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Abstract

Organizing, Indexing, and Searching Large-Scale File Systems

by

Andrew W. Leung

The world is moving towards a digital infrastructure. This move is driving the demand

for data storage and has already resulted in file systems thatcontain petabytes of data and

billions of files. In the near future file systems will be storing exabytes of data and trillions of

files. This data growth has introduced the key question of howwe effectively find and manage

data in this growing sea of information. Unfortunately, fileorganization and retrieval methods

have not kept pace with data volumes. Large-scale file systems continue to rely on hierarchical

namespaces that make finding and managing files difficult.

As a result, there has been an increasing demand for search-based file access. A

number of commercial file search solutions have become popular on desktop and small-scale

enterprise systems. However, providing effective search and indexing at the scale of billions

of files is not a simple task. Current solutions rely on general-purpose index designs, such

as relational databases, to provide search. General-purpose indexes can be ill-suited for file

system search and can limit performance and scalability. Additionally, current search solutions

are designed as applications that are separate from the file system. Providing search through

a separate application requires file attributes and modifications to be replicated into separate

index structures, which presents consistency and efficiency problems at large-scales.

This thesis addresses these problems through novel approaches to organizing, index-

ing, and searching files in large-scale file systems. We conduct an analysis of large-scale file

system properties using workload and snapshot traces to better understand the kinds of data be-

ing stored and how it is used. This analysis represents the first major workload study since 2001

and the first major study of enterprise file system contents and workloads in over a decade. Our

analysis shows a number of important workload properties have changed since previous studies

(e. g., read to write byte ratios have decreased to 2:1 from 4:1 or higher in past studies) and ex-

amines properties that are relevant to file organization andsearch. Other important observations



include highly skewed workload distributions and clustering of metadata attribute values in the

namespace.

We hypothesize that file search performance and scalabilitycan be improved with file

system specific index solutions. We present the design of newfile metadata and file content

indexing approaches that exploit key file system propertiesfrom our study. These designs intro-

duce novel file system optimized index partitioning, query execution, and versioning techniques.

We show that search performance can be improved up to 1–4 orders of magnitude compared to

traditional approaches. Additionally, we hypothesize that directly integrating search into the file

system can address the consistency and efficiency problems with separate search applications.

We present new metadata and semantic file system designs thatintroduce novel disk layout, in-

dexing, and updating methods to enable effective search without degrading normal file system

performance. We then discuss on going challenges and how this work may be extended in the

future.
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Chapter 1

Introduction

Today there is a need for data storage like never before and this need is only in-

creasing. Modern businesses, governments, and people’s daily lives have shifted to a digital

infrastructure, which is projected to require close to two zettabytes (two million petabytes) of

storage by 2011 [58]. This demand, coupled with improvements in hard disk capacities and

network bandwidth, has yielded file systems that store petabytes of data, billions of files, and

serve data to thousands of users [46, 60, 91, 139, 146, 180, 183]. File systems of this scale intro-

duce a new challenge; How do we organize so much data so that itis easy to find and manage?

These systems store data that make up the backbone of today’sdigital world and it is paramount

that data can be effectively organized and retrieved. Additionally this problem is pervasive,

impacting scientific [70, 72], enterprise [51], cloud [126], and personal [142] storage.

File systems of this scale make effectively finding and managing data extremely dif-

ficult. Current file organization methods are based on designs that are over forty years old and

designed for systems with less than 10 MB of data [38]. These systems use a basic hierarchical

namespace that is restrictive, difficult to use, and limits scalability. These systems require users

to manage and navigate huge hierarchies with billions of files, which wastes significant time

and can lead to misplaced or permanently lost data. Similarly, users and administrators must

rely on slow, manual tools to try and understand the data theymanage, which can leads to under

utilized or poorly managed systems. The basic problem is that file systems have grown beyond
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the scope of basic file organization and retrieval methods, which has decreased our ability to

effectively find, manage, and utilize data.

This growing data management problem has lead to an increased emphasis on search-

based file access. File search involves indexing attributesderived from file metadata and con-

tent, allowing them to be used for retrieval. File search is useful in large-scale file systems

because it allows users to specifywhat they want rather thanwhereit is. For example, a user

can access his document by just knowing it was accessed in thelast week and deals with the

quarterly financial records. Additionally, finding files to migrate to secondary storage requires

only knowing the kinds of files to be migrated (e. g., files larger than 50 MB that have not been

accessed in 6 months), instead of where all of these files are located. In most cases, a file’s

location is irrelevant; users need to retrieve their data using whatever information they may

have about it. Moreover, search allows complex, ad hoc questions to be asked about the files

being stored that help to locate, manage, and analyze data. The effectiveness of search-based

file access has led to many file system search applications to become commercially available

for desktop [14, 66, 110] and small-scale enterprise [55, 67, 85] file systems. File system search

has also become a popular research area [49, 63, 69, 124, 154].

Unfortunately, enabling fast and effective search in large-scale file systems is very

difficult. Current solutions, which are designed as applications outside of the file system and

which rely on general purpose index designs, are too expensive, slow, and cumbersome to be

effective in large-scale systems. The index is the data structure that enables effective search

functionality. General-purpose indexes, such as relational databases, are not designed for file

system search and can be ill-suited to address file system search needs. As Stonebrakeret al.

state, there is “a substantial performance advantage to specialized architectures” [161] because

general-purpose solutions make few specialized optimizations and can have mismatched or un-

used functionality, which limit their performance and scalability.

Additionally, while increasingly important, file search isprovided by an application

that is outside of the file system, not the file system itself. Separating the two is an odd model

given that search applications and file systems share a common goal: organization and retrieval

of files. Implementing search functionality in an application outside of the file system leads
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to duplication functionality and requires metadata attributes and changes to be replicated in a

separate database or search engine. Maintaining two indexes of file attributes (e. g., the file

system’s and the search application’s index), leads to manyconsistency and efficiency issues,

particularly at the scale of billions of files. As a result, users and administrators continue to

struggle to find, organize, and manage data in large-scale file systems.

1.1 Main Contributions

In this thesis we address this problem by improving how files are organized, indexed,

and searched in large-scale file systems. This thesis examines two key hypotheses. First, search

performance and scalability can be improved with new indexing structures that leverage file

system specific properties. Second, it is possible to enableefficient search directly in the file

system without degrading normal file system performance. These two hypotheses are evaluated

in the three key contributions of this thesis:

(1) We measure and analyze workloads and metadata snapshotsfrom several large-scale file

systems used in real world deployments. We conduct a number of studies to compare how

workloads have changed since previous studies, as well as, perform several new experiments.

Our analysis reveals a number of observations that are relevant to better file organization and

indexing and to file system design in general.

(2) Using observations from our file system analysis, we present the design of two new in-

dexing structures for file metadata and content. Our designsexploit file attribute locality and

distribution properties to improve performance and scalability. Additionally, new approaches to

index updating and versioning are used. An evaluation showsthat search performance can be

improved between 1–4 orders of magnitude compared to traditional solutions.

(3) We then present two novel file system designs that directly integrate search functionality,

eliminating the need for external search applications. Thefirst organizes metadata so that it

can be easily and effectively queried while maintaining good performance for normal metadata

workloads. The second is a new approach to semantic file system design that organizes the
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namespace into graph-based structure. This new index structure allows dynamic, search-based

file access and navigation using inter-file relationships.

The following sections detail the individual thesis contributions.

