
Graffiti: A Framework for Testing
Collaborative Distributed File System

Metadata∗

C. MALTZAHN
University of California at Santa Cruz, U. S. A.

N. BOBB
University of California at Santa Cruz, U. S. A.

M. W. STORER
University of California at Santa Cruz, U. S. A.

D. EADS
University of California at Santa Cruz, U. S. A.

S. A. BRANDT
University of California at Santa Cruz, U. S. A.

E. L. MILLER
University of California at Santa Cruz, U. S. A.

Abstract

Managing storage in the face of relentless growth in the number and va-
riety of files on storage systems creates demand for rich file system meta-
data as is made evident by the recent emergence of rich metadata support in
many applications as well as file systems. Yet, little support exists for shar-
ing metadata across file systems even though it is not uncommon for users
to manage multiple file systems and to frequently share copies of files across
devices and with other users. Encouraged by the surge in popularity for col-
laborative bookmarking sites that share the burden of creating metadata for
online content [21] we present Graffiti, a distributed organization layer for
collaboratively sharing rich metadata across heterogeneous file systems. The
primary purpose of Graffiti is to provide a research and rapidprototyping
platform for managing metadata across file systems and users.

Keywords

File System Metadata, Distributed Systems, Information Management

∗This research was funded in part by National Science Foundation grant 0306650, and Network
Appliance, Inc. Additional support for the Storage SystemsResearch Center was provided by Hewlett
Packard Laboratories, Hitachi Global Storage Technologies, IBM Research, Intel, Microsoft Research,
Rocksoft, Symantec, and Yahoo.

1



2 Proceedings in Informatics

1 Introduction

A December 2006 Pew survey has found that 28% of internet users have applied
keywords to (or “tagged”) content online [21]. This trend started with collabo-
rative bookmarking sites [14] and has since extended to a variety of documents,
including photos, music, movies, email, and scholarly articles (for an overview
see [16]). This recent success is widely attributed to a formof content categoriza-
tion that (1) allows users to tag objects using their own vocabulary instead of a
controlled vocabulary, and that (2) results in vocabularies which converge suffi-
ciently to be useful for indexing [18, 10]. Users prefer to use their own vocabulary
because categorizing items with a controlled vocabulary iscognitively hard [17]
and requires an amount of coordination that does not scale tovery large systems
like the Web. The success of collaborative tagging for organizing content on the
Web raises the question whether collaborative tagging could play a similar role
in storage management, especially given the wide availability of rich metadata
support.

Loosely defined, rich file system metadata is data about files and relations be-
tween files that is derived from file content, file usage, or manually added by the
user. Many applications and recently designed file systems now support rich meta-
data which is evidence for our assumption that rich metadatais useful for manag-
ing the ever growing amount of stored data. Personal music orphoto collections
are examples where most users rely on applications and application-specific meta-
data to organize their collections. Apple’s Spotlight is anexample of the recent
addition of rich metadata capabilities to a modern file system [4].

While rich metadata helps users manage large volumes of information, meta-
data is often confined to a single application or single file system. The metadata
that shows up alongside a particular file in one application (e.g. a photo in a photo
library program) may not appear in another because of differences in data orga-
nization and formats. Moving files from one file system to another might destroy
some or all of a file’s metadata because of a mismatch of file system metadata
capabilities. All of this diminishes the value of metadata and deters users from
investing time and effort to fully utilize the capabilitiesof a rich metadata system.

Thus, in spite of the need for rich metadata there is little known about how
rich metadata is used. This is exacerbated by the fact that file systems are hard to
change, and that poorly tested file system modifications run the risk of corrupt-
ing or loosing user data. Yet, usage of rich metadata is best obtained from users
working with real data.

We propose Graffiti, a distributed layer that sits on top of file systems across
networked computers. The primary purpose of Graffiti is to provide a research
and prototyping platform for managing metadata across file systems and users.
The simplicity and file system independence of Graffiti allows for rapid iterative
design and evaluation of metadata structures without affecting any file systems.
We believe Graffiti will evolve into a useful service that by separating metadata



Maltzahn et al.: Graffiti 3

management from applications frees application developers from recreating pos-
sibly inefficient metadata storage, search, and retrieval,and makes these metadata
functions available across applications and systems.

