Graffiti: A Framework for Testing
Collaborative Distributed File System
Metadata*

C. MALTZAHN
University of California at Santa Cruz, U. S. A.

N. BoBB
University of California at Santa Cruz, U. S. A.

M. W. STORER
University of California at Santa Cruz, U. S. A.

D. EADS
University of California at Santa Cruz, U. S. A.

S. A. BRANDT
University of California at Santa Cruz, U. S. A.

E. L. MILLER
University of California at Santa Cruz, U. S. A.

Abstract

Managing storage in the face of relentless growth in the rarrahd va-
riety of files on storage systems creates demand for rich ydeemn meta-
data as is made evident by the recent emergence of rich netsaaport in
many applications as well as file systems. Yet, little suppmists for shar-
ing metadata across file systems even though it is not unconfarasers
to manage multiple file systems and to frequently share sayiéles across
devices and with other users. Encouraged by the surge irlgritguor col-
laborative bookmarking sites that share the burden of ingatetadata for
online content [21] we present Graffiti, a distributed oiigation layer for
collaboratively sharing rich metadata across heterogenfile systems. The
primary purpose of Graffiti is to provide a research and ragitotyping
platform for managing metadata across file systems and.users

Keywords
File System Metadata, Distributed Systems, Informatiom&dfgement

*This research was funded in part by National Science Foiordgtant 0306650, and Network
Appliance, Inc. Additional support for the Storage Systé&tasearch Center was provided by Hewlett
Packard Laboratories, Hitachi Global Storage TechnoydigM Research, Intel, Microsoft Research,
Rocksoft, Symantec, and Yahoo.

2 Proceedings in Informatics

1 Introduction

A December 2006 Pew survey has found that 28% of internes tsere applied
keywords to (or “tagged”) content online [21]. This trendrsé¢d with collabo-
rative bookmarking sites [14] and has since extended toiatyasf documents,
including photos, music, movies, email, and scholarlycts (for an overview
see [16]). This recent success is widely attributed to a foffroontent categoriza-
tion that (1) allows users to tag objects using their own botay instead of a
controlled vocabulary, and that (2) results in vocabutavidnich converge suffi-
ciently to be useful for indexing [18, 10]. Users prefer te tiseir own vocabulary
because categorizing items with a controlled vocabulacpgnitively hard [17]

and requires an amount of coordination that does not scalertolarge systems
like the Web. The success of collaborative tagging for oijag content on the
Web raises the question whether collaborative taggingdcplaly a similar role

in storage management, especially given the wide avatalof rich metadata
support.

Loosely defined, rich file system metadata is data about fildgelations be-
tween files that is derived from file content, file usage, or nadly added by the
user. Many applications and recently designed file systawssapport rich meta-
data which is evidence for our assumption that rich metadatseful for manag-
ing the ever growing amount of stored data. Personal mugitioto collections
are examples where most users rely on applications anccafiph-specific meta-
data to organize their collections. Apple’s Spotlight isexample of the recent
addition of rich metadata capabilities to a modern file sydi4].

While rich metadata helps users manage large volumes afmafiion, meta-
data is often confined to a single application or single filstam. The metadata
that shows up alongside a particular file in one applicatiog.(@ photo in a photo
library program) may not appear in another because of diffegs in data orga-
nization and formats. Moving files from one file system to aeoimight destroy
some or all of a file’'s metadata because of a mismatch of fileesysnetadata
capabilities. All of this diminishes the value of metadatal aleters users from
investing time and effort to fully utilize the capabilitie$a rich metadata system.

Thus, in spite of the need for rich metadata there is littleviam about how
rich metadata is used. This is exacerbated by the fact thatyfitems are hard to
change, and that poorly tested file system modificationsharisk of corrupt-
ing or loosing user data. Yet, usage of rich metadata is d#aired from users
working with real data.

We propose Graffiti, a distributed layer that sits on top & §iystems across
networked computers. The primary purpose of Graffiti is tovjte a research
and prototyping platform for managing metadata across ¥istesns and users.
The simplicity and file system independence of Graffiti abdar rapid iterative
design and evaluation of metadata structures without tfggany file systems.
We believe Graffiti will evolve into a useful service that bgparating metadata

Maltzahn et al.: Graffiti 3

management from applications frees application devetofpem recreating pos-
sibly inefficient metadata storage, search, and retrieval makes these metadata
functions available across applications and systems.

