfiguration; routing; memory centric

INTRODUCTION

The volume of data has skyrocketed over the last decade,

growing at a pace comparable to Moore’s Law [1]. This

trend drives the popularity of big data analytics [2], [3],

in-memory computing [4], [5], deep learning [6], [7], [8],

and server virtualization [2], which are frequently insatiable

memory consumers. As a result, these applications demand

a continuous expansion of server memory capacity and

bandwidth to accommodate high-performance working data

access. As shown in Figure 1, cloud server memory capacity

has been rapidly growing since the debut of cloud service

for in-memory computing [9], [10], [11].

Unfortunately, DRAM capacity scaling falls far behind the

1String Figure is a game formed by connecting strings between fingers
of multiple people. Our memory network topology appears like a string
figure formed using memory nodes.

0

2

4

6

2012 2013 2014 2015 2016 2017

Amazon EC2
Microsoft Azure

Sc
al

e-
up

 C
lo

ud
 S

er
ve

r
M

em
or

y
C

ap
ac

ity
 (T

B
)

cr1.8x r3.8x
X1

X1e

G5

S192

S192m

S960
20TB

X1e
16TB

Figure 1. Expanding server memory demand.

pace of the application demand with current DDRx based

architectures [12]. One conventional solution to increasing

server memory capacity is to add more CPU sockets to main-

tain additional memory channels. In commodity systems,

each processor can support up to 2TB memory. As a result,

EC2 1Xe adopts four CPU sockets to accommodate the 4TB

memory capacity [9]. Azure S960 servers can adopt 20 Intel

Xeon processors to accommodate 20TB of memory [11].

However, purchasing extra CPU sockets substantially in-

creases the total system cost [13], [14]. The extra hardware

cost adds significant, often nonlinear overheads to the system

budget, making this solution unsustainable.

A promising technique to tackle these memory challenges

is memory networking, whereby the server memory system

consists of multiple 3D die-stacked memory nodes inter-

connected by a high-speed network. The interconnected

memory nodes form a disaggregated memory pool shared

by processors from different CPU sockets in the server

(Figure 2). Ideally, the memory network can enable more

scalable performance and capacity than traditional DDRx-

based memory systems, as shown by academia [15], [14],

[16] and industry efforts from HPE [17] and IBM [18].

However, the memory network scalability relies on the scal-

ability of the memory fabric that interconnects the memory

nodes [16], [14].

Previous memory network designs investigated platforms

with limited numbers of memory nodes. Scalability and

flexibility were not considered in their the design goals.

Given that each memory node (a 3D memory stack) can

offer 8GB capacity [14], state-of-the-art 4TB server memory

system requires 512 memory nodes. Recent works have

proposed optimizing NoC network topologies to support

up to 128 memory nodes in integrated CPU+GPU (APU)

systems [16]. However, the design partitions clusters of

memory nodes to separate channels, where each processor

647

2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)

2378-203X/19/$31.00 ©2019 IEEE
DOI 10.1109/HPCA.2019.00016

can only access a subset of the memory space. State-

of-the-art planar topologies [19], [20] offer high network

throughput at a large scale. However, the number of required

router ports and links increases as the network size grows,

which imposes undesirable cost in routers integrated with

memory nodes. The challenges of scaling up server memory

capacity still remain.

The goal of our paper is to design a high-performance,

scalable, and flexible memory network architecture that

can support over a thousand interconnected memory nodes

shared by processors in a cloud server. We elaborate our

design goal as follows:

• Scalability. We need to support over a thousand memory

nodes shared by all CPU sockets in a server. As such,

the scalability requirement is three-fold. Path lengths:
When the network size (i.e., the number of memory

nodes) grows, the routing path lengths need to grow sub-

linearly. Routing overhead: The computation and storage

overheads of routing decision-making need to be sublinear

or independent of the network scale. Link overhead: The

number of required router ports and links is also either

sublinear or independent of the network size.

• Arbitrary network scale. We need to maintain a high-

throughput interconnect of an arbitrary number of memory

nodes, without the shape balance limitation of traditional

topologies, such as a mesh or tree.

• Elastic network scale. We need to support flexible ex-

pansion and reduction of the network size, in terms of

the number of memory nodes. The elastic network scale

allows effective power management by turning on and off

routers and corresponding links. It also enables design

and implementation reuse across various server system

configurations.

To achieve our goals, we propose String Figure, a scal-

able and elastic memory network architecture that consists

of three design components. First, we propose a network

construction scheme to efficiently generate random net-

work topologies that interconnect an arbitrary number of

memory nodes with high network throughput, near-optimal

path lengths, and limited router ports. Second, we develop

an adaptive greediest routing protocol, which significantly

reduces the computation and storage overhead of routing in

each router. Finally, we propose a network reconfiguration

scheme, which allows the network scale, topology, and

routing to change according to power management and

design reuse requirement. Performance and energy exper-

iments show that String Figure can interconnect up to 1296

memory nodes with significantly higher throughput and

energy efficiency than previous designs, across various of

synthetic and real workloads.

BACKGROUND AND MOTIVATION

In this section, we briefly discuss the limitations of con-

ventional DDRx-based memory systems, opportunities with

Memory Node Processor

…
A Quad-socket Server System

Figure 2. A disaggregated memory pool in a quad-socket server. Memory
modules are interconnected by a memory network shared by four proces-
sors.

memory networks, and the challenges of scalable memory

network design.

Limitations of Commodity Server Memory Architectures
Traditional server memory systems face substantial chal-

lenges in scaling up memory capacity due to cost and

performance issues. Increasing the number of CPU sockets

enables adding more memory channels with more DIMMs.

However, extra CPU sockets, which are added for memory

capacity rather than compute requirement, can substantially

increase hardware cost in an economically infeasible man-

ner. Prior studies show that increasing memory capacity

from 2TB to 4TB by doubling the number of CPU sockets

can lead to over 3× increase in server system cost [13].

Commodity clusters allow us to develop scale-out memory

systems, which distribute the working set of applications

across multiple server nodes [21]. However, the scale-out

approach can only accommodate a limited subset of use

cases with data-parallel, light communication algorithms. In

remaining applications, the scale-out solution either requires

programmers to rewrite their software, or system architects

to adopt a low-latency interconnect fabric. This shifts the

memory scaling burden to the software and communication

infrastructures. However, recent studies that explored disag-

gregated memory system design [22], [23] require substan-

tial changes in the virtual machine system software, such

as a hypervisor. Our design is in line with recent industry

and academic approaches on implementing disaggregated

memory pool with memory fabric, such as Gen-Z [24] and

memory-centric system integration [15], [25], [14].

Memory Network
To address the memory capacity demand challenges,

recent works introduce memory network design [15], [25].

A memory network consists of a set of 3D die-stacked

memory nodes interconnected by a high-speed network.

Figure 2 shows an example server system with four CPU

sockets attached to a memory network. The processors can

be connected to any edge memory nodes in the network.

As 3D die-stacking technology is maturing, various 3D die-

stacked memory designs are either already used in com-

modity systems or close to the market [26], [27], [28], [29].

3D die-stacked memory typically employs several DRAM

dies on top of a logic die. For example, one type of die-

stacked memory, Hybrid Memory Cube (HMC) [29], [30],

offers 8GB capacity per memory stack with link speeds up to

30Gbps (versus 1.6Gbps supported by DDR4) and peak ag-

648

(a) String Figure topology.

0

4

1

2

3
6

7

8

5

0

1

2

4

A

B C

D

Random Connections
Short Cuts

4-port
Router

0
1

2

3

5
6

7

8

4

Virtual
Space-0

Memory
Node # Coordinate 8

0
7

1
4 5

6

2

3

Virtual
Space-1

Our Goals: Scalability Arbitrary Network Scale Elastic Network Scale

1
2

3 6

7

8

4

0

5

(b) Random network topology generation scheme. (c) Short cuts generation. (d) Reconfigurable router.

(Always 4 ports in use)

Figure 3. An example of String Figure topology design with nine memory nodes (stacks) and four-port routers. (a) String Figure topology. (b) Virtual
space organization for random network generation. (c) Shortcuts generation for Node-0. (d) High-level design of a reconfigurable four-port router.

gregate bandwidth of 320GB/s/link. Recent studies show that

die-stacked memory capacity is likely to scale to 16GB [16].

Memory network design has attracted both academic [25],

[15], [14], [16], [31] and industry [17], [24], [18] efforts.

Recent studies demonstrate that memory network can lead

to more promising main memory expansion opportunities

than traditional DIMM-based memory systems.