In the next section, we present Graffiti’s design, includinga detailed descrip-
tion of its components, metadata structures, and metadata management mecha-
nisms. We then give an overview of our prototype implementation of Graffiti.
This is followed by a section on our initial experience of using this prototype. We
conclude the paper with related work, ongoing work and research, and summary.

2 Design

2.1 Clients and Servers

Graffiti consists of a network of loosely coupled clients andservers. Clients run
on user machines and associate metadata with files. There is one client for each
user/machine pair. Servers allow users to share metadata across Graffiti clients,
no matter whether these clients run on machines owned by the same user or by
different users.

For this sharing mechanism to be useful, users need to be ableto control the
proliferation of their metadata. We accomplish this by allowing users (1) to ex-
plicitly select one or more Graffiti server for each client, including servers they
created themselves, and (2) to control what metadata is shared with which of these
selected servers. For example, a user might connect to threeservers, one dedicated
to an enterprise, one to a department, and one to his/her household. The metadata
shared with the home server might not overlap with the metadata shared with the
work server, but some of the metadata shared with the home server might also be
shared with the public server. Each server enforces a particular set of policies on
who may connect to it and how metadata may proliferate. Servers can peer with
other servers and exchange metadata based on individual data exchange agree-
ments. Users can decide for themselves how much they trust a particular server
and adjust metadata sharing accordingly.

There is one Graffiti client for each user and for each machine, i.e. a ma-
chine with multiple users runs multiple clients, and a user with multiple machines
uses one Graffiti client on each machine. The client providesa metadata update
and retrieval API to local applications, tracks local file system changes to main-
tain file/metadata associations, and synchronizes metadata with servers. A client
also functions when disconnected. In this respect a Graffiticlient resembles an
IMAP [7] client that supports synchronization with multiple email accounts.

Graffiti clients periodically synchronize with servers over secure HTTP. This
allows connections across firewalls and keeps communication private. Users are
required to have a password-protected account on every server with which they
communicate. Whether users are allowed to open new accountson a particular



4 Proceedings in Informatics

server is part of the server’s individual policy.

2.2 Files

When we associate metadata to files we need to define the identity of a file (how
we name the file) and identify those cases where metadata is propagated between
copies of files, i.e. the files that we consider the “same”. We refer to the combina-
tion of name space and metadata propagation as “file identityconcept”.

Traditionally, users identify a file within a file system by its path consisting of
the directory path and its basename (the final portion of the path). In hierarchical
(non-flat) file systems the basename is generally not sufficient to fully identify a
file, and the directory path is specific to a particular file system. In a networked
environment files are typically identified by their path and the name of a host that
exports the file. This name space is sufficient when users prefer to keep meta-
data specific to one file system and if all move and copy operations between file
systems copy the metadata as well.

There are however common cases where the same file can appear in multiple
file systems without any such copy or move operation, e.g. retrieving an attached
file while checking email on multiple machines, or downloading a file from the
Internet to multiple machines. In these cases we would like to associate metadata
to a file only once, and have that metadata propagate to all copies of the file that
we consider the “same” file.

In Graffiti we strive to accommodate the whole spectrum between local and
global identity concepts but focus on the more interesting case where users asso-
ciate metadata to a file on one machine and expect to see the same metadata for the
“same” file on other machines. We are exploring this global file identity concept
based on content and file name: we associate metadata to the content of files and
update metadata associations when the content changes. Copies of files inherit
metadata associations by reference. As long as the content of the copies remain
the same, metadata changes to one copy apply to all copies. Files that change con-
tent inherit metadata by copy. Subsequent metadata changesto those files apply
to only copies of the same (now changed) content and are not propagated back to
previous versions.

We accomplish this scheme by associating metadata to file content check-
sums, rather than to the location of the file data. This use of checksums as a
global file identification allows the system to share metadata on matching files
across multiple file systems. A drawback of this approach is that any change to
a file will change the checksum and therefore break the file’s association with
Graffiti-maintained metadata. An important task of the Graffiti client is therefore
to keep track of whatever file identity concept is enforced and to update metadata
associations accordingly. For example, changing the content of a file will trigger
the client to create a new checksum of the file, create a new mapping between the
file’s metadata and the new checksum, and update the local mapping between file



Maltzahn et al.: Graffiti 5

checksums and file paths.
The client has to also account for common behaviors of applications that re-

name, and create files on every file close. The user’s expectation in this case is
that the newly created file inherits all metadata from the renamed file. A Graffiti
client catches this case by creating a brief timeout (e.g. one second) after each
rename within which the client remembers the original path of the renamed file.
Any new file created at the original path within the timeout inherits the metadata
of the renamed file.