In the next section, we present Graffiti's design, includindetailed descrip-
tion of its components, metadata structures, and metadatagement mecha-
nisms. We then give an overview of our prototype impleméoabf Graffiti.
This is followed by a section on our initial experience ofnggsthis prototype. We
conclude the paper with related work, ongoing work and meteand summary.

2 Design

2.1 Clients and Servers

Graffiti consists of a network of loosely coupled clients @edvers. Clients run
on user machines and associate metadata with files. Theneislient for each
user/machine pair. Servers allow users to share metadatssa@Graffiti clients,
no matter whether these clients run on machines owned byatne siser or by
different users.

For this sharing mechanism to be useful, users need to bembtmtrol the
proliferation of their metadata. We accomplish this bywlltg users (1) to ex-
plicitly select one or more Graffiti server for each cliemgluding servers they
created themselves, and (2) to control what metadata isdlath which of these
selected servers. For example, a user might connect togareers, one dedicated
to an enterprise, one to a department, and one to his/heeholas The metadata
shared with the home server might not overlap with the metestaared with the
work server, but some of the metadata shared with the horaersmight also be
shared with the public server. Each server enforces a phatiset of policies on
who may connect to it and how metadata may proliferate. $gican peer with
other servers and exchange metadata based on individ@akgeahange agree-
ments. Users can decide for themselves how much they trusttiaydar server
and adjust metadata sharing accordingly.

There is one Graffiti client for each user and for each machirea ma-
chine with multiple users runs multiple clients, and a usign wultiple machines
uses one Graffiti client on each machine. The client provadewetadata update
and retrieval API to local applications, tracks local files®m changes to main-
tain file/metadata associations, and synchronizes metadtit servers. A client
also functions when disconnected. In this respect a Graffént resembles an
IMAP [7] client that supports synchronization with mulépémail accounts.

Graffiti clients periodically synchronize with servers ogecure HTTP. This
allows connections across firewalls and keeps communicativate. Users are
required to have a password-protected account on evergrseith which they
communicate. Whether users are allowed to open new accouardsparticular

4 Proceedings in Informatics

server is part of the server’s individual policy.

2.2 Files

When we associate metadata to files we need to define thetidehd file (how
we name the file) and identify those cases where metadatapagated between
copies of files, i.e. the files that we consider the “same”. ¥errto the combina-
tion of name space and metadata propagation as “file ideditgept”.

Traditionally, users identify a file within a file system by fiath consisting of
the directory path and its basename (the final portion of #ik)pin hierarchical
(non-flat) file systems the basename is generally not suifistefully identify a
file, and the directory path is specific to a particular filetsys In a networked
environment files are typically identified by their path ahd hame of a host that
exports the file. This name space is sufficient when usereptefkeep meta-
data specific to one file system and if all move and copy opmratbetween file
systems copy the metadata as well.

There are however common cases where the same file can appealtiple
file systems without any such copy or move operation, e.gevég an attached
file while checking email on multiple machines, or downloaga file from the
Internet to multiple machines. In these cases we would tikessociate metadata
to a file only once, and have that metadata propagate to aksap the file that
we consider the “same” file.

In Graffiti we strive to accommodate the whole spectrum betwlecal and
global identity concepts but focus on the more interestampovhere users asso-
ciate metadatato a file on one machine and expect to see tieensatadata for the
“same” file on other machines. We are exploring this globalifilentity concept
based on content and file name: we associate metadata torttemtof files and
update metadata associations when the content changeies@diles inherit
metadata associations by reference. As long as the corftémd copies remain
the same, metadata changes to one copy apply to all copiestiat change con-
tent inherit metadata by copy. Subsequent metadata chémgesse files apply
to only copies of the same (now changed) content and are apagated back to
previous versions.