Challenges of Memory Network Design
Memory networks are constructed by interconnecting a

large number of memory nodes. Therefore, performance

and scalability of the interconnect network are essential to

memory network performance and capacity scaling. Previous

studies investigated how to best adopt traditional Network-

on-Chip (NoC) topologies and protocols in memory network

design, such as mesh, ring, crossbar, chain, skip list, but-

terfly, and tree [25], [15], [14], [16]. However, traditional

memory network topologies can lead to substantial scala-

bility challenges. In fact, most previous memory network

designs can only interconnect tens of memory modes shared

by all CPU sockets [25], [15], [14], [16]. In order to support

terabytes of memory capacity, we need to interconnect hun-

dreds or over one thousand memory nodes with high network

throughput and low access latency. As such, we motivate our

work with the following scalability and flexibility challenges

that are not effectively addressed in prior works.

Network Scalability. As shown in recent studies, the

shortest path lengths of various traditional memory net-

work topologies can substantially increase with large-scale

memory networks [16]. Instead, topologies used in data

centers, such as Flattened Bufferfly [19], Dragonfly [20],

FatTree [32], and Jellyfish [33], can offer high bisection

bandwidth and short routing path lengths in large-scale

networks. However, these topologies are not directly appli-

cable to memory network due to following reasons. First,

data center networks adopt stand-alone network switches

with rich link and storage resources. Second, most of these

topologies require continuously increased router ports as

the network scales up [19], [20], [32]. Finally, routing

with most data center network topologies [33] requires

large routing tables to store global routing information; the

forwarding state cannot be aggregated. These issues hamper

the memory networks from adopting data center network

topologies in memory networks because of limited storage

resources in on-chip routers and the high-bandwidth memory

access requirement of in-memory applications. As a result,

neither traditional memory networks nor data center network

topologies can efficiently meet the scalability requirement of

memory networks.

Arbitrary Network Scale. Many rigid network topologies

require the number of routers and memory nodes to be

specific numbers, such as a power of two. This reduces

the flexibility of memory system scaling. Furthermore, these

constraints on the network scale can increase the upgrade

cost of memory systems and limit the potential of design

reuse. For example, say we have the budget to purchase one

more memory node to upgrade an existing memory network.

It is difficult to upgrade because the rigid network topology

only allows us to add certain number of memory nodes (or

none) to maintain the network scale as a power of two.

Elastic Network Size. Traditional memory systems allow

users to reconfigure the memory capacity to a certain extent.

For example, commodity computer systems typically reserve

a certain number of memory slots for users to expand the

memory capacity in the future. The same basic DIMM-based

memory system designs in each DDRx generation are also

shared across various design versions with different memory

capacities. This flexibility allows future memory network

designs to deliver cost-efficient memory system solutions.

Furthermore, support for dynamic scaling up and down

memory networks also enables efficient power management,

by power gating off under-utilized links and idle memory

nodes. Therefore, an elastic network size (static and dynamic

network expansion and reduction) is a missing yet preferable

feature for future memory networks.

DESIGN

Overview. To achieve our goals, we propose String Figure,

a scalable, flexible, and high-performance memory network

649

architecture. Figure 3 depicts an overview of our design

goals and components – arrows in the figure map our design

components to our goals. String Figure consists of three de-

sign principles. First, we propose an easy-to-implement ran-

dom network topology construction algorithm that enables

a) scalable memory network interconnecting large, arbitrary

number of memory nodes with arbitrary number of router

ports and b) support for elastic network scale. Second, we

propose a compute+table hybrid routing scheme, which re-

duces the computation and storage overhead of routing large-

scale networks by integrating a lightweight routing table

with greediest computation-based routing mechanisms. Fi-

nally, we propose a network reconfiguration scheme, which

enables elastic memory network scale. Beyond achieving

our scalability goals, String Figure further enables memory

access pattern aware performance optimization and efficient

memory network power management.

While our design is broadly applicable to a wide range

of server memory systems, we will use a working example

throughout this paper to make our proposal more concrete.

Our working example assumes a maximum 16TB memory

system that consists of 1296 interconnected 3D die-stacked

memory nodes shared by four CPU sockets (Figure 2). Each

memory node has one router and is 8GB, with the same

capacity and memory configuration parameters adopted in

previous works [16], [31], [14]. Detailed baseline system

configuration is described in Table I.

Network Topology Construction Scheme

Prior studies in data center networks, such as Jelly-

fish [33], demonstrated that “sufficiently uniform random

graphs” (i.e., graphs sampled sufficiently uniform-randomly

from the space of all r-regular graphs) empirically have

the scalability properties of random regular graphs [33] and

achieve throughput within several percent to the upper bound

on network throughput, at the scale of several thousand

nodes. Such random topologies compare favorably against

traditional fat-tree topologies, supporting a larger number of

nodes at full throughput. However, most previous random

topologies are developed for data center networks, which

need to tolerate large forwarding state storage. Directly

adopting these random topologies in memory networks,

which is constrained by the storage capacity in routers and

routing latency, can impose prohibitive scaling issues.

To address these challenges, we propose a novel network

topology String Figure inspired by S2 [34] to enable scalable

random topology in memory networks at low routing cost.

Our topology design also enables elastic memory network

scale, i.e., flexible expansion and reduction of network

scale. Our topology consists of a basic balanced random

topology and a set of shortcuts. The balanced random

topology ensures scalability, interconnection of arbitrary

number of memory nodes. The shortcuts provide extra links

that maintain high network throughput, when the network

Figure 4. Algorithms for generating (a) balanced random topologies and
(b) the used balanced coordinate generation function BalancedCoordinate-
Gen(), where D is circular distance defined in our routing protocol.

scale is reconfigured (expansion or reduction) after being

deployed (Section III-C). Figure 3(a) illustrates an example

topology interconnecting nine memory nodes, where each

memory node has a four-port router. String Figure topology

is generated offline before the memory network is deployed.

Balanced random topology generation algorithm. To

simplify the topology construction process for system de-

velopers, we design a topology generation algorithm, which

answers two critical questions: (i) Randomness – how do we

ensure that the generated networks are uniformly-random?

(ii) Balance – how do we ensure balanced connections?

Imbalanced connections are likely to increase congestion.

Figure 4 illustrates our random topology generation al-

gorithm. We use the example in Figure 3(b) to explain

our design. Inputs of our algorithm include the number of

memory nodes N and the number of router ports p. Our

approach consists of four steps:

• Constructing L virtual spaces, where the number of virtual

space L =
⌊
p
2

⌋
. For example, a memory network with

four-port routers (not including the terminal port) will lead

to maximum two virtual spaces: Space-0 and Space-1.

• Virtually (i.e., logically) distributing all the memory nodes

in each virtual space with a random order. We generate

random orders by assigning random coordinates to mem-

ory nodes. For example, the coordinates of Node-2 is 0.20
and 0.87 in Space-0 and Space-1, respectively.

• Interconnecting the neighboring memory nodes in each

650

virtual space. For instance, Node-2 is connected with

Node-1 and Node-3 in Space-0; it is also connected with

Node-6 and Node-8.

• Interconnecting pairs of memory nodes with free ports

remaining. For example, because Node-5 and Node-4 are

connected in both spaces, Node-5 will have a free port

left. Therefore, we can additionally connect Node-5 with

Node-3, which also has a free port. When multiple choices

exist, we select the pairs of memory nodes with the

longest distance.
The solid lines in Figure 3(a) illustrate an example of

generated basic random topology. Our topology generation

algorithm only determines which nodes are interconnected.

We allow both uni-directional and bi-directional connections

(discussed in Section IV). The four router ports in our

example are all used to connect to other memory nodes in

the network. To connect to processors, each router has an

additional port, i.e., each router in this example would have

five ports in total. Processors can be attached to any subset

memory nodes, or all of them (evaluated in Section VI).