Graffiti clients rely on file system event notification which are available in
most modern file systems. The alternative is to poll the file system for changes
and reconstruct event patterns from modification times, such as the rename/create
pattern we just described. The advantage of event notifications over polling is that
file system changes instantly update indices, and that one can track file deletes.
We view polling as a fall-back mechanism in case event notification drops events
or fails entirely.

A Graffiti server only deletes an out-of-date checksum if during synchroniza-
tion none of its clients contain a matching file. For this the server collects check-
sum reference counts from its clients. A client only deletesan out-of-date check-
sum and its associated tags if none of the user’s other clients contain a file that
matches that checksum. Thus, as part of a synchronization clients first submit
changed reference counts to servers and then collects the reference counts for the
current user from the server.

2.3 Tags and Links

Graffiti’s metadata consists of keywords or “tags”. A tag is astring and as such
can represent attribute/value pairs, URLs, file paths, or access rights. A tag is
always associated with a user and one or two files. We call tagsassociated with
two files “links” (see below). The association of tags with users is to allow users to
tag files according to their individual understanding and language preference. For
widely shared files this also allows Graffiti to analyze tag patterns and generate
tag recommendations. Tag recommendations have proven verypopular in existing
collaborative tagging services on the Web such as Del.icio.us [6].

Links represent directional relations between two files. Typical usage exam-
ples of links between files are formal relationships such as previous versions,
software dependencies, neighborhoods in large data sets, and provenance. A sim-
ilar concept was introduced in [8, 9] with the difference that each of those links
can carry an arbitrary set of attribute/value pairs insteadof one tag and one user.

Relationships between files can also be represented by common tags (as op-
posed to links), e.g. the set of all files that are associated with the tag “birthday-
pic”. The difference is that in the case of tags it is the responsibility of users to
keep different relationships distinct by using appropriate tags or tag combinations.
Links allow this responsibility to be delegated to the system because a link is not



6 Proceedings in Informatics

only defined by its tag but also by its source and destination.So the meaning of
a tag in a link can be “overloaded” depending on some propertyof its source or
destination file.

2.4 Tag Interpreters, Indices, and Sharing

Generally, the meaning of tags depends on individual users or some consensus
among users and are not further interpreted by Graffiti. However, Graffiti provides
a plug-in infrastructure that allows the insertion of tag interpreters. The mecha-
nism of tag interpreter plug-ins is a convenient way to introduce new functionality
that is invoked and controlled by tags. Graffiti uses built-in tag interpreters to al-
low users to define indices and to control sharing of metadata. Users define new
indices by specifying tag sub-strings, e.g. all tags that begin with “path:”.

Users control the sharing of metadata by adding “sharing tags” to a file of the
form “sync:” followed by the server name. These tags instruct the Graffiti client to
share metadata with the specified server. The scope of a sharing tag – that is the set
of all tags, links, and file checksums included in the shared metadata – includes in
the current design all tags of the associated file, includingincoming or outgoing
links. Sharing tags can also be links in which case the scope includes all tags
(and links) of the source and target files. We are aware that finer-grained scoping
is possible, and maybe even desirable, but decided to start out with simple file-
level scoping and introduce finer grained scoping in a futureversion of Graffiti if
necessary.

2.5 Tag Sharing

Users frequently share files via email or instant messaging.To allow two Graffiti
users (let us call them sender and receiver) who don’t necessarily have accounts
on a common Graffiti server to also share the metadata on such communicated
files, Graffiti provides a tag sharing protocol: The sender accompanies the file
(within an email or instant message) with a URL that represents a ticket which
allows the receiver to import the metadata to that file to his or her own Graffiti
client. The receiver can request the URL and receive the shared metadata during
the next synchronization unless the sender and receiver do not share the same
Graffiti server. In that case, requesting the URL will returna metadata document
that the Graffiti client can import and associate with the received file.