1.2 Analysis of Large-Scale File System Properties

Designing better methods for organizing and managing files requires first understand-

ing the properties of the files being stored and how they are used. This understanding is often

guided by measuring and analyzing file system workload and snapshot traces. Trace-based file

system studies have guided the designs of many past file systems [88, 116, 138]. For exam-

ple, caching in the Sprite network file system [116] was guided by the observation that even

small client-side caches can be effective for improving performance [123]. Similarly, the log-

structured file system [138] was guided by observations thatnetwork file system workloads are

becoming increasingly write-oriented [17, 123] due to the presence of client-side caching.

We collect and analyze traces of file system workloads and contents from several

large-scale network file servers deployed in the NetApp corporate data center. These servers

were used by thousands of employees from multiple departments. Our analysis focuses on

trends since past studies, conducts a number of new experiments, and looks at the impact on file

organization and indexing. Our study represents the first major workload study since 2001 [48],

the first to look at large-scale CIFS [92] network workloads,and the first major study of enter-

prise file server contents and workloads in over ten years.

Our analysis reveals a number of interesting observations,such as workloads are be-

coming increasingly write-heavy, files are increasing in size, and have longer lifetimes com-

pared to previous studies. Additionally, we find that file access is mostly transient. Only 66%

of opened files are re-opened and 95% are re-opened less than five times. Files are also rarely

shared as 76% of files are never opened by more than one client.Workload distribution is

heavily skewed with only 1% of clients accouting for almost 50% of file requests. Similarly,

metadata attribute distributions are highly skewed and follow the power-law distribution [152].
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Also, metadata attribute values are heavily clustered in the namespace. All metadata value that

we studied occurred in fewer than 1% of total directories.

1.3 New Approaches to File Indexing

Fast and effective search in large-scale file systems is difficult to achieve. The index is

the data structure that enables search functionality and ineffective index design can limit perfor-

mance and scalability. Current file search solutions utilize general-purpose indexing methods

that are not designed for file systems. These indexes were designed for other workloads, have

few file system search optimizations, and have extra functionality that is not needed for file sys-

tem search. For example, file metadata is often indexed usingrelational database management

systems (DBMSs). However, DBMSs are designed for on-line transaction processing work-

loads [16], use locking and transactions that can add overhead [165], and are not a perfect fit

for metadata search [162].

We hypothesize that new index designs that leverage file system properties can im-

prove performance and scalability. We propose two new indexdesigns, one for structured meta-

data search, called Spyglass, and one for unstructured content search, that leverage observations

from our trace-based analysis to improve performance. For example, we found that metadata

attribute values exhibitspatial locality, which means that they tend to be highly clustered in

the namespace. Thus, files owned by userAndrew are often clustered in locations such as the

user’s home directory or active project directories and arenot scattered across the namespace.

We introduce the notion ofhierarchical partitioning, which allows the index to exploit spatial

locality by partitioning and allowing fine-grained index control based on the namespace. Hi-

erarchical partitioning makes it possible for searches, updates, and caching to be localized to

only the relevant parts of the namespace. We also introduce anumber of other techniques that

improve query execution, update and versioning operation,and metadata collection. An eval-

uation of our metadata index prototype shows that search performance can be improved up to

1–4 orders of magnitude compared to basic DBMS setups, whileproviding update performance

that is up to40× faster and requiring less than 0.1% of total disk space.
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1.4 Towards Searchable File Systems

Despite the increasing trend towards search becoming a primary way to access and

manage files, file systems do not provide any search functionality. Current file system hier-

archies can only be searched with brute force methods, such as grep andfind. Instead, a

separate search application that maintains search-based index structures and is separate from

the file system is often used [14, 55, 67]. However, search applications and the file system share

the same goal: organizing and retrieving files. Keeping file search separate from the file system

leads to consistency and efficiency issues as all file attributes and changes must be replicated in

separate applications, which can limit performance and usability especially at large-scales.

We hypothesize that a more complete, long-term solution is to integrate search func-

tionality directly into the file system. Doing so eliminatesthe need to maintain a secondary

search application, allows file changes to be searched in real-time, and allows data organization

to correspond to the need for search functionality. However, enabling effective search within

the file system has a number of challenges. First, there must be an way to organize file attributes

internally so that they can be efficiently searched and updated. Second, this organization must

not significantly degrade performance for normal file systemworkloads.

We propose two new file system designs that directly integrate search. The first, Mag-

ellan, is a new metadata architecture for large-scale file systems that organizes the file system’s

metadata so that it can be efficiently searched. Unlike previous work, Magellan does not use

relational databases to enable search. Instead, it uses newquery-optimized metadata layout,

indexing, and journaling techniques to provide search functionality and high performance in a

single metadata system. In Magellan, all metadata look ups,including directory look ups, are

handled using a single search structure, eliminating the redundant index structures that plague

existing file systems with search grafted on.

The second, Copernicus, is a new semantic file system design that provides a search-

based namespace. Unlike previous semantic file systems which were designed as naming layers

above a traditional file system or general-purpose index, Copernicus uses a dynamic, graph-

based index that stores file attributes and relationships. This graph replaces the traditional

6



directory hierarchy and allows the construction of dynamicnamespaces. The namespace al-

lows “virtual” directories that correspond to a query and navigation to be done using inter-file

relationships. An evaluation of our Magellan prototype shows that it is capable of searching

millions of files in under a second, while providing metadataperformance that is comparable

to, and sometimes better than, other large-scale file systems.

1.5 Organization

This thesis is organized as follows:

Background and related work: Chapter 2 outlines the file retrieval and management prob-

lems caused by very large data volumes. We also provide the necessary background

information on basic file system search concepts and discusswhy large-scale file sys-

tems make search difficult. Then, we discuss why existing solutions do not address these

difficulties.

Properties of large-scale file systems:Chapter 3 presents the measurement and analysis of

large-scale file system workloads and snapshots. We compareour findings with previous

studies, conduct several new experiments, and discuss how our findings impact how file

systems organize and manage files.

New approaches to file indexing:Chapter 4 presents new index designs that exploit the file

system properties that we observed in Chapter 3. We discuss index designs for file meta-

data and content and compare performance to general-purpose DBMS solutions.

Towards searchable file systems:Chapter 5 discusses how search can be integrated directly

into the file system. We present the design of a hierarchical file system metadata archi-

tecture and a semantic file system that use search-optimizedorganization and indexing.

Future directions: Chapter 6 discusses the future directions of this work. We present ways

that current work can be extended and the new research directions that this work enables.

Conclusions: Chapter 7 summarizes our findings and concludes this thesis.
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Chapter 2

Background and Related Work

This chapter discusses the rapid and continuing growth of data volumes and the im-

pact it has on file and data management. To address this challenge we motivate the use of

search-based file access in large-scale file systems. We thenprovide a basic introduction to file

system search concepts and discuss the challenges in enabling such access in large-scale file

systems.

2.1 The Growing Data Volume Trend

The digital universe is rapidly expanding [58]. Many aspects of business, science,

and daily life are becoming increasingly digital, producing a wealth of data that must be stored.

For example, today’s media such as photos and videos are mostly digital. Web and cloud

services that host this data must be able to store and serve anindefinite amount of this data.

Facebook must manage over 60 billion image files and store over 25 TB of new photo data

every week [52]. It is expected that CERN’s Large Hadron Collider will annually produce

over 15 PB of data [42]. In another example, government mandates such as HIPAA [175] and

Sarbanes-Oxley [176] require the digitization and retention of billions of medical and financial

records. In 2007 the digital universe (i. e., the total number of bytes created, captured, and

replicated) was estimated to be 281 exabytes and is expectedto grow ten fold by 2011 to about

2.8 zettabytes [58].
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Figure 2.1: Network-attached storage architecture. Multiple clients utilize a centralized

server for access to shared storage.