Shortcuts generation. The goal of adding extra connections

is to maintain high network throughput, when we need to

scale down a memory network after it is deployed, e.g., by

shutting down (power-gating [14]) routers and corresponding

links (more details in Section III-C). To achieve this goal,

we generate shortcuts for each memory node to its two

and four hop neighbors – within short circular distance

– distributed in Virtual Space-0 in a clockwise manner

Figure 3(c) shows shortcuts generated for Node-0. We only

connect to a node with node number larger than itself. For

example, we do not connect Node-5 to Node-0, although

Node-0 is Node-5’s four-hop neighbor. As such, we limit

the link and router hardware overhead by adding maximum

two shortcut connections for each node. The connections not

existing in the basic balanced random topology are added

into the network (e.g., the red dash line between Node-0 and

Node-2). Figure 3(a) depicts the final topology combining

the basic random topology (black solid lines) and shortcuts

(red dash lines). The rationale behind is two-fold. First,

we demonstrate that one-, two-, and four-hop connections

efficiently accommodate data access of big-data workloads,

such as query in a distributed hash table [35]. Second, if we

divide Virtual Space-0 into four sectors (A, B, C, and D in

Figure 3(a)), the combination of our random topology and

the shortcuts ensures that the memory network has direct

connections between both short- and long-circular-distance

nodes in every two sectors; when the network is scaled

down, the shortcuts can maintain high throughput by fully

utilize router ports.

Sufficiently uniform randomness of our topology. To show

that String Figure provides sufficiently uniform random

graphs (SURGs), we compare the average shortest path

length of our topology with Jellyfish [33] and S2, which

are proved to offer SURG. Empirical results String Figure

0

2

4

6

100 200 400 800 1200

Jellyfish S2 String Figure

Figure 5. Comparison of shortest path lengths.

D D
MD

Figure 6. Greedy routing protocol. (a) Circular distances (D) and
minimum circular distances to Node-2 (MD) from Node-7 and Node-7’s
neighbors. (b) Routing table entries (16 entries in total).

topology leads to similar average shortest path lengths with

the same path length bounds across various network scales.

Routing Protocol
A desired routing protocol in memory network needs to be

scalable, deadlock free, while fully utilizing the bandwidth

of the network topology. Conventional routing schemes

on random topologies employ k-shortest path routing with

global information stored in the routing table (a look-up

table) of each router [33]. Given a memory network with N
memory nodes, the routing table size and routing algorithm

complexity can be up to O(NlogN) and O(N2logN). In

order to maintain sub-linear increase of routing overhead

– consisting of look-up table size and routing algorithm

complexity – we adopt a hybrid compute+table routing

scheme. Our deadlock freedom mechanism is discussed in

Section IV.

Greediest routing. To achieve high-performance routing

with small routing table storage, we employ a scalable

greedy routing protocol, namely greediest routing [34]. Most

previous greedy routing protocols only minimize distance to

the destination in a single space. Our basic random topology

consists of multiple virtual spaces. Therefore, we need to

design a routing protocol that can identify the shortest

distance to the destination among all neighbors in all virtual

spaces. To this end, we make forwarding decisions by a

fixed, small number of numerical distance computation and

comparisons. We define circular distance (D) as the distance

between two coordinates u and v in each virtual space:

D(x, y) = min{|u− v|, 1− |u− v|}
We then calculate the minimum circular distance between

two nodes as the following, given the two nodes with the set

of coordinates in L virtual spaces
−→
U =< u1, u2, ..., uL >

and
−→
V =< v1, v2, ..., vL >.

MD(
−→
U ,

−→
V) = min{D(ui, vi)}

Forwarding decision making: To forward a packet

from Node-s to destination Node-t, the router in Node-

651

s first selects a neighbor Node-w such that w minimizes

MD(
−→
Xw,

−→
Xt) to the destination. The packet is then for-

warded to Node-w. This process will continue until Node-

w is the destination. For instance, Node-7 needs to send a

packet to Node-2. Figure 6(a) shows the minimum circular

distances to Node-2 from Node-7 and Node-7’s one-hop

neighbors in our example (Figure 3). Node-7 has four

neighbors Node-0, 3, 6, and 8. Based on the computation,

Node-8 has the minimum MD from Node-7. The packet

is then forwarded to Node-8. Node-8 will then determine

the next stop for the packet by computing a new set of

MDs based on its local routing table. The router in each

memory node only maintains a small routing table that

stores coordinates of its one- and two-hop neighbors in all

virtual spaces (Figure 6(b)). To further reduce the routing

path lengths, we compute MD with both one- and two-hop

neighbor information (based on our sensitivity studies in the

results section) stored in the routing table in each router.

Routing table implementation is discussed in Section IV.

The forwarding decision can be made by a fixed, small

number of numerical distance computation and comparisons;

the decisions are made locally without link-state broadcast

in the network wide.

Adaptive routing. By only storing two-hop neighbors in

routing tables, our greediest routing does not guarantee

shortest routing path. As such, our design offers path diver-

sity across different virtual spaces, i.e., can have multiple

paths satisfying our MD requirement. By leveraging path

diversity, we employ adaptive routing to reduce network

congestion. We only divert the routing paths by tuning the

first hop forwarding decision. With a packet to be sent from

node s to destination t, Node-s can determine a set W
of neighbors, such that for any w ∈ W , MD(

−→
Xw,

−→
Xt) <

MD(
−→
Xs,

−→
Xt), where t is the destination. Node-s then selects

one neighbor in W based on traffic load across s’s router

ports. We use a counter to track the number of packets

waiting at each port to estimate the network traffic load

on each outgoing link. At the first hop, the source router

can select the links with lightly loaded port satisfying the

greediest routing requirement, rather than a heavily loaded

port with the queue filled by a user-defined threshold (e.g.,

50%). We enforce that our routing reduces the MD to the

destination at every hop, eventually finding a loop-free path

to the destination (Section IV).

Reconfigurable Memory Network
To achieve our goal in elastic network scale, we propose

a set of reconfigurable memory network mechanisms. String

Figure naturally supports memory network scaling up and

down at low performance and implementation cost, because

our design (i) allows arbitrary number of memory nodes,

(ii) always fully utilizes the ports in each router, and (iii)

only requires local routing table information to make routing

decisions. We also design a topology switch (Figure 7) in

Random Connections
Short Cuts

M
U

X

MUX

MUX

M
U

X

MUX MUX

Port0 Port2

P
or

t1

P
or

t3

M
U

X

MUX

M
U

X
 Port0 Port2

P
or

t1

P
or

t3

MUX

Output Input

Figure 7. An example topology switch design.

the routers to reconfigure the links (details described in

Section IV).

Dynamic reconfiguration for power management. We

allow the memory network to dynamically scale up and

down (e.g., by power gating routers and links) to enable

efficient power management. Memory network power man-

agement needs to be carefully designed with most traditional

topologies, such as meshes and trees. Otherwise, some nodes

can be isolated and require a long wake-up latency on

the order of several microseconds [14]. To address this

issue, we design a dynamic reconfiguration mechanism that

maintains high network throughput after turning off routers.

Our dynamic network scale reconfiguration involves four

steps. First, it blocks corresponding routing table entries

(Figure 6(b)) in associated routers. Second, it enables and

disables certain connections between memory nodes. We

use the shortcuts to maintain high network throughput after

disabling certain links. Third, it validates and invalidates

corresponding routing table entries in associated routers.

Finally, it unblocks the corresponding routing table entries.

The first and last steps ensure atomic network reconfigura-

tion. For example, to turn off Node-1 in Figure 3(a), we

will disconnect Node-1 from its one-hop neighbors Node-

0, Node-2, Node-5, and Node-6. In each of these nodes,

we invalidate the routing table entries that store Node-1’s

coordinates. We then enable the shortcuts between Node-0

and Node-2, because both nodes now have one free port.

We modify the corresponding routing table entries in these

two nodes, indicating that the original two-hop neighbors

are now one-hop neighbors. Bringing Node-1 back into the

network uses the same steps but in reverse. Because our

routing protocol maintains two-hop neighbors in each router,

each update of routing table entries is simply flipping the

blocking, valid, and hop# bits without needing to add or

delete entries. Updates in different routers can be performed

in parallel.

Static network expansion and reduction for design reuse.
Design reuse can reduce the cost and effort of redesigning,

re-fabricating, and upgrading systems. Specifically, design

reuse allows system developers to reuse a a memory network

design or fabrication across server memory systems with dif-

ferent capacity requirement. We use the previously outlined

steps of our dynamic network reconfiguration while offline

652

to enable network expansion and reduction. To support net-

work expansion, system developers can implement a larger

network size than currently needed and deploy the memory

network with only a subset of memory nodes mounted. The

excess nodes are “reserved” for future use. We enable and

validate corresponding links and routing table entries based

on the mounted memory nodes. As such, network expansion

does not require redesign or re-fabrication of the entire mem-

ory network. If memory nodes are interfaced through PCBs

(e.g., HMC-style), we can expand the memory network by

mounting additional memory nodes on the PCB, followed by

a link and routing table reconfiguration in the same way as

dynamic reconfiguration. As a result, we can reduce the cost

and effort of re-fabricating PCBs. Network scale reduction

is performed in reverse, by unmounting memory nodes.