2.6 Client/Server Synchronization

Graffiti clients either on command or periodically synchronize all file checksums
and tags with Graffiti servers according to sharing tags. Synchronizations conflicts
can only occur when the same user changes metadata on the samefile checksum
on multiple Graffiti clients. Based on the assumption that this is a rare occurrence,



Maltzahn et al.: Graffiti 7

conflicts are resolved by taking the union of all submitted tags. Deleting a file on
one machine and creating it on another (i.e. moving the file from one machine to
another) does not cause a conflict since checksums of deletedfiles are only pruned
when they disappeared from the entire Graffiti system.

3 Implementation

We implemented a prototype of Graffiti. The client is implemented in Java1.5
(J2SE 5.0) on Apple Mac OS 10.4 and consists of about 3,000 lines of code. We
use fslogger [23] to make file system events available to the client, and Apache
Derby [1] to store metadata at the client. The client prototype is designed to be
portable across other platforms and to work with other file system notification
services. The Graffiti server is implemented in Python (version 2.3.4) using the
Twisted server framework (version 2.1.0) [5] and PostgreSQL (version 7.4.11)
and consists of about 1,000 lines of code.

3.1 Client User Interface

We created a simple user interface primarily to get users to use Graffiti – our
focus is the underlying system and not a user interface study. The user inter-
face presented below is influenced by the Del.icio.us [6] Website design and our
experience using Graffiti. The three design goals were (1) beboth script- and
user-friendly, (2) rely as much as possible on the design of established Web inter-
faces such as Del.icio.us, e.g. show all tags, provide tag expansions, and search
by conjunctions of tags, and (3) tightly integrate tagging with searching. All user
interface functionality except for synchronization is based on data stored at the lo-
cal client only. This prototype currently does not support links or indices, nor are
the mechanisms for tag interpreter plugins or for tag sharing fully implemented.

To support tagging a Graffiti clients provides a command lineinterface and a
graphical user interface. Figure 1 shows the usage information of the command
tagwhich allows the user to manipulate tags of one or more files. The commands
are designed to work well in shell scripts environments so they can take advantage
of features such as file expansion and pipes. The commands arealso optimized
for speed by support for manipulating tags of many files with asingle command.
This is particular important for workflow applications in cases where the state is
represented by tag combinations and a change of state involves a large number
of files. In particularly the commandmv allows the match-and-replace of a con-
junction1 of tags. A useful sequence of commands might be to select all files that
match a conjunction of tags, usingfind, process selected files, and change the
tags of files that have been processed usingmv. For performance reasons we also

1Note that a list of tags is always interpreted as a conjunction of tags (which is commutative, of
course) even though they are represented as strings in some commands.



8 Proceedings in Informatics

Figure 1: Usage of the commandtag which provides a command line interface
for the Graffiti client. Many files can be processed with a single command.

included the commandscope which limits checksumming of files to a subtree
of the entire directory tree.

While the command interface is optimized for manipulating tags over a large
number of files, the graphical user interface (Figure 2) attempts to reduce the
cognitive overhead of adding tags to a particular file or searching for files that
have already been tagged. The top entry field allows one to enter tags. The right
panel shows all tags or all expansions of the text typed into the top entry field
(since the last white space or the beginning of the entry field). Selecting will
either replace an incompletely entered tag or add a new tag tothe entry field.
Hitting the “Tag Search” button displays all file paths in thecenter field that
match the conjunction of the tags in the entry field. Files canalso be “drag-and-
dropped” into the center field which replaces any center fieldcontents with the
path name list of the dropped-in files. Selecting one file in the center field dis-
plays the tags of that file in the bottom entry field (note the synchronization tag
sync:mram1.cse.ucsc.edu). Selecting multiple files displays the intersec-
tion of their tags. The bottom entry field allows editing of file tags. Hitting the
“Save” button applies changes to all selected files. If multiple files are selected
the content of the entry field only replaces the intersectionof existing tags (du-
plicates are always ignored). The “Sync” button synchronizes the client with one
or more servers depending on the client’s configuration, andthe progress bar to



Maltzahn et al.: Graffiti 9

Figure 2: The graphical user interface for the Graffiti client attempts to reduce the
cognitive overhead of adding tags to files or searching for tagged files. The design
is based on the Del.icio.us social bookmarking service.

the right of the button gives an estimate of what fraction of the process is com-
pleted. Pressing the “Config” button pops up a dialogue window (Figure 3) that
allows the management of Graffiti server accounts, setting the client’s name, and
resetting either the client or the server synchronization state.