The value of and requirements being place on the data being generated are also in-

creasing. Many important aspects of society are now dependent on the ability to effectively

store, locate, and utilize this data. Some data, such as oil and gas survey results, can be worth

millions of dollars [179]. Other data, such as government department of defense files or nu-

clear test results can be vital to national security and datasuch as genome sequences and bio-

molecular interactions are key to the future of modern medicine. Additionally, the digitization

of people’s personal lives (e. g., personal photos, letters, and communications) has given data

great sentimental value and made its storage critical to preserving personal histories.

2.2 Scalable Storage Systems

The increasing demand for data storage has driven the designof data storage sys-

tems for decades. The scale at which data is produced has forced system designs to focus on

scalability and eliminating bottlenecks that may limit performance. There have been major

improvements in throughput and latency, reliability, cost-effectiveness, and distributed designs

over the years. As a result, today’s large-scale file systemsare capable of storing petabytes of

data and billions of files, are composed of thousands of devices, and can serve data to thousands

of users and applications [2, 36, 46, 60, 62, 91, 139, 146, 180, 183].
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Early scalable file systems used a basic network-attached storage model where many

clients were directly connected to a single centralized storage server as shown in Figure 2.1.

Storing data on a centralized server allowed it to be more easily shared, accessed from mul-

tiple locations, and provided more efficient utilization ofstorage resources. Protocols such as

AFS [79] and NFS [127] are used to transfer data between the client and server. A number of file

systems have been designed for the centralized file server, such as LFS [138] and WAFL [77].

These systems are often optimized for write performance because client caches are able to re-

duce the read traffic seen by the server. However, a single centralized server can often become a

performance bottleneck that limits scalability. A single server can only serve a limited amount

of storage and can become overwhelmed with requests as the number of clients or requests in-

creases. To address this problem, clustered file systems, such as Frangipani [172] and ONTAP

GX [46], allow multiple central servers to be used.

2.2.1 Parallel File Systems

Parallel file systems are a type of clustered file system that can achieve better scal-

ability by allowing storage devices to be highly cluster (e. g., up to thousands of devices) and

by separating the data and metadata paths. The basic design is illustrated in Figure 2.2. These

systems are composed of metadata servers (MDSs) that store and handle file metadata requests

and data servers that store and handle file data requests. Clients communicate directly to both

metadata and data servers for file operations. Files are often striped across many storage devices

allowing clients to access a file using many parallel I/O streams.

Network-Attached Secure Disk (NASD) [62] was an early parallel file system archi-

tecture that introduced the concept of object-based storage. Object-based storage exploits grow-

ing price reductions and performance improvements in commodity CPU and memory hardware

to provide intelligent network-attached storage devices.These object-based storage devices

(OSDs) greatly improve the design because MDSs need to do less management, as OSDs can

manage their own local storage.

The original NASD design has spawned a number of other parallel file systems. The

General Parallel File System (GPFS) [146] from IBM uses a single metadata server, called

10



Client
Client
Client MDS

OSD

1: metadata request

2: metadata response

3: I/O
 request

4: I/O
 response

P
ol
ic
y 
co
nt
ro
l

MDS

OSDData

Store

OSD
OSDData

Store
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the metanode, to handle metadata requests and perform distributed metadata locking. The dis-

tributed locking protocol hands out lock tokens to lock manager nodes, which eliminates the

need for the metanode to handle all locking requests, thereby improving scalability. A fail-over

mechanism allows another node to step in to perform metadataactivities if the metanode fails.

Similarly, the Google File System (GFS) [60] uses a single metadata server, called

the master, and many data servers, called chunkservers. By using a single master, the overall

metadata design is simplified, however, they acknowledge itcan present a performance bottle-

neck. To reduce load on the master, the master only stores twokinds of in-memory metadata,

a chunk location mapping, and an operations log for crash recovery. This approach reduces the

number of client requests made to the master. Also to improveperformance, GFS uses a loose

consistency model that is acceptable for their workloads. The Linux PVFS file system [34] also

uses a single metadata server.

However, when metadata requests cannot be avoided, such as during a metadata in-

tensive workload, a single metadata server can present a bottleneck. To alleviate this problem,

PanFS [183] from Panasas uses a cluster of metadata servers,called manager nodes. Manager

nodes, unlike other MDSs, do not store metadata in them. Instead, file metadata (i. e., owner,

size, modification time,etc.) is stored directly with the file’s objects on the storage devices. The

metadata manager manages the semantics for these files, suchas locking and synchronization.
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Additionally, it maintains an operations log for crash recovery. Each manager is responsible for

managing a single logical volume, which is usually made up ofabout ten data nodes.

The Ceph file system [180] also clusters MDSs for performance, though uses a dif-

ferent approach. Rather than have the storage devices handle metadata requests for the data

they store, the MDS cluster handles all metadata requests and uses the data stores only for

persistent storage. The MDS cluster provides good load-balancing by allowing fragments of

the namespace, as small as portions of a directory, to be replicated across the cluster using a

method called dynamic sub-tree partitioning [182]. MDS load is decreased through a file map-

ping function [181] that maps inode identifiers to their location on storage devices, eliminating

the need for the MDS to perform block look ups. Inodes are embedded directly within their

parent directory, allowing more efficient reading and writing of metadata.

2.2.2 Peer-to-Peer File Systems

Another trend in large-scale file systems has been to look at how to more effectively

scale costs by relying on commodity desktop computers or those available over the Internet

instead of high-end, customized servers. These systems areoften composed of less powerful

machines, such as personal computers, that leverage cheap or freely available resources. Each

node’s role is dynamic and there is often no clear client-server model, causing these systems to

often be referred to as peer-to-peer file systems. As the performance of commodity hardware

increases to the point where it can rival custom hardware, peer-to-peer file systems are becoming

increasingly common. These systems are popular for contentdistribution networks, such as

BitTorrent and are beginning to move into enterprise environments [8, 41].

OceanStore [91] is a global-scale file system that provides data redundancy and secu-

rity. Files are addressed using globally unique identifiers(GUIDs) and different storage mech-

anisms are used for active and archival data. A distributed routing algorithm locates files, using

their GUID, that may be on servers scattered across the globe. Data can be placed on any node

in the file system, which allows for flexible replication, caching, and migration. Since devices

are far less reliable then dedicated machines, complex update algorithms must be used to ensure
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basic file system semantics are preserved even when nodes frequently fail or may be prone to

abuse.

Like OceanStore, PAST [139] is another global-scale file system where commodity

nodes organize into a overlay network. PAST leverages the global distribution of nodes to

improve the reliability and availability of data, as no single physical disaster will likely destroy

all copies of a data object, making it an attractive solutionfor backup and archival storage.

PAST uses the Pastry [140] overlay routing system, which takes into account geographical

location when routing data.

Pangaea [141] is a peer-to-peer file system that is intended for day-to-day use rather

then backup or archival storage. Pangaea uses the under-utilized resources of most computers

on a LAN to provide high-performance file access that should resemble a local file system.

This is done through pervasive replication, which makes copies of data whenever it is accessed,

ensuring that data is always close to the users that are accessing it. To provide data consistency,

replicas use an optimistic coordination protocol that allows them to efficiently exchange update

messages.

FARSITE [2] attempts to address a similar problem as Pangaea, providing perfor-

mance comparable to a local file system. FARSITE notes that, since desktop computers are

being utilized, the system is likely to experience a much wider variety of errors and faults than

traditional file systems. As a result, they use a byzantine fault-tolerant protocol to ensure that

the system remains available even in the face of unpredictable errors. A distributed directory

protocol [44] that allows the namespace to be distributed over many nodes using immutable

tree-structure file identifiers. This approach eliminates the need to migrate files when their

pathnames change because distribution is done using immutable file identifiers rather than path-

name. Various kinds of metadata leases allow FARSITE to effectively balance metadata load to

avoid bottlenecks.