We accomplish this scheme by associating metadata to fileecboheck-
sums, rather than to the location of the file data. This usehetksums as a
global file identification allows the system to share metadat matching files
across multiple file systems. A drawback of this approachas any change to
a file will change the checksum and therefore break the files®eiation with
Graffiti-maintained metadata. An important task of the @aflient is therefore
to keep track of whatever file identity concept is enforced @nupdate metadata
associations accordingly. For example, changing the obwofea file will trigger
the client to create a new checksum of the file, create a nevpimgpetween the
file's metadata and the new checksum, and update the locgintppetween file

Maltzahn et al.: Graffiti 5

checksums and file paths.

The client has to also account for common behaviors of agidics that re-
name, and create files on every file close. The user’'s expatiatthis case is
that the newly created file inherits all metadata from theaneed file. A Graffiti
client catches this case by creating a brief timeout (e.g.s@tond) after each
rename within which the client remembers the original pdtthe renamed file.
Any new file created at the original path within the timeoutents the metadata
of the renamed file.

Graffiti clients rely on file system event notification whicteaavailable in
most modern file systems. The alternative is to poll the filsteay for changes
and reconstruct event patterns from modification timesh sis¢che rename/create
pattern we just described. The advantage of event notiicativer polling is that
file system changes instantly update indices, and that amé¢raek file deletes.
We view polling as a fall-back mechanism in case event natifin drops events
or fails entirely.

A Graffiti server only deletes an out-of-date checksum ifisilyisynchroniza-
tion none of its clients contain a matching file. For this thever collects check-
sum reference counts from its clients. A client only delete®ut-of-date check-
sum and its associated tags if none of the user’s other slmoritain a file that
matches that checksum. Thus, as part of a synchronizatient£lfirst submit
changed reference counts to servers and then collectsfédremee counts for the
current user from the server.

2.3 Tags and Links

Graffiti's metadata consists of keywords or “tags”. A tag istidng and as such
can represent attribute/value pairs, URLs, file paths, cesgrights. A tag is
always associated with a user and one or two files. We callaagsciated with
two files “links” (see below). The association of tags witlerssis to allow users to
tag files according to their individual understanding amdylaage preference. For
widely shared files this also allows Graffiti to analyze tatgras and generate
tag recommendations. Tag recommendations have provepapojar in existing
collaborative tagging services on the Web such as Delusiff].

Links represent directional relations between two filegidal usage exam-
ples of links between files are formal relationships such rasipus versions,
software dependencies, neighborhoods in large data setpravenance. A sim-
ilar concept was introduced in [8, 9] with the differencettbach of those links
can carry an arbitrary set of attribute/value pairs instefazhe tag and one user.

Relationships between files can also be represented by cortage (as op-
posed to links), e.g. the set of all files that are associaitutie tag “birthday-
pic”. The difference is that in the case of tags it is the resuility of users to
keep different relationships distinct by using approjgrtags or tag combinations.
Links allow this responsibility to be delegated to the sgsteecause a link is not

6 Proceedings in Informatics

only defined by its tag but also by its source and destinasornthe meaning of
atag in a link can be “overloaded” depending on some propritg source or
destination file.

2.4 Tag Interpreters, Indices, and Sharing

Generally, the meaning of tags depends on individual uses®me consensus
among users and are not further interpreted by Graffiti. Hewésraffiti provides
a plug-in infrastructure that allows the insertion of tatpmpreters. The mecha-
nism of tag interpreter plug-ins is a convenient way to idtrce new functionality
that is invoked and controlled by tags. Graffiti uses builteg interpreters to al-
low users to define indices and to control sharing of metadi#tars define new
indices by specifying tag sub-strings, e.g. all tags thgtrbwith “path:”.

Users control the sharing of metadata by adding “sharingj' tiga file of the
form “sync:” followed by the server name. These tags ingtitue Graffiti client to
share metadata with the specified server. The scope of aghag — that is the set
of all tags, links, and file checksums included in the sharethdata — includes in
the current design all tags of the associated file, includingming or outgoing
links. Sharing tags can also be links in which case the scogades all tags
(and links) of the source and target files. We are aware thet-§irained scoping
is possible, and maybe even desirable, but decided to stawith simple file-
level scoping and introduce finer grained scoping in a futersion of Graffiti if
necessary.