3.2 Server

The Graffiti server implementation allows users to share metadata. Direct ex-
change of metadata between servers is not implemented yet. The server consists
of a relational database back-end and an API that clients access through secure
HTTPS calls. The server has two primary roles. The first role of the server is to
enable the collaboration of metadata across multiple machines. This is accom-
plished through the database and the API. The second role of the server is to col-
lect usage data about collaborative metadata. This is done through event logging
at the server and database levels. The relational database provides a persistent
data-store for collaborative metadata using the schema in Figure 4.



10 Proceedings in Informatics

Figure 3: The dialog window allows users to manage multiple Graffiti server
accounts. Special synchronization tags control how file metadata is shared with
servers, e. g. the synchronization state of the client or anyof the servers can be
reset.

first name

last name

password

Users

email

username

modtime

valid

tag

tag

valid

uri client

own

valid

share

shareid

checksum

date
added

Files

Figure 4: Entity-relationship diagram of the Graffiti server database schema. The
database has four sets of data to manage. The first is the set ofuser accounts for
that server. The second is the set of files, identified by checksum, that are owned
by users. Third, the database tracks the tags that have been placed by users on
files. Finally the server is able to manage metadata that users choose to share.



Maltzahn et al.: Graffiti 11

4 Experience

One of the advantages of Graffiti is that it can be readily usedon existing file
systems without the danger of corrupting or losing file data.This in combination
with Graffiti’s small code base often allowed us to quickly evolve the prototype
based on user experiences. Our key insights were:

Tags do not make hierarchical directories obsolete. We found that directory
hierarchies are only limiting if they are the only mechanismto organize files. We
tried to organize files by tags only while keeping them all in one directory. This
works pretty well as long as that directory only contains files that are of interest
to the user. However, file systems almost always contain a plethora of system files
that one wants to be kept out of the way by keeping them in system-managed
directories as opposed to user-managed directories. Furthermore, we found that
even within user-managed directories there are large sets of files that are managed
by some other system, e. g. a versioning system or a music library application.
In all these cases, we found it is significantly more convenient to use directories,
and that tagging individual files contained in those directories is unnecessarily
tedious. This led us to the insight that directories are goodfor hiding (and for
keeping local name spaces small), while tags are good for finding. A file system
is almost always shared by multiple agents, i. e. multiple users, applications, and
the operating system. These agents have different perspectives on what needs to
be hidden and what needs to be found. For example, we found it useful to be able
to configure Graffiti to ignore files in some subdirectories.

Tagging directories is useful. In cases where we found that files are better man-
aged by subdirectories, it was useful to tag the those subdirectories so that a search
returns file names and directory names. This turns directories into a useful ab-
straction and scalability mechanism that allows the aggregate tagging of a large
number of files without the overhead of tagging each file individually and keep-
ing track of changes to those files. An interesting question is then how to share
directory tags across file systems, i. e. how to give a directory a file system inde-
pendent name. One approach is to take the checksum of the directory tree listing.
Another approach is to specify just enough of a suffix of the directory’s full path
to fully identify copies in other file systems but to not include file system specific
path prefixes. The first approach has the advantage that it fitswell into the existing
infrastructure of Graffiti. Not all file system notification services include directory
updates, but they can be easily derived from file creations, renames, and deletions.
The disadvantage is the same as representing files as checksums of their content:
each change to a directory tree requires metadata updates. Limiting the depth of
a directory tree listing might help, depending on how large upper level directories
are and how often they change. The second approach requires no change tracking



12 Proceedings in Informatics

and therefore scales better than the first approach but we have not sufficiently in-
vestigated this approach to determine whether path suffixesare sufficiently unique
to be used across file systems.

Uncovering duplication has great potential. One side surprisingly useful ef-
fect of managing files with the Graffiti client is that it makesfile duplication vis-
ible. Graffiti revealed a surprising amount of duplication in home directories we
used for testing, and motivates an extension to Graffiti which (1) shows which
machine replicates a given file, and (2) provides a “de-duplication” service that
can be used in a variety of storage management tasks, e. g. forreducing backup
overhead or for filtering out duplicates in search results.

Tagging, searching, and file browsing are frequently interleaved. A com-
monly perceived limitation of the Graffiti user interface isthat it does not provide
the full functionality of a modern file browser such as the Finder in Mac OS X.
For example, the Graffiti client allows one to find files but then one has to find the
file again in the file browser in order to preview, open, or do anything else with
them. Or, while working in the file browser or some other application display-
ing files, one cannot readily add tags to those files. Confirming this observation,
Microsoft recently made available the personal information manager Phlat [11]
which provides an innovative interface that allows for seamless switching be-
tween browsing, tagging, and searching.