2.2.3 Other File Systems

While basic scalability and performance are the focal points for many applications, a

number of other file systems have been designed to enable other kinds of storage functionality.
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BigTable [36] and Boxwood [102] provide logical abstractions above the physical storage that

change the way applications interact with data. These systems are often intended to provide

a better way to represent complex stored data rather than with a basic hierarchical namespace.

BigTable is a large-scale multi-dimensional map where datais addressed using row, column, and

time stamp identifiers rather than traditional file IDs. It isbuilt on top of the Google file system

and uses the Google SSTable, which is a file format that maps ordered key to values, to map keys

to their data locations in the file system. Each row in the table is called a tablet and is the unit

at which data is distributed across the file system. BigTableis intended to be used in large-scale

data processing applications, such as building a web index.Similarly, Amazon’s Dynamo [41]

uses a basic key-value storage interface built on top of a peer-to-peer file system. Their focus is

on providing effective Service Level Agreements (SLAs) to customers and applications.

Boxwood [102] allows the construction of general data structures over a cluster of

storage servers. The storage system can be used as any other data structure would be used by an

application. For instance, building a distributed database is significantly easier when the storage

system presents distributed B-tree or hash table abstractions. Boxwood handles many of the

underlying communication mechanisms that make developingtraditional distributed systems

difficult.

The need to preserve data for decades or centuries has resulted in the design of sev-

eral large-scale archival file systems. It is predicted thatarchival storage demands will ex-

ceed primary storage demands as more data is created and kept[58]. Venti [130] is a content-

addressable distributed archival storage system that seeks to ensure data is maintained through

write-once storage. The namespace is the content hashes of the data blocks and is distributed

across nodes in the system and uses disk-based storage rather than tape, which provides better

reliability and performance. Similarly, Pergamum [166] uses disk storage, rather than tape and

through the use of spin-down and data encoding techniques can provide cheaper, more reliable

long-term storage.

14



2.3 The Data Management Problem in Large-Scale File Systems

The increasing amount of data being stored in enterprise, cloud and high performance

file systems is changing the way we access and manage files. Theimprovements in file system

design that we discussed have enabled the storage of petabytes of data and billions of files.

However, this growth has resulted in a new and largely unsolved problem; How to effectively

find and manage data at such large-scales. File systems organize files into a basic hierarchical

namespace that was designed over forty years ago when file systems contained less than 10 MB

of data [38]. File access requires explicit knowledge of thefile’s name and location. While the

hierarchical namespace has been successful as file systems have grown to millions of files (as

evidenced by its longevity), its limitations become obvious and very problematic as file systems

reach billions of files. The basic problem is thatas file systems have grown in scale, improve-

ments in file organization and retrieval have not kept pace resulting in no way to effectively find

and manage files in large-scale file systems.

The goal of the file system is to provide reliable, persistentstorage of files and to orga-

nize them in a way that they can be easily accessed and retrieved. Stored data is of limited value

if it cannot be effectively accessed and utilized. When file systems lack effective organization

and retrieval functionality, data essentially becomes “trapped” within the file system, cannot

be utilized, and is of little value. In some cases poor organization can cause files to be com-

pletely lost. For example, NASA’s original footage of the moon landing has been permanently

misplaced despite being stored on tape shortly after it was recorded [171].

Moreover, storage users and administrator waste considerable time trying to organize

and locate data. At the petabyte-scale and beyond, basic tasks such as recalling specific file

locations, finding which files consume the most disk space, orsharing files between users be-

come difficult and time consuming. Additionally, there are agrowing number of complicated

tasks such as regulatory compliance, managing hosted files in a cloud, and migrating files be-

tween storage tiers for maximum efficiency that businesses must solve. For users, this wasted

time can decrease productivity and limits the overall effectiveness of the file system. If a file’s

location is not know, a great deal of effort and time must be spent navigating and traversing the
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namespace trying to locate it. This process becomes much more difficult, time consuming, and

less accurate when users must sift through billions of files.As a result, great care must be taken

in organizing files and monitoring how data is used. Directories and files may be meticulously

named with thehopethat they can be recalled later or located through basic file browsing. For a

storage administrator, not being able to properly find and analyze data can lead to under utilized,

poor performing, and less reliable storage systems. For example, if an administrator cannot find

out which files are rarely or frequently accessed they cannotdetermine proper tiering strategies.

Ineffective management is perhaps more serious as it puts all data in the file system in jeopardy.

File systems organize files into a hierarchical namespace. This organization provides

a number of problems for finding and managing files at large-scales.

1. Files organization is restrictive.File system organization closely resembles the way ob-

jects would be organized in the physical world, such as files in a filing cabinet. In the

physical world, retrieving a file from a filing cabinet may require knowing that it is in

first folder, in the second drawer of the third cabinet of the library. Retrieving a digital

file requires knowing its physical location in the file system. Retrieving a file may re-

quire knowing it is in directory/usr/local/foo/ under the namemyfile.txt and under the

/cs/students/ mount point. However, the file’s location by itself is a poor metric for re-

trieval because it does not describe the file and is irrelevant to the data that it contains.

What matters is being able to find files with whatever information may be known about

them.

Additionally, as in the physical world, files can only be organized along a single axis.

For example, academic papers in a physical filing cabinet maybe sorted by the author’s

last name. This organization is helpful if the author’s lastname is known but useless if

only the title or subject of the paper is known. Similarly, ina file system, if directory

and file organization is based on the file’s owner then it is very difficult to find a file if

only its type or subject matter are known. It is not hard to imagine how difficult it would

be to find and manage a physical filing cabinet containing billions files; it is similarly

difficult to manage file systems of this size. File systems do maintain a number of per-
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file attributes, such as size, access and modifications times, extension, and owner that

would be useful for retrieval. However, these attributes are not indexed and can only be

used for retrieval during a brute force search. Similarly, files can only be related through

parent → child relationships with directories. Other important inter-file relationships,

such as provenance, temporal context, or use in a related project, are lost. Even the

physical world is better in some regards. For example, libraries use card catalogs which

are a level of indirection between a books location in the library and its attributes (e. g.,

author, date of publication, topic) that aid retrieval.

2. File organization and retrieval are manual.Accessing a file requires manually telling

the file system specifically where the file is. When a file’s location is not known, the

file system’s namespace must be manually navigated. The file system provides no way

to automatically locate these files or aid the search. For example, if an administrator

wants to know which files have not been accessed in the past month then a brute force

navigation of the namespace must be done where each file’s access times are analyzed.

Answering these kinds of questions with brute force search is far too slow to be practical

at large-scales.