If the memory nodes are mounted on a silicon interposer

(e.g., HBM-styled), we need to fabricate chips with added

memory nodes by reusing the original memory network

design. However, the design stays the same, substantially

reducing non-recurring engineering (NRE) cost.

IMPLEMENTATION

This section describes implementation details of String

Figure, including deadlock avoidance, reconfigurable router

design, and physical implementation.

Deadlock Avoidance
We must meet two conditions to avoid deadlocks in

our network topology. First, route paths must be loop-free

from source to destination. Second, the network cannot

have cyclical resource dependencies whereby routers wait

on each other to free up resources (like buffers). String

Figure’s greedy routing naturally ensures that route paths

are loop-free. We use virtual channels to avoid deadlocks

from resource dependencies.

Loop-free routing paths. String Figure ensures our routes

between any source-destination pair are loop-free because

we always route greedily within our network topology.

This is guaranteed by the progressive and distance-reducing
property (Appendix A) of our greedy routing protocol.

Appendix A formally proves that packet routes are loop-

free.

Avoiding deadlocks with virtual channels. We adopt two

virtual channels [36], [37], [38] to avoid deadlocks. Packets

use one virtual channel when routing from a source of a

lower space coordinate to a destination of a higher space

coordinate; packets use the other virtual channel when rout-

ing from a source of higher space coordinate to a destination

of a lower space coordinate. This avoids deadlocks because

in our topology (which is not truly random), packets are

only routed through to networks with a strictly increasing

coordinate or a strictly decreasing coordinate; the only de-

pendency is between the virtual channels in the router, which

is insufficient to form cycles [38]. Whereas virtual channels

can increase the required buffering, our network topology

allows the number of router ports to remain constant as the

network scales up. Therefore, the buffer size overhead is less

of an issue compared with prior works [38], [39] (evaluated

in Section VI).

Router Implementation and Reconfiguration

We design the router on each memory node to facilitate

our routing table design, reconfigurable links, and counters

for adaptive routing.

Routing table implementation. Figure 6(b) illustrates our

routing table implementation. Each routing table stores

information of its one- and two-hop neighbors, including

log2N memory node number, 1-bit blocking bit, 1-bit valid

bit, 1-bit hop number (’0’ for one-hop and ’1’ for two-hop),⌈
log2

p
2

⌉
virtual space number, and 7-bit virtual coordinate.

We initialize routing table entries accordingly, while we

generate the network topology. Once the network topology

is generated, we only update the blocking, valid, and hop

bit values during network reconfiguration. A memory node

has maximum two one-hop neighbors in each virtual space;

each of the one-hop neighbors has two one-hop neighbors of

their own in each virtual space. As the maximum number

of virtual spaces is half of the number of ports (p), each

routing table has a maximum of p(p+ 1) entries.

Enabling link and topology reconfiguration with
switches. Our memory network reconfiguration requires

connecting and disconnecting certain links between neigh-

bor memory nodes. Our basic balanced random network

topology already fully utilizes all router ports. However,

each node also has at most two shortcut connections (Sec-

tion III-A). To accommodate the shortcuts, we implement

a switch to attach the two shortcut connections to two of

the router ports at each node. Figure 7 shows our topology

switch design. It is comprised of a set of multiplexers similar

to prior reconfigurable NoC designs [40], [41]. As a result,

the topology switches allow us to select p (the number of

router ports) connections out of all the random connections

and shortcuts provided by our topology.

Tracking port utilization with packet counters. With

adaptive routing, we use counters at each port to track the

queue length at the port. The number of counter bits is

log2q, where q is the number of queue entries of the port.

The counter provides an additional variable for determining

routing paths. It specifically tracks the congestion of each

path by counting how often we route packets to specific

outputs ports. We then use this counter value to tweak

our routing algorithm to make smarter decisions. If an

output port has too many packets routed to it, the algorithm

detects this through counters and chooses alternate, yet still

greedy, output ports to send the packet. This helps us avoid

congestion in the network and still achieve low latency, high

throughput performance overall. These counters are reset

after the network is reconfigured.

653

Physical Implementation
The goal of our physical implementation is to reduce both

the area overhead and long wires in our memory network.

Bounded number of connections in the network. With our

network topology, the number of connections coming out of

each node is bounded by the number of router ports (p) and

remains constant, independent of network scale (N). Each

node has p
2 one-hop neighbors in our basic random topology

and a maximum of two shortcuts (some generated shortcuts

will overlap with connections in the basic random topology).

Therefore, the total number of connections coming out of

each node Cnode ≤ p
2 + 2. For example, a memory node

with an 8-port router only requires six connections per node.

Given N memory nodes in total, the total number of required

connections in the network Cnetwork ≤ N × (p2 +2), which

grows linearly with the number of memory nodes.

Uni-directional versus bi-directional connections. Bi-

directional connections allow packets to traverse the network

both forward and backwards. Uni-directional connections

typically have worse packet latency than their bi-directional

counterparts, due to reduced path diversity. However, uni-

directional networks have lower hardware and energy cost

than bi-directional connections. Our sensitivity studies (Sec-

tion VI) demonstrate that uni-directional networks perform

almost the same as bi-directional networks; their discrepancy

diminishes with increasing number of nodes in the network.

Therefore, String Figure uses uni-directional connections.

Memory node placement and wire routing. When building

String Figure, we place memory nodes in the memory

network (on PCB or silicon interposer) as a 2D grid.

Our goal of memory node placement is to reduce long

wires. Memory network implementations are constrained by

wire lengths [29], [42]. For example, HBMs [42] (with a

7 mm dimension in HBM1 and 12 mm in HBM2) are

implemented with interposers to support large-scale memory

networks; previous works demonstrate that memory nodes

can be clustered with MetaCubes [16] (i.e., clustered mem-

ory nodes integrated with an interposer), which is further

interconnected with other interposer-integrated clusters. To

achieve our goal, we set two priority levels that prioritize the

clustering of one-hop and two-hop neighbors. For example,

we ensure that all one-hop neighbors are placed within ten

grid distance with place and routing. Our network topology

also naturally supports MetaCube [16] architecture. Our

network topology provides connections with various circular

distances. As such, we place memory nodes with short

circular distances in the same MetaCubes. Inter-MetaCube

links are implemented by connections with long circular

distances.

Processor placement. The flexibility of String Figure topol-

ogy and routing protocol allows us to attach a processor

to any one or multiple memory nodes. The router at each

memory node has a local port connecting to the processor.

Table I
SYSTEM CONFIGURATION.

CPU 4 sockets; 2GHz; 64B cache-line size

Memory up to 1296 memory nodes; 8GB per memory node (stack)

DRAM timing tRCD=12ns, tCL=6ns, tRP=14ns, tRAS=33ns

CPU-memory
channel

256 lanes in total (128 input lanes and 128 output lanes);
30Gbps per lane

SerDes delay 3.2ns SerDes latency (1.6ns each) per hop

Energy Network: 5pJ/bit/hop; DRAM read/write: 12pJ/bit

Table II
SUMMARY OF NETWORK TOPOLOGY FEATURES AND REQUIREMENTS.
Topology Requires High- Router Port Reconfigurable

Radix Routers? scaling? Network Scaling
ODM No No No

AFB Yes Yes No

S2-ideal No No No

SF No No Yes

As such, attaching a processor to multiple memory nodes

can increase processor-memory bandwidth. By tuning traffic

patterns of our synthetic workloads, our evaluation examines

ways of injecting memory traffic from various locations,

such as corner memory nodes, subset of memory nodes,

random memory nodes, and all memory nodes.

EXPERIMENTAL SETUP

RTL Simulation Framework
We evaluate String Figure via RTL design in SystemVer-

ilog [46] and PyMTL [47]. We develop synthesizeable RTL

models of each network topology, routing protocol, memory

node, router configuration, and wire lengths. Table I de-

scribes the modeled system configurations. We use the same

configuration, timing, and energy parameters evaluated in

previous works. We estimate the dynamic energy used in the

network using average picojoule-per-bit numbers to provide

a fair comparison of memory access energy [25], [14], [16].

Network clock rate is the same as memory nodes clock

speed, e.g., 312.5MHz with HMC-based memory nodes.

We do not evaluate static energy, as static power saving

is highly dependent on the underlying process management

assumptions (e.g., race-to-idle). We also model the network

link latency based on wire length obtained from 2D grid

placement of memory nodes. We add an extra one-hop

latency with a wire length equal to ten memory nodes on

the 2D grid (based on the wire length supported by HMC).