5 Related Work

We have already mentioned popular tagging services on the Web [16] that in-
fluenced Graffiti’s design. Many existing file systems provide mechanisms for
rich metadata but fall short in supporting collaborative maintenance of meta-
data [4, 15, 13]. The Linking File System (LiFS) introduces rich file system meta-
data that includes relational links that can carry arbitrary sets of attribute/value
pairs [8, 9]. A number of systems provide support user-specific views on dis-
tributed file systems including standing queries based on rich metadata [12, 19].
A first step towards sharing rich metadata is a feature announced for Mac OS X.5
(Leopard) which allows for access of metadata on remote machines [3].

A number of infrastructures for collaborative metadata exist for particular ap-
plications but lack the generality necessary for all-purpose file systems. Perhaps
the most famous example is the Compact Disk Database (CDDB) [2] where lis-
teners gain access to CD metadata by submitting the fingerprint of the CD based
on the ordered list of track durations (see [20] for an overview on other methods of
matching metadata to CDs). If the fingerprint doesn’t exist,the listener can submit
the track information to the database. Another example is the Scientific Annota-
tion Middleware (SAM) [22] which uses WebDAV [24] servers tocollaboratively



Maltzahn et al.: Graffiti 13

maintain and share metadata of items of scientific data.

6 Ongoing Work and Conclusions

We continue to collect and analyze Graffiti workloads to increase our understand-
ing of how users use rich metadata in file systems. We are currently working on
the next version of Graffiti which will support all Graffiti design features as de-
scribed in section 2, including links, user-defined indices, tag sharing, and tag
interpreter plugins.

We are also developing a system event registration service.This service will
allow users to specify metadata production rules activatedby certain system events.
An example of such a rule would be whenever a user copy-and-pastes content
from one file to another, a link is installed between those files. Such rules will
allow users to accumulate usage information about their filesystems and will pro-
vide valuable data sets for research on contextual information management.

We are also investigating directory identity concepts thatwill allow us to share
directory metadata across file systems. In section 4 we alluded to two such con-
cepts with different costs and benefits.

Due to the content-based file identity concept Graffiti clients and servers re-
veals duplicates across different file systems and users. Duplicate information is
valuable for ranking of search results (list the most convenient file reference only),
for archival (duplicates are archived as references only),and for reliability (ensur-
ing that a minimum number of replicas exist across differentmachines).

Graffiti metadata is tied to the identity of users. This provides opportunities
and challenges. Among the opportunities is the possibilityto build recommen-
dation services on top of Graffiti that will further lessen the cognitive effort of
tagging and might point users to interesting content. But sharing metadata raises
privacy issues which we addressed by allowing users to connect to different Graf-
fiti servers depending on trust and organizational context.We are also investi-
gating alternative schemes that would provide privacy in alternative architectures
such as a single central Graffiti server or a peer-to-peer architecture.

In summary, Graffiti offers a way to share three kinds of metadata: links, tags
and indices. We presented a metadata sharing framework, andits potential appli-
cations are vast and include applications such as distributed data management,
distributed indexing, and search.

References

[1] Apache derby project. http://db.apache.org/derby/.

[2] Cddb. http://en.wikipedia.org/wiki/CDDB.



14 Proceedings in Informatics

[3] Mac os x.5 leopard sneak peek. http://www.apple.com/macosx/leopard/.

[4] Spotlight. http://www.apple.com/macosx/features/spotlight/.

[5] Twisted. http://twistedmatrix.com/trac/.

[6] del.icio.us. http://del.icio.us, Nov 2005.

[7] The imap connection. http://www.imap.org/, 2007.

[8] A MES, A., BOBB, N., BRANDT, S. A., HIATT, A., MALTZAHN , C.,
M ILLER , E. L., NEEMAN, A., AND TUTEJA, D. Richer file system meta-
data using links and attributes. InProceedings of the 22nd IEEE / 13th NASA
Goddard Conference on Mass Storage Systems and Technologies(Monterey,
CA, Apr. 2005).