2.5 Tag Sharing

Users frequently share files via email or instant messagim@llow two Graffiti
users (let us call them sender and receiver) who don’t nadfshave accounts
on a common Graffiti server to also share the metadata on sammmanicated
files, Graffiti provides a tag sharing protocol: The sendeoatanies the file
(within an email or instant message) with a URL that represarticket which
allows the receiver to import the metadata to that file to hiker own Graffiti
client. The receiver can request the URL and receive theedhaetadata during
the next synchronization unless the sender and receiveotdshare the same
Graffiti server. In that case, requesting the URL will retarmetadata document
that the Graffiti client can import and associate with thesiesd file.

2.6 Client/Server Synchronization

Graffiti clients either on command or periodically syncheerall file checksums
and tags with Graffiti servers according to sharing tagscBsanizations conflicts
can only occur when the same user changes metadata on thédilsachecksum

on multiple Graffiti clients. Based on the assumption thititha rare occurrence,

Maltzahn et al.: Graffiti 7

conflicts are resolved by taking the union of all submittegstdDeleting a file on
one machine and creating it on another (i.e. moving the fdenfone machine to
another) does not cause a conflict since checksums of déletedre only pruned
when they disappeared from the entire Graffiti system.

3 Implementation

We implemented a prototype of Graffiti. The client is implarresl in Javal.5
(J2SE 5.0) on Apple Mac OS 10.4 and consists of about 3,088 tificode. We

use fslogger [23] to make file system events available to lieatc and Apache
Derby [1] to store metadata at the client. The client praietis designed to be
portable across other platforms and to work with other filstesyn notification

services. The Graffiti server is implemented in Python (eer2.3.4) using the
Twisted server framework (version 2.1.0) [5] and Postgrie$¢@rsion 7.4.11)

and consists of about 1,000 lines of code.

3.1 Client User Interface

We created a simple user interface primarily to get userssto Graffiti — our
focus is the underlying system and not a user interface sflidy user inter-
face presented below is influenced by the Del.icio.us [6] Wiabdesign and our
experience using Graffiti. The three design goals were (1bdih script- and
user-friendly, (2) rely as much as possible on the desigstafdished Web inter-
faces such as Del.icio.us, e.g. show all tags, provide tpgresions, and search
by conjunctions of tags, and (3) tightly integrate taggirithweearching. All user
interface functionality except for synchronization is é@sn data stored at the lo-
cal client only. This prototype currently does not suppios or indices, nor are
the mechanisms for tag interpreter plugins or for tag slyafufly implemented.

To support tagging a Graffiti clients provides a command iimerface and a
graphical user interface. Figure 1 shows the usage inféemaf the command
t ag which allows the user to manipulate tags of one or more filas.commands
are designed to work well in shell scripts environments sy ttan take advantage
of features such as file expansion and pipes. The commanddsareptimized
for speed by support for manipulating tags of many files witlingle command.
This is particular important for workflow applications inses where the state is
represented by tag combinations and a change of state @s/alVarge number
of files. In particularly the commanal allows the match-and-replace of a con-
junction® of tags. A useful sequence of commands might be to seleckesltfiat
match a conjunction of tags, usiffig nd, process selected files, and change the
tags of files that have been processed ugingFor performance reasons we also

INote that a list of tags is always interpreted as a conjunatibtags (which is commutative, of
course) even though they are represented as strings in sormmaands.

8 Proceedings in Informatics

tag <cmds>
cmds :
add “"tagl tag2 ..." <filel> <file2> ...
tag Tist of files with given tags
rm “tagl tag2 ..." <filel> <file2> ...

remove list of tags from each file
an attempt to remove a non-existing tag is ignored
mv "old_tagl old_tag2 ..." "new_tagl new_tagZ ..."
for each file that matches old tags replace old tags
with new tags
find <tagl> <tag2> ...
Tist all files that have at least the tags listed
show <filel> <file2> ...
show tags of each file
sync [serverl server2 ...]
sync metadata with specified servers or all known servers
if not specified. Only items with matching "sync:server” tags
are sync'd
srv add <srvs> <usr> <passwd>
add account info for a server
SV M <Srv>
remove account information for srv
srv show
show all server account information
scope <pathls <pathZ> ...
add checksums to all files in subtrees specified by paths
clt [<name>]
show or set client name

dhalgren:~[0]

Figure 1: Usage of the commaiha@g which provides a command line interface
for the Graffiti client. Many files can be processed with a Erpmmand.

included the commanslcope which limits checksumming of files to a subtree
of the entire directory tree.