Our RTL simulator can run workload traces collected using

our in-house trace generation tool, which is developed on

top of Pin [48]. We collect traces with 100,000 operations

(e.g., grep for Spark-grep, queries for Redis) after workload

initialization. Our trace generator models a cache hierarchy

with 32KB L1, 2MB L2, and 32MB L3 with associativities

of 4, 8, and 16, respectively. Our trace generator does not

contain a detailed core model and thus we can only obtain

the absolute instruction ID of each memory access. However,

we can multiply the instruction IDs by an average CPI

number and generate a timestamp for each memory access.

Considered topologies. We compare String Figure to a vari-

ety of network topologies and routing protocols summarized

654

Topology Number of Nodes (N), Number of Ports per Router (p) Routing Scheme N 16 17 32 61 64 113 128 256 512 1024 1296
Distributed-Mesh (DM)/
Optimized DM (ODM) p 4 N 4 N 4 N 4 4 4 4 4 Greedy + adaptive

Flattened Butterfly (FB) p 20 24 31 33 Minimal + adaptive

Adapted FB (AFB) p 13 17 23 25 Minimal + adaptive

Space Shuffle Ideal (S2-ideal) p 4 4 4 4 4 4 4 8 8 8 8 Look-up table

String Figure (SF) p 4 4 4 4 4 4 4 8 8 8 8 Look-up table + greediest + adaptive

Figure 8. Evaluated network topologies and configurations (“N” indicates unsupported network scale).

Table III
DESCRIPTION OF NETWORK TRAFFIC PATTERNS.

Traffic Pattern Formula Description
Uniform Random dest = randint(0, nports-1) Each node produces requests to a random destination node in the network.

Tornado dest = (src+nports/2) % nports Nodes send packets to a destination node halfway around the network.

Hotspot dest = const Each node produces requests to the same single destination node.

Opposite dest = nports - 1 - src Sends traffic to opposite side of network like a mirror.

Nearest Neighbor dest = src + 1 Each node sends requests to its nearest “neighbor” node, one away.

Complement dest = src ⊕ (nports-1) Nodes send requests to their bitwise complement destination node.

Partition 2 dest = randint(0,nports-1) &
(nports/2-1) | (src & (nports/2))

Partitions the network into two groups of nodes. Nodes randomly send within their
group.

Table IV
DESCRIPTION OF EVALUATED REAL WORKLOADS.

Workload Description
Spark-wordcount A ”wordcount” job running on Spark, which counts the number of occurrences of each word in the Wikipedia data set provided in

BigDataBench [43].

Spark-grep A ”grep” job running on Spark, which extracts matching strings from text files and counts how many times they occurred with the Wikipedia
data set provided in BigDataBench [43].

Spark-sort A ”sort” job running on Spark, which sorts values by keys with the Wikipedia data set provided in BigDataBench [43].

Pagerank A measure of Twitter influence. From the graph analysis benchmark in CloudSuite [44]. Twitter data set with 11M vertices.

Redis An in-memory database system which simulates running 50 clients at the same time sending 100,000 total queries [45].

Memcached From CloudSuite [44], which simulates the behavior of a Twitter caching server using the Twitter data set with 8 client threads, 200 TCP/IP
connections, and a get/set ratio of 0.8.

Matrix Mul Multiplying two large matrices stores in memory and storing their result in memory.

Kmeans Clustering Algorithm partitions n observations into k clusters where each observation belongs to cluster with the nearest mean.

in Figure 8. We also describe their features and requirements

in Table II. The number of router ports does not include
the terminal port connecting to the local memory node.

String Figure allows arbitrary network scale. However, to

provide concrete examples in our evaluation and demonstrate

our support for elastic network scale, we implement two

basic topologies with 128 nodes (4 router ports) and 1296

nodes (8 router ports), respectively. We reconfigure the basic

topologies to evaluate networks with fewer of nodes. Mesh

is widely explored in previous memory network designs

as one of offering the best performance among various

topologies [15], [14]. We implement a baseline Optimized

Distributed Mesh (ODM) topology [15] for memory net-

work. In addition, we compare with several network designs

optimized for scalability of distributed systems, including a

2D Adaptive Flattened Butterfly (AFB) [19] and S2 [34].

S2 does not support down-scaling with the same origi-

nal topology (it requires regenerating new topologies and

routing tables with a smaller number of nodes). Therefore,

our evaluation of S2 provides an impractical ideal baseline.

We name it S2-ideal. Additionally, our experiment results

focuses on evaluating performance, energy, and scalability of

the network designs. However, most of the baseline topolo-

gies require high-radix routers [19], [49] and the number of

ports and links continues to grow with network scale, leading

to non-linear growth of router and link overhead in memory

networks. Furthermore, none of the baseline topologies offer

the flexibility and reconfigurability in memory networks as

provided by our design.

Bisection bandwidth. To provide a fair point of comparison,

we evaluate network designs based on the same (or similar)

bisection bandwidth. Because String Figure and S2 [34] have

random network topologies, we calculate their empirical

minimum bisection bandwidth by randomly splitting the

memory nodes in the network into two partitions and cal-

culating the maximum flow between the two partitions. The

minimum bisection bandwidth of a topology is calculated

from 50 random partitions. We adopt the average bisection

bandwidth across 20 different generated topologies. With a

fixed network size, the bisection bandwidth of FB with high-

radix routers can be much higher than the other topologies.

However, mesh is lower. To match the bisection bandwidth,

we also evaluate an Adaptive FB (AFB) implemented by

partitioned FB [38] with fewer links and an optimized DM

(ODM) with increase the links per router to match the

bisection bandwidth of String Figure and S2 at each memory

network scale.

655

Workloads
We evaluate both network traffic patterns and real work-

loads on our simulation framework. Traffic patterns: We

evaluate different traffic patterns running on String Figure

and baseline designs. Table III lists details about these

traffic patterns. We use these traffic patterns to evaluate

the memory network designs and expose the performance

and scalability trends. We sweep through various memory

network sizes, router configurations, and routing protocols

listed in Figure 8. To exercise our memory network design,

each memory node sends requests (similar to attaching a

processor to each memory node) at various injection rates.

For example, given an injection rate of 0.6, nodes randomly

inject packets 60% of the time. Real workloads: We also

evaluate various real workloads with trace-driven simulation.

We run various in-memory computing workloads in Cloud-

Suite [44], BigDataBench [43], and Redis benchmark [45]

on a Dell PowerEdge T630 server. Spark 1.4.1 [50] is used

for all of the Spark jobs. Table IV summarizes the workload

and data set characteristics. We scale the input data size of

each real workload benchmark to fill the memory capacity.

Data is distributed among the memory nodes based on their

physical address.

RESULTS

We evaluate our design with various metrics including

average path lengths, network saturation, average packet

latency, workload instruction throughput (IPC), memory

dynamic energy, and energy efficiency. Our evaluation shows

that String Figure achieves close to or better than the per-

formance and scalability of the best of prior designs (ODM,

AFB, and S2-ideal), yet leads to lower energy consumption

and higher energy efficiency with our (i) fewer router ports

and wires needed and (ii) elastic network scale.

Figure 9. (a) Average hop counts of various network designs as the number
of memory nodes increases. (b) Normalized energy-delay product (EDP)
(the lower the better) with various workloads, when we power gate off
certain amount of memory nodes.

Path lengths. Figure 9(a) shows the average shortest path

lengths of various network designs across our synthetic

traffic patterns and real workloads. When the memory net-

work has over 128 memory nodes, the average hop count

of DM and ODM network increases superlinearly with

increasing network size. Specifically, the average hop count

of these two topologies is 2
3 t where t is the average of their

two dimensions. Rather, the other network topologies, S2-

ideal, FB, AFB, and our String Figure design, do not incur

significant increase in the average shortest path lengths in

large-scale memory networks. FB achieves the best average

shortest path lengths among all the network topologies,

because it employs many more ports in routers than other

topologies as the network scales up. With a maximum of

eight ports per router, String Figure still achieves 4.75 and

4.96 average hop counts when the network scales up to 1024

and 1296 memory nodes, respectively. We also evaluate 10%

and 90% percentile shortest path lengths. String Figure can

achieve 4 hops and 5 hops with over one thousand nodes,

at 10% and 90% percentile, respectively. Therefore, String

Figure path length is scalable to memory network size over

one thousand nodes.