Additionally, users and administrators need to answer questions about the properties of

the files being stored in order to properly manage their data.At large-scales, it can be

very difficult to manually answer these questions because there is often only a limited

understanding of what is being stored and how it is being used. For example, answering

“which files should be backed up and which should be deleted?”, “where are the files with

the flight information from my last vacation?”, or “which files were recently modified in

my source code tree?”, are very difficult to answer because they often require traversal of

billions of files. At the scale of billions of files, manual organization and access are often

not practical.
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2.3.1 Search-Based File Management

The data management problem stems from the fact thatfile system hierarchies have

grown beyond the ability of any single user or administratorto effectively manage them. The

lack of an effective and scalable method to locate and manages files has resulted in the ten-

dency for data utility or usefulness to decrease as the size of the system increases. Fortunately,

decades of research and practice in the file systems, information retrieval, and database com-

munities have shown thatsearch provides a highly scalable retrieval method that canaddress

many of these problems. File system search improves file system management by allowing files

to be retrieved using any of their features or attributes. Retrieving a file requires only knowing

what one wants rather thanwhereto find it. Search eases the burden of organizing and nav-

igating huge file hierarchies and allowing files to be quicklysummarized to provide a better

understanding of the state of the file system [148]. Additionally, prior work has shown that

search is far better aligned with how users think about and recall their data than standard file

hierarchies [47, 157, 170]. The scalability of search as a retrieval method is also made evident

by it success on the Internet, where search engines, such as Google and Yahoo!, have revo-

lutionized how web pages are organized and accessed. Additionally, file system search has

found commercial success on both desktop [14, 66, 110] and small-scale enterprise [55, 67, 85]

file systems. There has also been an increasing demand for filesearch in high-end computing

(HEC) [72], cloud [126], personal [142], and enterprise [51] file systems. While we are not

suggesting hierarchies are never useful (they are the best solution in some cases), they are a

poor choice as a general solution.

2.3.2 File System Search Background

File systems store two kinds of data: the file data itself and metadata, which is data

describing the file data. These two kinds of data allow different kinds of file searches to be

performed.
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2.3.2.1 File metadata

File metadata, such as inode fields (e. g., size, owner, timestamps,etc.), generated

by the storage system and extended attributes (e. g., document title, retention policy, backup

dates,etc.), generated by users and applications, is typically represented as〈attribute , value〉

pairs that describe file properties. Today’s storage systems can contain millions to billions of

files and each file can have dozens of metadata attribute-value pairs, resulting in a data set with

1010 − 1011 total pairs. Metadata search involves indexing file metadata such as inode fields

and extended attributes.

Metadata search allows point, range, top-k, and aggregation search over file proper-

ties, facilitating complex, ad hoc queries about the files being stored. Metadata search can help

users and administrators understand the kinds of files beingstored, where they are located, how

they are used, how they got there (provenance), and where they should belong. For example, it

can help an administrator answer “which files can be moved to second tier storage?” or “which

application’s and user’s files are consuming the most space?”. Metadata search can also help

a user find his or her ten most recently accessed presentations or largest virtual machine im-

ages, manage their storage space, or track file changes. Efficiently answering these questions

can greatly improve how users and administrators manage files in large-scale file systems. As

a result, metadata search tools are becoming more prevalent; recent reports state that 37% of

enterprise businesses use such tools and 40% plan to do so in the near future [51]. Additionally,

it is one of the research areas deemed “very important” by thehigh-end computing commu-

nity [72].

2.3.2.2 File content

File content search involves searching the data that exist within the file’s contents.

The content that can be searched are keywords, terms, and attributes that are extract from a file

using transducers. Transducers are programs that read a file’s contents and parse specific file

types to extract information, which are often string-basedkeywords. For example, a transducer

that can parsepdf file types can parse an academic systems paper about file systems and extract
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keywords such asdisk, log − structured, or workload from its contents. A large-scale file

system may contain thousands of keywords per file, yielding possibly up to1012−1013 keyword

occurrences.

Content search is the foundation of most modern file system search applications. This

type of search is very similar to the type of web search that search engines like Google and Ya-

hoo! provide. These search engines parse keywords and termsfrom web pages and documents

and index them. File content search allows a file to be retrieved using almost any piece of in-

formation contained within the file. Search results are ranked using algorithms, such as TF/IDF

(term frequencyinverse document frequency) [135], which ranks the files it believes to better

match what the user is looking for higher. In contrast, metadata search uses Boolean search

where query results either completely satisfies all fields inthe query or they do not.

2.3.3 Large-Scale File System Search Use Cases

To further emphasize the importance of search in large-scale file systems we discuss

several use case examples.

1. Managing scientific data.Large-scale file systems are commonly used for high-performance

computation (HPC) applications, such as scientific simulations [39, 178]. A single high-

performance physics simulation, for example, can generatethousands of files containing

experiment data. The large number of files makes finding thosewith relevant or interest-

ing results very difficult. As a result, a scientist may go to great lengths to organize the

experiment files in a way that aids later navigation [23]. Forexample, a file’s name may

be a composition of the experiment’s attributes. An experiment that succeeded, took 1

hour and 30 minutes to complete, and calculated a particle collision value of 22 micro-

joules may be namedrun 1 succ 1h30m 22uj.data. However, this still requires

the scientist to manually parse thousands of files, which is slow, tedious, and inaccurate.

On the other hand, file search allows the scientist to easily navigate these files by simply

querying the attributes that they are interested in. For example, finding all successful ex-

periment files can be done by querying all.data files in the.../phys sim/data/
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directory that are associated with the attributesuccessful. Likewise, a scientist may

be able to find the average energy from a particle collision byquerying all successful tests

and averaging the energy attributes of the search results.

2. Aiding administrator policies.File system administrators rely on an understanding of

what kinds of data are stored on a file system and how it is used to design and enforce

their management policies. As file systems grow, it becomes more difficult to gather

this information, often resulting in poor management policies. For example, large-scale

file systems often employ tiered storage that allows different classes of data to reside on

different classes of storage [184]. Finding which files should reside on top-tier storage

and which should reside on lower-tier storage is a difficult chore for administrators [111],

causing migration policies to often be simplistic and inaccurate. However, search can help

an administrator decide on and enforce migration policies.An administrator who wants

to migrate all files that have not been accessed in the past sixmonths to tier-two is hard

pressed to traverse possibly a billion files to find them. Using search, the administrator

can simply query for the files with modification times longer than six months ago and get

an answer much faster. Likewise, before deciding on a six-month policy the administrator

may try and find how many files are actively being accessed. Without search, finding the

files accessed during the course of the day is difficult; however, search requires only a

simple daily query to answer this question.

3. Meeting legal obligations.With today’s increasing digital legislation, such as Sarbanes-

Oxley [176] and HIPAA [175], many file systems arerequired to keep data for certain

periods of time and to ensure it is not changed and is always available. This is a difficult

task in large file systems because it requires an administrator to navigate and monitor

up to billions of files to track compliance data. Additionally, the administrator must be

able to ensure that these files have not been modified and must be able to produce them

when subpoenaed to do so. Failure to meet these requirementscan result in potential

legal actions. However, search greatly eases these pains astracking, monitoring, and

producing files can all simply be done through queries. For example, an administrator

21



may attach attributes to a file that define its legal retentionperiod, a hash of its contents

for verification, and the internal financial audits it may be related to. Thus, in response

to a subpoena or lawsuit, a query on these attributes can quickly bring up all related

documents and verify their contents.

4. Archival data management.Often the largest file systems are those that act as digital

archives [130, 166, 189]. Archival data is often written once and retrieved infrequently,

possibly decades later by different users (e. g., children or heirs). As a result, directory

and file organizations are often long forgotten and can be toolarge to easily re-learn.

When archived data cannot effectively be retrieved or cannot later be found, it makes the

preservation of the bits less important. However, search provides a simple and effective

mechanism for the contents of a digital archive data to laterbe found. For example, if one

were to inherit their grandparent’s archived data in a will,and were looking for digital

photos from a specific event, they could easily find this data through by query attributes

related to the event. Likewise, if an archive stores medicalrecords, a simple search for

the patient and the date can return their records. Manual search of an archive may take

weeks and not guarantee that the data is found.