While the command interface is optimized for manipulatiagst over a large
number of files, the graphical user interface (Figure 2)natis to reduce the
cognitive overhead of adding tags to a particular file or geiag for files that
have already been tagged. The top entry field allows one & tanys. The right
panel shows all tags or all expansions of the text typed imotop entry field
(since the last white space or the beginning of the entry)fiSelecting will
either replace an incompletely entered tag or add a new taélget@ntry field.
Hitting the “Tag Search” button displays all file paths in tbenter field that
match the conjunction of the tags in the entry field. Files &lszo be “drag-and-
dropped” into the center field which replaces any center fieldtents with the
path name list of the dropped-in files. Selecting one file i ¢bnter field dis-
plays the tags of that file in the bottom entry field (note thecéyonization tag
sync: nraml. cse. ucsc. edu). Selecting multiple files displays the intersec-
tion of their tags. The bottom entry field allows editing o€&fiags. Hitting the
“Save” button applies changes to all selected files. If mpldtfiles are selected
the content of the entry field only replaces the interseatibexisting tags (du-
plicates are always ignored). The “Sync” button synchresithe client with one
or more servers depending on the client's configuration,thagrogress bar to

Maltzahn et al.: Graffiti 9

8o0e Graffiti
travel | Tag Search ‘ restricted
et issdm
ugsc
Files (drag and drop to add files below) ¥
teaching
JUsers fcarlosmalt/Sites /carnaval/carnaval-Thumbnails /7.jpg m classprojects
JUsers/carlosmalt/Sites /carnaval fcarnaval-Thumbnails/66.jpg code
[Users fcarlosmalt/Sites fcarnaval fcarnaval-Thumbnails/56.jpg obsd
[Users fcarlosmalt/Sites /carnaval fcarnaval-Thumbnails /118.Jpg REtapD
[Users fcarlosmalt/Sites/iblog/index.html !‘ff')
[Users fcarlosmalt/Sites/iblog /BB3 1224963 /styles-site.css mt_erestmg
/Users [carlosmalt/Sites/iblog/BB31224963 /index.htm! Sulteage
JUsers fcarlosmalt/Sites/iblog/B831224963/CommonLib.js ﬂVj‘"‘J
{Users /carlosmalt/Sites /iblog /B83 1224963 /C2024164552 /index.html ene
/Users fcarlosmalt/Sites/iblog/B831224863/C2024 164552 /E1830665783/index.htm| Paper,
[Users fcarlosmalt/Sites/iblog/B831224963/C2024 164552 /categorylmage.png 4 virtualization &
éﬁefﬁ/(arJosma\tlSltesllhloqFHEEIEZHEEIEISOGSlﬂsl?hndex.h[ml b storage
Tk
all blog public sync:mraml.cse.ucsc.edu talks travel Save Tags
| Sync | [config.. |

Figure 2: The graphical user interface for the Graffiti diattempts to reduce the
cognitive overhead of adding tags to files or searching fyyed files. The design
is based on the Del.icio.us social bookmarking service.

the right of the button gives an estimate of what fractionhef process is com-
pleted. Pressing the “Config” button pops up a dialogue win¢iigure 3) that
allows the management of Graffiti server accounts, settinglient's name, and
resetting either the client or the server synchronizatiates

3.2 Server

The Graffiti server implementation allows users to shareadstt. Direct ex-

change of metadata between servers is not implementedlyetsdrver consists
of a relational database back-end and an API that clientssaahrough secure
HTTPS calls. The server has two primary roles. The first rolthe server is to

enable the collaboration of metadata across multiple nmashiThis is accom-
plished through the database and the API. The second rote gitrver is to col-

lect usage data about collaborative metadata. This is donadh event logging
at the server and database levels. The relational databagielgs a persistent
data-store for collaborative metadata using the schemayiné-4.