0
20
40
60
80

100

16 256

 In
je

ct
io

n
R

at
e

(%
)

DM ODM S2 SF AFB FB

Uniform Random

17 61 113 1296
32 64 128 512 1024

0
20
40
60
80

100

16 128 1024
Number of Memory Nodes

Hotspot

17 61 113 1296 0
10
20
30
40
50
60
70

16 64 256 1024

Tornado

Number of Memory Nodes Number of Memory Nodes

S2-
ideal

Figure 10. Network saturation points across various numbers of nodes.

Network saturation. We evaluate network saturation with

several traffic patterns shown in Figure 10. String Figure can

achieve close to the best of all other network architectures.

In order to clearly visualize all the curves, we only show the

the results of the rest of the network architectures. Traffic

patterns uniform random, hotspot, and tornado
are particularly noteworthy and show different results. The

remaining traffic patterns partition2, complement,

opposite, and neighbor, have similar behavior as

shown. In almost all traffic patterns, the mesh network

topologies, DM and ODM, saturates first at the lowest

injection rate. Nearest-neighbor routing is the exception to

this. SF perform worse with nearest-neighbor than ODM.

This is because in mesh topologies, nodes are always one-

hop away from their nearest neighboring node. Note, that we

generated nearest-neighbor network traffic using the router

IDs rather than number of hops. Therefore, “neighboring”

nodes in SF are not necessarily one hop away from each

other which means this network has higher latency. However,

an exception to mesh saturating first is in networks with

very few nodes. At the fewest node configuration (i.e., 16

nodes), ODM slightly edges out SF. However, as the number

of memory nodes increases, SF scales significantly better.

ODM also saturates at a higher injection rate than other

network designs with hotspot traffic pattern. We do not

observe network saturation in tornado traffic pattern with

all topologies, except for mesh. Network latency remains

steady even in high injection rates and large number of

memory nodes. The reason is the geometric structure of

the network designs. With either one of AFB, FB, S2-ideal,

and SF, it is typically easy for packets in a network to

traverse half or the entire network in just a hop or two

to reach their destination. Traffic patterns, such as tornado,

656

generate traffic in a mathematically geometric manner which

is advantageous in such topologies.

Figure 11. Performance of traffic patterns at less than one thousand nodes.

Average packet latency. We evaluate the average travel

time (latency) between any two nodes in a network shown in

Figure 11. Each traffic pattern graph shows the latency in the

leftmost data point for each network. S2-ideal and SF appear

to scale well with the number of memory nodes. As the num-

ber of nodes in the network increases, these topologies show

almost no degradation in their network saturation points.

SF has slightly longer latency than S2-ideal with networks

down-scaled from the original size, because shortcuts and

adaptive routing can degrade the randomness among network

connections. However, SF still demonstrates lower latency

than AFB at large network scales. We also evaluate the

memory access latency of various traffic patterns.

0.8
1

1.2
1.4
1.6
1.8

w
or

dc
ou

nt

gr
ep

so

rt
pa

ge
ra

nk

re
di

s
m

em
ca

ch
ed

km

ea
ns

m

at
m

ul

ge
om

ea
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t ODM AFB S2 SF

0.5
0.6
0.7
0.8
0.9

1

w
or

dc
ou

nt

gr
ep

so

rt
pa

ge
ra

nk

re
di

s
m

em
ca

ch
e

km
ea

ns

m
at

m
ul

ge

om
ea

n N
or

m
al

iz
ed

 E
ne

rg
y ODM S2 SF

(a) (b)

S2-
ideal

S2-
ideal

Figure 12. Normalized (a) system throughput (higher is better) and (b)
dynamic memory energy (lower is better) with various real workloads.

Performance and energy of real workloads. We evaluate

system performance and memory dynamic energy consump-

tion with several real workloads running in a memory

system, where the total memory capacity is 8TB distributed

across the 1024 (down-scaled from 1296) memory nodes

in the network. We take into account dynamic reconfig-

uration overhead to perform power gating in our RTL

simulation by implementing SF reconfiguration mechanisms.

The sleep and wake-up latency of a link is conservatively

set to 680ns and 5μs similar to prior works [14], [15].

To minimize the performance impact of reconfiguration,

we set the reconfiguration granularity (i.e., the minimum

allowed time interval between reconfigurations) to be 100us.

Figure 12(a) shows the throughput of real workloads with

varying memory network architectures, normalized to DM.

Our results demonstrate that String Figure can achieve

close to the best performance across various workloads.

Our design achieves 1.3× throughput compared with ODM.

Figure 12(b) illustrates normalized memory dynamic energy

consumption with our workloads, normalized to AFB. String

Figure design can achieve the lowest energy consumption

across these network topologies. S2-ideal also achieves sim-

ilarly low energy consumption, due to its energy reduction

in routing. On average, SF reduces energy consumption by

36% compared with AFB.

Memory network power management. We also evaluate

memory network power management by powering gating

off various portions of the memory system with total 1296

nodes. Figure 9(b) shows the energy efficiency of our power

management by considering both energy saving and system

performance overhead. As we demonstrate in our results, our

design can achieve significantly improved energy efficiency,

as we power gate more parts of the memory network.

RELATED WORK

To our knowledge, String Figure is the first memory

network architecture that offers both scalability and elastic

network scale in a single design. Most previous memory

network designs do not take into account scalability as a

primary design goal. Kim et al. [15], [25] explored memory

network with mesh, butterfly, and dragonfly topologies with

64 HMC-based memory nodes. The study showed that dis-

tributed mesh outperforms other network topologies at this

scale. Zhan et al. [14] investigated performance and energy

optimization on a mesh-based memory network design up to

16 memory nodes. Poremba et al. [16] extended the memory

network capacity to 2TB implemented by 128 HMC-like

memory nodes used in CPU+GPU systems. However, the

memory nodes are mapped separate processor channels,

rather than shared by all the processors. Fujiki et al. [51]

proposes a random network topology to support scalability

of memory networks, yet does not support the flexibility and

reconfigurability as our design.

Scalability and flexibility are central themes in data

center network [19], [20], [33], [34], [52], [53]. Recent

planar topologies, such as a Flattened Butterfly [19] and

Dragonfly [20], offer promising scalability and high net-

work throughput. However, these designs require high-

radix routers and substantial increase of number of ports,

which can impose non-linearly increasing router area and

power [49]. This leads to prohibitively high cost in routers

and the amount wiring at large-scale memory network.

Furthermore, butterfly-like topologies typically have sym-

metric layout. This can lead to isolated nodes or subop-

timal routing, when subsets of nodes are turned down.

Jellyfish [33] employs random topology to achieve close-

to-optimal network throughput and incremental growth of

network scale. Yet, Jellyfish provides high throughput by

requiring k-shortest path routing; the size of forwarding

tables per router can increase superlinearly with the number

of routers in the network. This is impractical in a memory

network, where routers have limited storage space. String

Figure uses greedy routing due to our topology with ran-

657

domly assigned coordinates in multiple spaces. As such,

our design can achieve both high-throughput routing and

constant forwarding state per router. S2 [34] adopts random

topologies and computation-based routing mechanisms with

scalable routing tables. Yet, S2 [34] requires cable plug

in/out to increase the network size, which is impractical in

memory networks that have pre-fabricated link wires. S2

does not support network downscaling, unlike String Figure.

Recent NoC designs tackle scalability and fault tolerance

issues, when interconnecting processor cores. Slim NoC [38]

enables low-diameter network in NoC. However, the design

requires increasing router ports and wires as the network

scales up. Furthermore, these topologies does not support

the level of flexibility and reconfigurability as String Figure.

Small world network [53] also employs greedy routing, but

it does not produce the shortest paths and can be difficult

to be extended to perform multi-path routing that can fully

utilize network bandwidth. Previous network fault tolerance

schemes [54], [55], [56], [57], [58], [59], [60], [61], [62]

allow NoC to continue efficient functioning when routers are

taken out of the network. However, most previous designs

are developed for limited network scales and certain network

topologies [54] and impose high router area overhead by

employing one or several routing tables [55], [56], [57], [58],

[59], [60], [61], [62].

CONCLUSIONS

In this paper, we examined the critical scalability and

flexibility challenges facing memory network architecture

design in meeting the increasing memory capacity demand

of future cloud server systems. We proposed a new memory

network architecture, which consists of topology, routing

scheme, and reconfiguration mechanisms. Our design offers

numerous benefits towards practical use of memory network

architecture in server systems, such as scaling up to over

a thousand memory nodes with high network throughput

and low path lengths, arbitrary number of memory nodes in

the network, flexible network scale expansion and reduction,

high energy efficiency, and low cost in routers.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable

feedback. This paper is supported in part by NSF grants

1829524, 1829525, 1817077, 1701681, and SRC/DARPA

Center for Research on Intelligent Storage and Processing-

in-memory.