[9] A MES, S., BOBB, N., GREENAN, K. M., HOFMANN, O. S., STORER,
M. W., MALTZAHN , C., MILLER , E. L., AND BRANDT, S. A. LiFS: An
attribute-rich file system for storage class memories. InProceedings of the
23rd IEEE / 14th NASA Goddard Conference on Mass Storage Systems and
Technologies(College Park, MD, May 2006), IEEE.

[10] BARONCHELLI, A., FELICI , M., CAGLIOTI , E., LORETO, V., AND

STEELS, L. Sharp transition towards shared vocabularies in multi-agent
systems.Statistical Mechanics, P06014 (June 2006).

[11] CUTRELL, E., ROBBINS, D. C., DUMAIS , S. T., AND SARIN , R. Fast,
flexible filtering with phlat – personal search and organization made easy. In
In Proceedings of CHI’06, Human Factors in Computing Systems(Montreal,
Quebec, Canada, April 2006), ACM Press, pp. 261–270.

[12] DOURISH, P., EDWARDS, W. K., LAMARCA, A., AND SALISBURY, M.
Presto: An experimental architecture for fluid interactivedocument spaces.

[13] GIFFORD, D. K., JOUVELOT, P., SHELDON, M. A., AND O’TOOLE, JR.,
J. W. Semantic file systems. InProceedings of the 13th ACM Symposium
on Operating Systems Principles (SOSP ’91)(Oct. 1991), ACM, pp. 16–25.

[14] GOLDER, S. A., AND HUBERMAN, B. A. Usage patterns of collaborative
tagging systems.Journal of Information Science 32, 2 (2006), 198–208.

[15] GOPAL, B., AND MANBER, U. Integrating content-based access mech-
anisms with hierarchical file systems. InProceedings of the 3rd Sympo-
sium on Operating Systems Design and Implementation (OSDI)(Feb. 1999),
pp. 265–278.

[16] HAMMOND , T., HANNAY, T., LUND, B., AND SCOTT, J. Social bookmark-
ing tools (part 1): A general review.D-Lib Magazine 11, 4 (April 2005).



Maltzahn et al.: Graffiti 15

[17] LANSDALE, M. W. The psychology of personal information management.
Applied Ergonomics 19, 1 (1988), 55–66.

[18] M IKA , P. Ontologies are us: A unified model of social networks and seman-
tics. Lecture Notes in Computer Science, 3729 (2005), 522–536.

[19] NEUMAN , B. C. The prospero file system: A global file system based on
the virtual system model.Computing Systems 5, 4 (1992), 407–432.

[20] PACHET, F. Knowledge management and musical metadata. InEncyclope-
dia of Knowledge Management, D. Schwartz, Ed. Idea Group, 2005.

[21] RAINIE , L. 28% of online americans have used the internet to tag content.
http://www.pewinternet.org/PPF/r/201/reportdisplay.asp, January 31 2007.

[22] SCHWIDDER, J., TALBOTT, T., AND MYERS, J. D. Bootstrapping to a
semantic grid. InIEEE International Symposium on Cluster Computing and
the Grid (CCGrid 2005)(May 2005), IEEE, pp. 175–181.

[23] SINGH, A. A file system change logger.
http://www.osxbook.com/software/fslogger/, May 2005.

[24] WHITEHEAD, J. Webdav: versatile collaboration multiprotocol.Internet
Computing 9, 1 (2005), 66–74.

Carlos Maltzahn is with the Department of Computer Science at the Universityof Cali-
fornia, Santa Cruz, CA, U.S.A. E-mail: carlosm@soe.ucsc.edu

Nikhil Bobb is with the Department of Computer Science at the Universityof California,
Santa Cruz, CA, U.S.A. E-mail: nikhil@soe.ucsc.edu

Damian Eadsis with the Department of Computer Science at the Universityof California,
Santa Cruz, CA, U.S.A. E-mail: eads@soe.ucsc.edu

Mark W. Storer is with the Department of Computer Science at the Universityof Califor-
nia, Santa Cruz, CA, U.S.A. E-mail: mstorer@soe.ucsc.edu

Scott A. Brandt is with the Department of Computer Science at the Universityof Califor-
nia, Santa Cruz, CA, U.S.A. E-mail: scott@soe.ucsc.edu

Ethan L. Miller is with the Department of Computer Science at the Universityof Califor-
nia, Santa Cruz, CA, U.S.A. E-mail: elm@soe.ucsc.edu