10 Proceedings in Informatics

enn Server Editor

Client Name dhalgren
Server User Password

mraml.cse.ucsc.edu carlosm |FEEE
home.localisp.com carlogmalt | *reeee

:]

™

DeleteServer | [AddServer |

Reset Sync Times (save) (Cancel)

Figure 3: The dialog window allows users to manage multiptaff@i server
accounts. Special synchronization tags control how fileahata is shared with
servers, e. g. the synchronization state of the client orcdrikie servers can be
reset.

own

Figure 4: Entity-relationship diagram of the Graffiti serdatabase schema. The
database has four sets of data to manage. The first is the gs¢oficcounts for
that server. The second is the set of files, identified by cheokthat are owned
by users. Third, the database tracks the tags that have tesadpy users on
files. Finally the server is able to manage metadata thas ebeose to share.

Maltzahn et al.: Graffiti 11

4 Experience

One of the advantages of Graffiti is that it can be readily useexisting file
systems without the danger of corrupting or losing file datas in combination
with Graffiti's small code base often allowed us to quicklpke the prototype
based on user experiences. Our key insights were:

Tags do not make hierarchical directories obsolete. We found that directory
hierarchies are only limiting if they are the only mechantsnorganize files. We
tried to organize files by tags only while keeping them all nrealirectory. This
works pretty well as long as that directory only containssfilleat are of interest
to the user. However, file systems almost always containthquie of system files
that one wants to be kept out of the way by keeping them in syst@naged
directories as opposed to user-managed directories. dfurtdre, we found that
even within user-managed directories there are large fBlssthat are managed
by some other system, e. g. a versioning system or a musaryitapplication.
In all these cases, we found it is significantly more convatrtie use directories,
and that tagging individual files contained in those dirgetis unnecessarily
tedious. This led us to the insight that directories are gimodiding (and for
keeping local name spaces small), while tags are good fanfind file system
is almost always shared by multiple agents, i. e. multipersisapplications, and
the operating system. These agents have different perggeon what needs to
be hidden and what needs to be found. For example, we fousdfitiLio be able
to configure Graffiti to ignore files in some subdirectories.

Tagging directories is useful. In cases where we found that files are better man-
aged by subdirectories, it was useful to tag the those sedtdiries so that a search
returns file names and directory names. This turns dirextanto a useful ab-
straction and scalability mechanism that allows the aggeetagging of a large
number of files without the overhead of tagging each file imlially and keep-
ing track of changes to those files. An interesting questathén how to share
directory tags across file systems, i. e. how to give a dirg&dile system inde-
pendent name. One approach is to take the checksum of tletadiréree listing.
Another approach is to specify just enough of a suffix of theaory’s full path
to fully identify copies in other file systems but to not ind&ufile system specific
path prefixes. The first approach has the advantage thatitditénto the existing
infrastructure of Graffiti. Not all file system notificatioarsices include directory
updates, but they can be easily derived from file creati@mames, and deletions.
The disadvantage is the same as representing files as checkétheir content:
each change to a directory tree requires metadata updateising the depth of
a directory tree listing might help, depending on how largper level directories
are and how often they change. The second approach requaiotgmnge tracking

12 Proceedings in Informatics

and therefore scales better than the first approach but wer@hsufficiently in-
vestigated this approach to determine whether path sufibeesufficiently unique
to be used across file systems.

Uncovering duplication has great potential. One side surprisingly useful ef-
fect of managing files with the Graffiti client is that it makéde duplication vis-
ible. Graffiti revealed a surprising amount of duplicatiarhiome directories we
used for testing, and motivates an extension to Graffiti tvi{il) shows which
machine replicates a given file, and (2) provides a “de-dafibn” service that
can be used in a variety of storage management tasks, e. gdiacing backup
overhead or for filtering out duplicates in search results.

Tagging, searching, and file browsing are frequently intertaved. A com-
monly perceived limitation of the Graffiti user interfacelisit it does not provide
the full functionality of a modern file browser such as thedénin Mac OS X.
For example, the Graffiti client allows one to find files butrttome has to find the
file again in the file browser in order to preview, open, or dgthimg else with
them. Or, while working in the file browser or some other aggtibn display-
ing files, one cannot readily add tags to those files. Configrttirs observation,
Microsoft recently made available the personal infornratianager Phlat [11]
which provides an innovative interface that allows for skss® switching be-
tween browsing, tagging, and searching.