REFERENCES

[1] G. E. Moore, “Readings in computer architecture,” M. D. Hill,
N. P. Jouppi, and G. S. Sohi, Eds., 2000, ch. Cramming More
Components Onto Integrated Circuits, pp. 56–59.

[2] J. Barr, “EC2 in-memory processing update: Instances with
4 to 16 TB of memory and scale-out SAP HANA to 34 TB,”
2017.

[3] SAP, “SAP HANA: an in-memory, column-oriented,
relational database management system,” 2014. [Online].
Available: http://www.saphana.com/

[4] T. A. S. Foundation, “Spark,” 2014. [Online]. Available:
http://spark.incubator.apache.org/

[5] VoltDB, “Voltdb: Smart data fast,” 2014. [Online]. Available:
http://voltdb.com/

[6] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[7] C. Szegedy, W. Liu, and Y. J. et al., “Going deeper with
convolutions,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 1–9.

[8] The Next Platform, “Baidu eyes deep learning strategy in
wake of new GPU options,” in www.nextplatform.com, 2016.

[9] J. Barr, “Now available – EC2 instances with 4 TB of
memory,” 2017.

[10] C. Sanders, “Announcing 4 TB for SAP HANA, single-
instance SLA and hybrid use benefit images,” 2016.

[11] “Microsoft azure documentation,”
https://https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/sizes-memory#m-series.

[12] O. Mutlu and L. Subramanian, “Research problems and op-
portunities in memory systems,” Supercomput. Front. Innov.:
Int. J., vol. 1, no. 3, pp. 19–55, Oct. 2014.

[13] J. Zhao, S. Li, J. Chang, J. L. Byrne, L. L. Ramirez, K. Lim,
Y. Xie, and P. Faraboschi, “Buri: Scaling big memory comput-
ing with transparent memory expansion,” ACM Transactions
on Architecture and Code Optimization (TACO), 2015.

[14] J. Zhan, I. Akgun, J. Zhao, A. Davis, P. Faraboschi, Y. Wang,
and Y. Xie, “A unified memory network architecture for in-
memory computing in commodity servers,” in Proceedings
of the 49th International Symposium on Microarchitecture
(MICRO), 2016, pp. 1–12.

[15] G. Kim, J. Kim, J. H. Ahn, and J. Kim, “Memory-centric
system interconnect design with hybrid memory cubes,” in
Proceedings of the 22Nd International Conference on Parallel
Architectures and Compilation Techniques, 2013, pp. 145–
156.

[16] M. Poremba, I. Akgun, J. Yin, O. Kayiran, Y. Xie, and G. H.
Loh, “There and back again: Optimizing the interconnect
in networks of memory cubes,” in Proceedings of the 44th
Annual International Symposium on Computer Architecture,
2017, pp. 678–690.

[17] “The Machine: A new kind of computer,” https://www.labs.
hpe.com/the-machine.

[18] Z. Sura, A. Jacob, T. Chen, B. Rosenburg, O. Sallenave,
C. Bertolli, S. Antao, J. Brunheroto, Y. Park, K. O’Brien, and
R. Nair, “Data access optimization in a processing-in-memory
system,” in Proceedings of the 12th ACM International Con-
ference on Computing Frontiers, 2015, pp. 6:1–6:8.

[19] J. Kim, W. J. Dally, and D. Abts, “Flattened Butterfly: A cost-
efficient topology for high-radix networks,” in Proceedings
of the 34th Annual International Symposium on Computer
Architecture, 2007, pp. 126–137.

[20] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-
driven, highly-scalable Dragonfly topology,” in Proceedings
of the 35th Annual International Symposium on Computer
Architecture, 2008, pp. 77–88.

[21] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” in Proceedings of the 6th
Conference on Symposium on Opearting Systems Design &
Implementation - Volume 6, 2004, pp. 10–10.

[22] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt,

658

and T. F. Wenisch, “Disaggregated memory for expansion and
sharing in blade servers,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture, 2009, pp.
267–278.

[23] D. Magenheimer, C. Mason, D. McCracken, and K. Hackel,
“Transcendent memory and linux,” in Proceedings of the
Linux Symposium, 2009, pp. 191–200.

[24] “Gen-Z Consortium,” https://genzconsortium.org.
[25] G. Kim, M. Lee, J. Jeong, and J. Kim, “Multi-gpu system

design with memory networks,” in Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchi-
tecture, ser. MICRO-47, 2014, pp. 484–495.

[26] AMD, “AMD Radeon R9 series graphics cards,”
http://www.amd.com/en-us/products/graphics/desktop/r9.

[27] “NVIDIA Tesla P100: Infinite compute power for the modern
data center,” http://www.nvidia.com/object/tesla-p100.html.

[28] “Intel Xeon Phi processor 7200 family memory management
optimizations,” https://software.intel.com/en-us/articles/intel-
xeon-phi-processor-7200-family-memory-management-
optimizations.

[29] Micron, “Hybrid memory cube specification 2.1.”
[30] L. Nai and H. Kim, “Instruction offloading with HMC 2.0

standard: A case study for graph traversals,” in Proceedings
of the 2015 International Symposium on Memory Systems,
2015, pp. 258–261.

[31] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopad-
hyay, “Neurocube: A programmable digital neuromorphic
architecture with high-density 3D memory,” in Proceedings of
the 43rd International Symposium on Computer Architecture,
2016, pp. 380–392.

[32] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable,
commodity data center network architecture,” in Proceedings
of the ACM SIGCOMM 2008 Conference on Data Commu-
nication, ser. SIGCOMM ’08, 2008, pp. 63–74.

[33] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish:
Networking data centers randomly,” in Proceedings of the
9th USENIX Conference on Networked Systems Design and
Implementation, ser. NSDI’12, 2012, pp. 17–17.

[34] Y. Yu and C. Qian, “Space shuffle: A scalable, flexible,
and high-bandwidth data center network,” in Proceedings of
the 2014 IEEE 22Nd International Conference on Network
Protocols, ser. ICNP ’14, 2014, pp. 13–24.

[35] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan, “Chord: A scalable peer-to-peer lookup service for
internet applications,” in Proceedings of the 2001 Conference
on Applications, Technologies, Architectures, and Protocols
for Computer Communications, ser. SIGCOMM ’01, 2001,
pp. 149–160.

[36] A. Mello, L. Tedesco, N. Calazans, and F. Moraes, “Virtual
channels in networks on chip: Implementation and evaluation
on hermes NoC,” in Proceedings of the 18th Annual Sym-
posium on Integrated Circuits and System Design, 2005, pp.
178–183.

[37] J. Lee, S. Li, H. Kim, and S. Yalamanchili, “Adaptive virtual
channel partitioning for network-on-chip in heterogeneous ar-
chitectures,” ACM Trans. Des. Autom. Electron. Syst., vol. 18,
no. 4, pp. 48:1–48:28, Oct. 2013.

[38] M. Besta, S. M. Hassan, S. Yalamanchili, R. Ausavarung-
nirun, O. Mutlu, and T. Hoefler, “Slim NoC: A low-diameter
on-chip network topology for high energy efficiency and
scalability,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2018, pp. 43–55.

[39] S. Hassan and S. Yalamanchili, “Bubble Sharing: Area and

energy efficient adaptive routers using centralized buffers,” in
Proceedings of the NOCS, 2014.

[40] A. Jain, R. Parikh, and V. Bertacco, “High-radix on-chip
networks with low-radix routers,” in Proceedings of the 2014
IEEE/ACM International Conference on Computer-Aided De-
sign, 2014, pp. 289–294.

[41] M. B. Stuart, M. B. Stensgaard, and J. Sparsø, “The renoc
reconfigurable network-on-chip: Architecture, configuration
algorithms, and evaluation,” ACM Trans. Embed. Comput.
Syst., vol. 10, no. 4, pp. 45:1–45:26, Nov. 2011.

[42] “JEDEC publishes HBM2 specification as Samsung begins
mass production of chips,” https://www.anandtech.com/show/
9969/jedec-publishes-hbm2-specification.

[43] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao,
Z. Jia, Y. Shi, S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li,
and B. Qiu, “Bigdatabench: a big data benchmark suite from
internet services,” in HPCA. IEEE, 2014, pp. 488–499.