5. Everyday file usage.While the examples above demonstrate areas where search is helpful,

they do not represent most users’ everyday interactions with the file system. Typically,

large-scale file systems are used for a variety of applications, with different users perform-

ing different tasks. For example, a large file system may haveone user managing digital

photos taken during an archeology excavation, one using AutoCAD drafting files, others

working on a source code project, and others working on financial documents. Each of

these users faces the challenge of organizing and managing their data. File search can

ease the burden of trying to organize files into hierarchies because users are no longer

worried about forgetting a single file path. Likewise, they no longer need to waste time

or risk losing files when they cannot recall their pathnames.Since organizing, finding,

and managing files is the primary way users interact with the file system, search has the

potential to drastically change how the file system, in general, is used and to improve its
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overall utility. In other words, it can potentially revolutionize the file system as it did with

the Internet.

2.4 Large-Scale File System Search Challenges

While search is important to the overall utility of large-scale file systems, there are

a number of challenges that must be still be addressed. Both discussions with large-scale file

system customers [129] and personal experience have shown that existing enterprise search

tools [12, 55, 67, 85, 109] are often too expensive, slow, andcumbersome to be effective in large-

scale systems. We now discuss some of the key challenges.

1. Cost. Searching large-scale file systems requires indexing billions of attributes and key-

words. Large-scale search engines and database systems rely on dedicated hardware to

achieve high-performance at these scales. Dedicated hardware allows these systems to

serve searches from main-memory, utilize all CPU resources, and not worry about disk

space utilization. Additionally, most are not embedded within the system, requiring ad-

ditional network bandwidth to communicate with the storageserver. Businesses that

use these search systems, such as large banks and web search companies, can afford

to provide this hardware because search performance is key to their business’s success.

Many DBMSs used in banking systems assume abundant CPU, memory, and disk re-

sources [75]. Large-scale search engines, such as Google and Yahoo! use large, dedicated

clusters with thousands of machines to achieve high-performance [15]. However, with

these hardware requirements it can cost tens of thousands ofdollars to search just mil-

lions of files [65]. This cost is far too high for most file system budgets. Even if the cost

can be budgeted, other file system necessities, such as I/O performance and capacity, gen-

erally take precedence. As a result, reliance on dedicated hardware for high-performance

search can limit deployment in most large-scale file systems.

2. Performance. Search performance is critical for usability. For example,web search

engines aim to return results in several hundred milliseconds [41]. Likewise, update
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performance is important because updates must be frequently applied so that search re-

sults accurately reflect the state of the file system. Achieving fast search and update

performance is difficult to do in file systems with billions offiles and frequent file mod-

ifications [10, 48, 178]. Unfortunately, current solutionsoften rely on general-purpose,

off-the-shelf indexing and search technology that is not optimized for file systems. Al-

though standard indexing solutions, such as DBMSs have benefited from decades of per-

formance research and optimizations, such as vertical partitioning [87] and materialized

views, their designs are not a perfect fit for file system search. These systems lack file

system specific optimizations and have functionality that is not needed for file system

search and which can add overhead even when disabled [165]. This is not a new con-

cept; the DBMS community has argued that general-purpose DBMSs are not a “one

size fits all solution” [28, 162, 165], instead saying that application-specific designs are

often best. Similarly, Rosenblum and Ousterhout argued that “file system design is gov-

erned by...technology...and workload” [138], which isnot the approach taken by general-

purpose solutions. As a result, it is difficult to achieve scalable, high-performance search

in large-scale file systems. While many desktop search systems can achieve performance

on a single, small desktop, it is difficult to scale these solutions to multi-user file systems

with billions of files.

3. Data collection and consistency.File search is often implemented as an application out-

side of the file system. In order for search results to accurately reflect the file system,

file changes must be extracted from the file system and these changes must be replicated

in the search application’s index. However, large-scale file systems have billions of files

and highly demanding workloads with rapidly changing files [10, 48, 178]. This size and

workload make efficiently collecting these changes very difficult. Also, collection meth-

ods such as crawling the file system or interposing hooks along I/O paths, can have a

negative impact on file system performance. We have observedcommercial systems that

took 22 hours to crawl 500 GB and 10 days to crawl 10 TB. Due to the inability to quickly
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collect changes and update the index, large-scale web search engines updates are applied

off-line on a separate cluster and the index is re-built weekly [15].

4. Highly distributed. In order to achieve needed performance and scalability, large file

systems are distributed. Similarly, a large-scale search index, which can have space re-

quirements that are as high as 20% of the file system’s capacity [20], must also be dis-

tributed. However, distributed search engines, such as websearch engines, often perform

static partitioning across a cluster of dedicated machinesand perform only manual, of-

fline updates [106, 132]. These hardware and update methods are not feasible for file

system search, which must often be integrated with the file system to limit cost, must be

frequently updated, and handle changing workloads. Additionally, distributing the index

can help to co-locate indexes near the files that they need to access and provides parallel

execution, such as with MapReduce [40].

5. Ranking.Searching the web has been greatly improved through successful search result

ranking algorithms [29]. These algorithms often rank results so well that they only need

to return the few top-K results to satisfy most queries [151]. However, such algorithms

do not yet exist for file systems, particularly, large-scalefile systems. Current desktop and

enterprise file systems often rely on simplistic ranking algorithms that require users to sift

possibly through thousands of search results. File systemscurrently lack the semantic

information, such as hyperlinks, that web rankings algorithms leverage [25]. In large-

scale file systems, a single search can return millions of results, making accurate ranking

critical. To address this problem there has been an increasing amount of work looking at

how to use semantic links [73, 149, 155] in the file system can improve ranking.

6. Security.Large-scale file systems often store data, such as nuclear test results, that make

security critical. File system search should not leak privileged data otherwise it cannot be

used in a wide variety of systems. Unfortunately, current file system search tools either

do not enforce file permissions [12] or significantly degradeperformance [33] to do so.

In many cases, security is addressed by building a separate index for each user [33].

This approach guarantees that the user has permission to access the files in his or her
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index. However, this approach also requires prohibitivelyhigh disk space since files are

often replicated in many indexes. Moreover, changing a file’s permissions can require

updating a large number of user indexes. Another approach isto perform permission

checks (i. e., stat() calls) for every search result and only return results that pass the

check. However, performing a permission check on what may bemillions of files can

significantly impact performance and pollute file system caches.

7. Interface. The traditional file system interface (i. e., POSIX) has lasted more than three

decades in part because it uses a simple (albeit limited) organization paradigm. How-

ever, search-based access methods require a more complicated interface since files can be

accessed with any of their attributes, search results must be shown, and inter-file relation-

ships need to be visualized. Moreover, the interface must besimple enough for users to

be able and willing to use frequently. Basic search interfaces, such as the simple Google

keyword box, are likely too simplistic to express the kinds of queries that users need to

ask, while languages such as SQL [35] are likely too complicated. Current and previous

work has looked at how to use new interfaces [7, 89] to improveinteraction with the file

system.

2.5 Existing Solutions

This thesis builds on work in the file system, information retrieval, and database com-

munities. We now highlight existing work in file system search from these fields and discuss

the challenges that still remain for large-scale file systemsearch.

2.5.1 Brute Force Search

Early file system search tools aimed to make brute force search less cumbersome.

Tools such asfind andgrepwalked the file system hierarchy, accessing each file, and check-

ing whether it matched the query. When file systems were relatively small these tools were

quite effective. However, at large-scales this approach isnot practical because searches can

take hours or days and utilize most of the file systems resources.
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A number of approaches have looked at how to improve the performance of brute

force search. For example, MapReduce [40] can distributegrep operations across a cluster so

that they are close to the data they need to access and run in parallel. Diamond [81] uses an

approach calledEarly Discard to quickly identify if a file is relevant to a query. Early Discard

used application-specific “searchlets” to determine when afile is irrelevant to a given query.