5 Related Work

We have already mentioned popular tagging services on the [\@ that in-
fluenced Graffiti's design. Many existing file systems previdechanisms for
rich metadata but fall short in supporting collaborativeimenance of meta-
data [4, 15, 13]. The Linking File System (LiFS) introduciesffile system meta-
data that includes relational links that can carry arbjtsats of attribute/value
pairs [8, 9]. A number of systems provide support user-digegiews on dis-
tributed file systems including standing queries based@nmietadata [12, 19].
A first step towards sharing rich metadata is a feature argexlfor Mac OS X.5
(Leopard) which allows for access of metadata on remote masl3].

A number of infrastructures for collaborative metadataefar particular ap-
plications but lack the generality necessary for all-pgipfile systems. Perhaps
the most famous example is the Compact Disk Database (CDE}BYHere lis-
teners gain access to CD metadata by submitting the fingégdrthe CD based
on the ordered list of track durations (see [20] for an ov@man other methods of
matching metadata to CDs). If the fingerprint doesn’t exii listener can submit
the track information to the database. Another exampleasSitientific Annota-
tion Middleware (SAM) [22] which uses WebDAV [24] serversdollaboratively

Maltzahn et al.: Graffiti 13

maintain and share metadata of items of scientific data.

6 Ongoing Work and Conclusions

We continue to collect and analyze Graffiti workloads to @ase our understand-
ing of how users use rich metadata in file systems. We arertlyngorking on
the next version of Graffiti which will support all Graffiti dign features as de-
scribed in section 2, including links, user-defined indjdag sharing, and tag
interpreter plugins.

We are also developing a system event registration serviis.service will
allow users to specify metadata production rules activiayegrtain system events.
An example of such a rule would be whenever a user copy-astkpaontent
from one file to another, a link is installed between thoses fieuch rules will
allow users to accumulate usage information about theisyi#ems and will pro-
vide valuable data sets for research on contextual infoomatanagement.

We are also investigating directory identity concepts#iliallow us to share
directory metadata across file systems. In section 4 weedltd two such con-
cepts with different costs and benefits.

Due to the content-based file identity concept Graffiti diesind servers re-
veals duplicates across different file systems and usergidate information is
valuable for ranking of search results (list the most corestrfile reference only),
for archival (duplicates are archived as references oahgd,for reliability (ensur-
ing that a minimum number of replicas exist across differeathines).

Graffiti metadata is tied to the identity of users. This pd®& opportunities
and challenges. Among the opportunities is the possiltiitpuild recommen-
dation services on top of Graffiti that will further lesserm ttognitive effort of
tagging and might point users to interesting content. Batisly metadata raises
privacy issues which we addressed by allowing users to canoeifferent Graf-
fiti servers depending on trust and organizational contéft.are also investi-
gating alternative schemes that would provide privacyterahtive architectures
such as a single central Graffiti server or a peer-to-peéitaature.

In summary, Graffiti offers a way to share three kinds of matadinks, tags
and indices. We presented a metadata sharing frameworlktsgmotential appli-
cations are vast and include applications such as distéthdata management,
distributed indexing, and search.

References

[1] Apache derby project. http://db.apache.org/derbyy/.
[2] Cddb. http://en.wikipedia.org/wiki/CDDB.

14 Proceedings in Informatics

[3] Mac os x.5 leopard sneak peek. http://www.apple.constea/leopard/.
[4] Spotlight. http://www.apple.com/macosx/featurestlight/.

[5] Twisted. http://twistedmatrix.com/trac/.

[6] del.icio.us. http://del.icio.us, Nov 2005.

[7] The imap connection. http://www.imap.org/, 2007.

[8] AMES, A., BoBB, N., BRANDT, S. A., HATT, A., MALTZAHN, C.,
MILLER, E. L., NEEMAN, A., AND TUTEJA, D. Richer file system meta-
data using links and attributes. Rioceedings of the 22nd IEEE / 13th NASA
Goddard Conference on Mass Storage Systems and Techrsi{ldgieterey,
CA, Apr. 2005).

[9] AMES, S., BoBB, N., GREENAN, K. M., HOFMANN, O. S., SORER,
M. W., MALTZAHN, C., MILLER, E. L., AND BRANDT, S. A. LiFS: An
attribute-rich file system for storage class memoriesPrioceedings of the
23rd IEEE / 14th NASA Goddard Conference on Mass Storager8gstnd
Technologie¢College Park, MD, May 2006), IEEE.