[44] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and
B. Falsafi, “Clearing the clouds: a study of emerging scale-out
workloads on modern hardware,” ACM SIGARCH Computer
Architecture News, vol. 40, no. 1, pp. 37–48, 2012.

[45] “Redis Benchmark,” http://redis.io/topics/benchmarks.
[46] D. I. Rich, “The evolution of systemverilog,” IEEE Des. Test,

vol. 20, no. 04, pp. 82–84, Jul. 2003.
[47] D. Lockhart, G. Zibrat, and C. Batten, “PyMTL: A unified

framework for vertically integrated computer architecture re-
search,” in 47th IEEE/ACM Int’l Symp. on Microarchitecture
(MICRO), 2014, pp. 280–292.

[48] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin:
Building customized program analysis tools with dynamic
instrumentation,” in Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, New York, NY, USA, 2005, pp. 190–200.

[49] S. Li, P.-C. Huang, D. Banks, M. DePalma, A. Elshaarany,
S. Hemmert, A. Rodrigues, E. Ruppel, Y. Wang, J. Ang, and
B. Jacob, “Low latency, high bisection-bandwidth networks
for exascale memory systems,” in Proceedings of the Second
International Symposium on Memory Systems, 2016, pp. 62–
73.

[50] “Spark 1.4.1,” http://spark.apache.org/downloads.html.
[51] D. Fujiki, H. Matsutani, M. Koibuchi, and H. Amano, “Ran-

domizing packet memory networks for low-latency processor-
memory communication,” in Proceedings of Parallel, Dis-
tributed, and Network-Based Processing (PDP), Euromicro
International Conference on, 2016.

[52] M. Koibuchi, H. Matsutani, H. Amano, D. F. Hsu, and
H. Casanova, “A case for random shortcut topologies for
HPC interconnects,” in Proceedings of the 39th Annual In-
ternational Symposium on Computer Architecture, 2012, pp.
177–188.

[53] U. Y. Ogras and R. Marculescu, “”it’s a small world after all”:
NoC performance optimization via long-range link insertion,”
IEEE Trans. Very Large Scale Integr. Syst., vol. 14, no. 7, pp.
693–706, Jul. 2006.

[54] M. Fattah, A. Airola, R. Ausavarungnirun, N. Mirzaei, P. Lil-
jeberg, J. Plosila, S. Mohammadi, T. Pahikkala, O. Mutlu, and
H. Tenhunen, “A low-overhead, fully-distributed, guaranteed-
delivery routing algorithm for faulty network-on-chips,” in
Proceedings of the 9th International Symposium on Networks-
on-Chip, 2015, pp. 18:1–18:8.

[55] K. Aisopos, A. DeOrio, L.-S. Peh, and V. Bertacco, “ARI-
ADNE: Agnostic reconfiguration in a disconnected network

659

environment,” in Proceedings of the 2011 International Con-
ference on Parallel Architectures and Compilation Tech-
niques, 2011, pp. 298–309.

[56] M. Balboni, J. Flich, and D. Bertozzi, “Synergistic use of
multiple on-chip networks for ultra-low latency and scalable
distributed routing reconfiguration,” in Proceedings of the
2015 Design, Automation and Test in Europe Conference,
2015, pp. 806–811.

[57] C. Feng, Z. Lu, A. Jantsch, M. Zhang, and Z. Xing, “Ad-
dressing transient and permanent faults in NoC with efficient
fault-tolerant deflection router,” in IEEE TVLSI, 2013.

[58] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and
D. Blaauw, “A highly resilient routing algorithm for fault-
tolerant NoCs,” in Proceedings of the Conference on Design,
Automation and Test in Europe, 2009, pp. 21–26.

[59] D. Lee, R. Parikh, and V. Bertacco, “Brisk and limited-
impact NoC routing reconfiguration,” in Proceedings of the
Conference on Design, Automation & Test in Europe, 2014,
pp. 306:1–306:6.

[60] R. Parikh and V. Bertacco, “uDIREC: Unified diagnosis and
reconfiguration for frugal bypass of NoC faults,” in Proceed-
ings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, 2013, pp. 148–159.

[61] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide, “Im-
munet: A cheap and robust fault-tolerant packet routing
mechanism,” in Proceedings of the 31st Annual International
Symposium on Computer Architecture, 2004, pp. 198–209.

[62] E. Wachter, A. Erichsen, A. Amory, and F. Moraes,
“Topology-agnostic fault-tolerant NoC routing method,” in
Proceedings of the Conference on Design, Automation and
Test in Europe, 2013, pp. 1595–1600.

APPENDIX

We formally prove our proposition on loop freedom

by two lemmas similar to those derived in data center

networks [34].

Lemma 1. In a virtual space with a given a coordinate x,
if a memory node s is not the node that has the shortest
circular distance to x in this space, then s must have an
adjacent router s′, such that D(x, xs′) < D(x, xs).

Proof:

1) Let w be the node closest to x among all memory

nodes in the virtual space.

2) The ring of this space is divided by s and x into two

arcs. At least one of the arcs has a length no greater

than 1
2 . Suppose we have x̄s, x with length l(x̄s, x).

We have D(xs, x) = l(x̄s, x) ≤ 1
2 .

3) If w is on x̄s, x, let the arc between s and w be ẋs, xw.

a) If s has an adjacent node q with coordinate

on ẋs, xw, then l(x̄q, x) < l(x̄s, x). Hence,

D(q, x) = l(x̄q, x) < l(x̄s, x) < D(xs, x).
b) If s has no adjacent node on ẋs, xw, w is x’s

adjacent node. Hence, s has an adjacent node w,

such that D(x, xw) < D(x, xs).

4) If w is not on x̄s, x, we have an arc ¸�xs, x, xw. For the

arc x̆, xw on ¸�xs, x, xw, we have l(x̆, xw) < l(x̄s, x).
(Assuming to the contrary, if l(x̆, xw) ≥ l(x̄s, x),

then we cannot have D(x, xw) < D(x, xs). There is

contradiction.)

a) If s has an adjacent memory node q with coor-

dinate on ¸�xs, x, xw, then l(x̄q, x) < l(x̄s, x) ≤
1
2 . Hence, D(q, x) = l(x̄q, x) < l(x̄s, x =
D(xs, x).

b) If s has no adjacent memory node on ¸�xs, x, xw,

w is x’s adjacent node. Hence, s has an adjacent

node w, such that D(x, xw) < D(x, xs).

5) Combining (3) and (4), s always has an adjacent node

s′, such that D(x, xs′) < D(x, xs).

Lemma 2. Suppose the source and destination of a packet
are routers s and t, respectively. Coordinates of the destina-
tion router in all virtual spaces are

−→
Xt. Let w be the router

that has the minimum MD to t among all neighbors of s,
then MD(

−→
Xw,

−→
Xt) < MD(

−→
Xs,

−→
Xt).

Proof:
1) Suppose the minimum circular distance between s and

t is defined by their circular distance in the jth space,

i.e., D(xtj , xsj) = MDL(
−→
Xs,

−→
Xt).

2) In the jth space, t is the memory node with the shortest

circular distance to xtj , which is D(xtj , xtj) = 0.

Because s �= t, s is not the node with the shortest

circular distance to xtj .

3) Based on Lemma 1, s has an adjacent memory node

s′, such that D(xtj , xs′j) < D(xtj , xsj).

4) Then, MDL(
−→
Xs′ ,

−→
Xt) ≤ D(xtj , xx′j) <

D(xtj , xsj) = MDL(
−→
Xs,

−→
Xt).

5) Because w is the node that has the shortest MD to
−→
Xt

among all neighbors of s, we have MDL(
−→
Xw,

−→
Xt) ≤

MDL(
−→
Xs′ ,

−→
Xt ≤ MDL(

−→
Xs,

−→
Xt).

Lemma 2 states on a packet’s route, if a router s is not the

destination, it must find a neighbor whose MD is smaller

than s’s MD to the destination.

Proposition 3. Greediest routing finds a loop-free path of a
finite number of hops to a given destination on our network
topology.

Proof:
1) Suppose memory node s receives a packet with desti-

nation node t. If s = t, then s is the destination. The

packet arrives at the destination.

2) If s �= t, according to Lemma 2, s will find a neighbor

w, such that MDL(
−→
Xw,

−→
Xt) < MDL(

−→
Xs,

−→
Xt), and

forward the packet to w.

3) The MD from the current memory node to the

destination coordinates strictly reduces at each hop.

Routing keeps making progress. Therefore, there is

no routing loop.

660