This approach reduces the amount of data that must be read by analyzing a small part of a file

to determine whether it is worth continuing to search.

2.5.2 Desktop and Enterprise Search

More recently search systems have relied on indexing to improve performance. The

index is a data structure that pre-computes the location of attributes and keywords in the file

system. Thus a query only needs to perform an index look up rather than a traversal of the

entire file system. This is the approach taken by the many of desktop [12, 66, 108, 110] and

small-scale enterprise [55, 67, 82, 85] file system search applications. These applications often

consist of a general-purpose relational database (DBMS) and an inverted index. The DBMS pro-

vides structured metadata search while the inverted index provides unstructured content search.

Additionally, they are implemented as applications outside of the file system. These applica-

tions supplement the file system’s lack of search support anddo not require the file system to

be modified. The file system is periodically crawled to reflectnew file changes in the search

application’s index.

Virtually all major operating systems (Windows, OSX, and Linux) now ship with file

system search functionality included. Additionally, recent reports show that most enterprise

businesses use or are planning on using an enterprise file system search appliance in the near

future [51]. Businesses often use these appliances to improve employee productivity and to

ensure legal compliance guidelines are followed. Both desktop and enterprise search target

smaller-scale systems, storing gigabytes of data and millions of files [65]. As a result, the

general-purpose indexing solutions these applications use are relatively effective at such scales.

Since these applications reside outside of the file system, file attributes are usually collected by
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walking the file system namespace and reading each file’s metadata and data. Oftentransducers

are used to parse various file type formats (e. g., doc, pdf, etc.) and extract keywords.

While desktop and enterprise file system search is popular and becoming ubiquitous,

it is not well suited to scale to large-scale file systems in either cost, performance, or manage-

ability. Reliance on general-purpose index designs make few file system optimizations, do not

efficiently enforce security, and require significant file system CPU, memory, and disk resources

(for example, enterprise appliances ship with their own dedicated hardware resources [65]).

Additionally, crawling the file system and updating the index are very slow which causes the

search index and file system to be frequently inconsistent which can yield incorrect search re-

sults. Thus, these systems serve to demonstrate the importance and popularity of file system

search but also demonstrate the challenges in scaling to very large file systems.

2.5.3 Semantic File Systems

File system search applications, such as desktop and enterprise search tools, do not

address the limitations of hierarchical file systems. Instead they provide an auxiliary application

that can be searched. However, the limitations of hierarchical file system organizations, which

were identified over two decades ago [113], have prompted significant research into how files

systems should present information to users. One of the firstfile systems to do this was the

Semantic File System (SFS) [63]. SFS points out the limitations of traditional file system hier-

archies and proposes an extension to the hierarchy that allows users to navigate the file system

by searching file attributes that are automatically extracted from files. Virtual directories, which

are directories whose contents are dynamically created by aquery, are used to support legacy

applications. These file systems are called “semantic” because the namespace allows files to be

organized based on their attributes and semantic meaning (e. g., with virtual directories) rather

than simply a location. Thus, a user can navigate a dynamically created hierarchy based on any

file attributes. The SFS design is made to work as a back-end file server with existing NFS and

AFS protocol, however, it is not distributed across multiple servers. SFS relies on B-trees to

index and provide search over file attributes.
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SFS introduced the concept of a dynamic, search-based namespace for file systems.

A number of file systems extended the basic concepts described in SFS to provide additional

functionality. The Hierarchy and Content (HAC) [69] file system aims to integrate existing

hierarchical file organizations with content-based searchof files, with the goal of lowering the

barrier to entry to semantic file systems for users. The authors argued that a key reason that

SFS never caught on as a popular file system design was that it was too difficult for users to

move from a standard hierarchical file system to a search-based one. Starting with a traditional

hierarchical file system, HAC adds content-based access by allowing new semantic directories

to be created, which are normal directories that are associated with a query and contain symbolic

links to search results and can be scoped to only a part of the hierarchy. They introduced the

notion ofscope consistencyto deal with file attribute changes in nested virtual directories. HAC

was implemented on top of a normal UNIX file system and uses the GLIMPSE [104] file system

search tool provide search of file contents.

The pStore file system [188] extends traditional file systemsto allow complex se-

mantic file metadata and relationships to be defined. They introduce a new model for defining

the attributes of a file and data schemas that are more flexiblethan those offered by traditional

databases. Their data schemas are based on the Resource Description Framework (RDF). These

schema’s are used to construct customized namespaces that are meaningful to specific users or

applications. They also argue that general-purpose databases are not the right for storing struc-

tures for semantic file system data.

The Logic File System (LISFS) [124] take a more theoretical approach to semantic

file retrieval. LISFS propose a new model where file names are represented as Boolean equa-

tions. For example, accessing a file can be done with a Booleanequation in conjunctive normal

form such as(a1 ∨ a2) ∧ (¬a3), wherea1, a2, anda3 are file attributes. Using these equations,

file paths can be constructed that allow a large number of different paths to be used to locate

a file. In addition, traditional file systems hierarchies canbe constructed because these equa-

tions exhibit a commutative property. File attributes are stored in special tables that implement

directed acyclic graphs and file retrievals are translated in to axiomatic look-ups in these tables.

29



The Property List DIRectory system (PLDIR) [113] provided better ways to internally

represent file attributes in a file system. PLDIR defined a general model for describing metadata

using property lists, which could be used to represent file search abstractions. While its indexing

capabilities were very basic, it did address some index update and consistency issues.

Damasc is a file system intended for high-performance computing environments [27].

Damasc provides a declarative query interface to files, which is effective for many common

HPC queries. File data is stored in a normal file system with a number of modules above it

that provide file parsing, indexing, provenance collection, and interface capabilities. Indexes

are constructed based on application query patterns in order to speed up common searches.

Other semantic file systems provide better file retrieval mechanisms by improving

naming rather than adding explicit file search. For example,the Prospero file system [117]

builds a global file system where files are scattered across multiple machines and each user

builds there own view of the data on the system, rather than trying to organize a global names-

pace. In that way, no matter how large the file system is, usersonly see and only deal with the

files that they deem relevant to them. The Linking File System(LiFS) [6] is designed to express

semantic links between files (e. g., provenance and context) through actual links implemented

in the file system. This allows users to use these links for quick traversal of the file system along

axes other than just the hierarchy.

Semantic file systems provide a more scalable way to organize, navigate, and search

files than traditional file system hierarchies. However, most do not focus on the underlying

search algorithms and data structures that enable scalablesearch performance. Instead, they

focus on the interface and query language and use basic general-purpose indexes, such as simple

B-trees or databases. Additionally, most are implemented on top of a traditional file system with

a number of separate search applications that are used to index file attributes. Thus, while they

provide a more scalable file system interface, they do not provide scalable search performance or

consistency guarantees that are needed to completely address search problems in massive-scale

file systems. At relatively small scales (e. g., tens of thousands of files), file access performance

can still be3 − 5× slower than in a traditional file system.
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2.5.4 Searchable File Systems

There are other file systems that enable file search without foregoing the traditional

hierarchical file systems. The Be File System (BeFS) [61] hassupport for file search built

directly into the file system. BeFS stores extended attributes in hidden file system directories

that are indexed in B+trees, allowing queries to be issued over them. These B+trees are stored in

a special directory with each attribute being represented as a directory entry and the index being

stored as a file pointed to by the entry. Common attributes, like file size, owner and modification

times are automatically indexed by BeFS and the user can specify any additional attributes to

be indexed.