[10] BARONCHELLI, A., FELICI, M., CAGLIOTI, E., LORETO, V., AND
STEELS, L. Sharp transition towards shared vocabularies in nagént
systems Statistical MechanigL06014 (June 2006).

[11] CUTRELL, E., RoBBINS, D. C., DuUMAIS, S. T.,AND SARIN, R. Fast,
flexible filtering with phlat — personal search and organaratade easy. In
In Proceedings of CHI’'06, Human Factors in Computing Systgvontreal,
Quebec, Canada, April 2006), ACM Press, pp. 261-270.

[12] DOURISH, P., EDWARDS, W. K., LAMARCA, A., AND SALISBURY, M.
Presto: An experimental architecture for fluid interactieeument spaces.

[13] GIFFORD, D. K., JOUVELOT, P., SHELDON, M. A., AND O'TOOLE, JR.,
J. W. Semantic file systems. Rroceedings of the 13th ACM Symposium
on Operating Systems Principles (SOSP '@¢t. 1991), ACM, pp. 16-25.

[14] GOLDER, S. A.,AND HUBERMAN, B. A. Usage patterns of collaborative
tagging systemsJournal of Information Science 32 (2006), 198—208.

[15] GoPAL, B., AND MANBER, U. Integrating content-based access mech-
anisms with hierarchical file systems. Rroceedings of the 3rd Sympo-
sium on Operating Systems Design and Implementation (Q&Bi) 1999),
pp. 265-278.

[16] HAMMOND, T., HANNAY, T., LUND, B., AND ScoOTT, J. Social bookmark-
ing tools (part 1): A general revievD-Lib Magazine 114 (April 2005).

Maltzahn et al.: Graffiti 15

[17] LANSDALE, M. W. The psychology of personal information management.
Applied Ergonomics 19 (1988), 55-66.

[18] MIKA, P. Ontologies are us: A unified model of social networks amdan-
tics. Lecture Notes in Computer Scien8&29 (2005), 522-536.

[19] NEUMAN, B. C. The prospero file system: A global file system based on
the virtual system modefComputing Systems 8 (1992), 407-432.

[20] PAcHET, F. Knowledge management and musical metadat&nbyclope-
dia of Knowledge Managemem. Schwartz, Ed. Idea Group, 2005.

[21] RAINIE, L. 28% of online americans have used the internet to tagecdnt
http://www.pewinternet.org/PPF/r/201/repdisplay.asp, January 31 2007.

[22] SCHWIDDER, J., TALBOTT, T., AND MYERS, J. D. Bootstrapping to a
semantic grid. INREEE International Symposium on Cluster Computing and
the Grid (CCGrid 2005 May 2005), IEEE, pp. 175-181.

[23] SINGH, A. A file system change logger.
http://www.osxbook.com/software/fslogger/, May 2005.

[24] WHITEHEAD, J. Webdav: versatile collaboration multiprotocdhternet
Computing 91 (2005), 66—74.

Carlos Maltzahn is with the Department of Computer Science at the Univexsitgali-
fornia, Santa Cruz, CA, U.S.A. E-mail: carlosm@soe.uchc.e

Nikhil Bobb is with the Department of Computer Science at the Univeidit@alifornia,
Santa Cruz, CA, U.S.A. E-mail: nikhil@soe.ucsc.edu

Damian Eadsis with the Department of Computer Science at the Univeritgalifornia,
Santa Cruz, CA, U.S.A. E-mail: eads@soe.ucsc.edu

Mark W. Storer is with the Department of Computer Science at the Universfi@alifor-
nia, Santa Cruz, CA, U.S.A. E-mail: mstorer@soe.ucsc.edu

Scott A. Brandt is with the Department of Computer Science at the Univecsigalifor-
nia, Santa Cruz, CA, U.S.A. E-mail: scott@soe.ucsc.edu

Ethan L. Miller is with the Department of Computer Science at the Univerdi@alifor-
nia, Santa Cruz, CA, U.S.A. E-mail: eim@soe.ucsc.edu