The Inversion File Systems [119] takes a different approachthan BeFS. Inversion

implements the file system using a PostgreSQL [163] databaseas the back-end storage mech-

anism. This provides transactional storage, crash recovery, and the ability to issue database

queries over the file system. Each file is represented as a row in a table. File metadata and data

are stored in separate tables where the metadata table points to file data in the data table. Each

normal file system operation maps to an SQL query.

The Provenance-Aware Storage System (PASS) [114] stores provenance (i. e., lin-

eage) metadata with each file, showing where its data came from and how it was created. This

tackles a specific set of queries users and administrators often have about their data, such as,

“which source files were used to build this binary?” or “whichfile was this paragraph copied

from?”. All provenance attributes are stored in Berkeley DBdatabases [120] and a query layer

is added on top of these databases to allow users to search provenance data. Most of the un-

derlying file system is left unchanged except for the operations that are annotated to ensure

provenance is kept.

2.5.5 Ranking Search Results

In addition to making search fast and consistent with the filesystem, another key

challenge is making searches effective. That is, searches are actually able to help users find the
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data they are looking for. The importance of effective search is evident on the Internet, where

search engines can satisfy searches with only the top few (e. g., ten) ranked search results [151].

Web ranking algorithms, such as Google’s PageRank [29], benefit from the semantic

links between pages, which it can use to infer the importanceof a page. As a result, most

file system ranking algorithms attempt to extract semantic information from files to improve

ranking. The Eureka [25] ranking algorithm extracts semantic links from files, such as name

overlap or shared references, that allows techniques similar to PageRank to be used for file

systems. Similarly, Connections [155] extracts temporal relationships from files, such as two

source code files being opened at the same time, that are used as semantic links. Connections

builds a graph of these links that is used to reorder search results from a file system’s search

engine. Shah,et al. [149] infer semantic links using file provenance and build a graph-based

ranking method similar to that of Connections. They conducted a user study to validate that

such ranking improvements do enhance the overall user search experience. Finally, Gyllstrom,

et al. [73] only consider the data that users have actually seen (i. e., information displayed on

the screen) as searchable information. This approach is built around the intuition that users are

only going to search for information that they have seen previously and that if they never saw

it, and therefore likely do not know it exists, it is unlikelythey will want to search for it. This

approach reduces the overall size of the search corpus and puts more weight on ranking data

that the user has seen before. Additionally, web search has shown that personalized ranking and

views of data can greatly enhance search relevance [83, 90, 99]. This approach has the potential

to be useful on large-scale file systems where search needs, and often the files to search, vary

between users.

2.6 Index Design

Fast search of a file system is achieved by building anindexbefore hand. The two

fundamental index structures used in file system search are relational databases (DBMS) [37]

and inverted indexes [74, 192]. DBMSs are often used to storefile metadata, which is structured

〈attribute , value〉 pairs such as inode fields and extended attributes. This structure maps well
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onto the DBMS relational model. Inverted indexes are used tostore unstructured file keywords,

which are often text-based. Inverted indexes, which are often called text databases, are the

primary method of text indexing. These two search structures have been researched for decades

and have a considerable number of different designs. We now highlight those related to file

system search.

2.6.1 Relational Databases

The traditional relational database architecture is rooted in the design of Systems

R [16], which was designed more than 25 years ago. System R andits descendants, such as DB2,

MySQL, and PostgreSQL, are designed for business data processing workloads. At the time,

these systems were designed to provide indexing and storagestructures that were disk-oriented,

relied heavily on threading for performance, coarse locking mechanisms for transaction support,

and log-based recovery.

In most DBMSs, data is stored in a table with a generally fixed number columns and

variable number of rows that define relations. For example, atable for a file system may contain

an inode number, owner, size, file type, and modification timeas columns. As more files are

added, more rows are added to the table. Each row is stored sequentially on-disk, making it

efficient to read and write an entire row. New rows are appended to regions of the table, making

it efficient to write a large number of consecutive rows.

These DBMSs are often called row-stores or write-optimizeddatabases since they are

optimized for reading and writing entire rows and are efficient for writing new rows since they

are appended sequentially to the table. Additionally, thisapproach is space efficient since only

approximatelyN × M bytes are used, forN rows each withM columns. In the simplest case,

querying the table involves a full sequential table scan to find the rows that match the query.

When data is clustered in the table or when most of the table must be read, this can be quite

efficient. However, when this is not the case, table scans canbe extremely slow as extra data

may be read and a large number of disk seeks may be incurred.

There are a number of optimizations that can improve query performance. A common

approach to improving query performance is building B+-tree indexes on the columns in the ta-
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ble that need to be quickly searched. Each B+-tree is indexedon a column’s attribute values and

stores lists of row IDs that match the value. Queries for a specific attribute value or range of val-

ues can quickly identify the specific rows in the table that need to be retrieved, avoiding the cost

of a table scan. This approach does not, however, eliminate the seeks that may occur if the rows

are not adjacent in the table. When multiple indexed attributes are queried, such as querying for

files where(owner = Andrew) ∧ (size > 5MB), a query plannerchooses which attribute

it believes to be most selective (i. e., the attribute that will yield the fewest search results) and

searches that attribute’s index. TheN results from that index are then linearly scanned and

filtered to make sure that the final results satisfy both querypredicates. This pruning will thus

yield between[0, N ] results. By selecting the index with the fewest likely results, the fewest

results need to be linearly scanned.

Selecting records from the index likely to have the fewest results is a much faster

approach than searching both indexes and calculating the union of their results since less data

is read from the table and processed. However, doing so requires the query planner to be able

to efficiently chose which index will produce the fewest results. To do this, query planners use

selectivity estimators to estimate the selectivity of predicates in a query. More specifically, it

estimates the number of tuples that will satisfy the predicate. It uses the statistical information

about the table that the DBMS maintains. Unfortunately, when attribute value distributions are

skewed, query planners tend to be inaccurate [101]. This is because the sampling methods,

which rely on only a subset of the data and must be general, have difficulty adapting to the

variance in highly skewed distributions. Additionally, when both values match many records,

extra data will still be read and is processed, even if their intersection is small. It should also

be noted that building additional data structures, such as B+-tree indexes, does incur a space

overhead. This overhead grows proportionally with the sizeof the table and increases as more

columns are indexed. Additionally, update performance decreases because, in addition to the

table, each index must also be updated.

Another approach to improving performance is vertical partitioning [87]. Vertical

partitioning physically breaks the table up into multiple tables, one for each column. Each table

stores an additional position integer that allows rows to beidentified across tables. Often tables
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are sorted to provide more efficient scanning. Many queries,such as in the example above, do

not need to retrieve an entire row’s worth of data. In a non-partitioned table, a scan requires

retrieving the full row for each row scanned, which can be very slow. By partitioning the table

along column axes, only columns with data relevant to a queryneed to be retrieved. Joins

are then used (often hash joins) to facilitate searches across columns. Compared to building

an index on each column in a non-partitioned table, verticalpartitioning can be faster in cases

where only a few columns are needed from many rows. This is because less disk bandwidth

is used as the row data that is not used in the query is not read.However, vertical partitioning

is a trade-off with computation overhead as join operationsmust be used across the tables and

can impede performance [1]. Also, storing an extra positionID with each row in each table to

identify which tuple it belongs to adds a space overhead, potentially doubling the space required

if all other attributes are integers. Vertical partitioning also degrades update performance since

writing a row now requires a disk seek between each table.

Column-stores are a more recent DBMS design that are read-optimized, rather than

write optimized like traditional DBMSs [164]. A column-store DBMS stores a table’s column

data contiguously on-disk instead of row data. Doing so allows queries that need to read only a

subset of the columns to perform much faster than if the entire row had to be read. Additionally,

many column-stores use compression and dense packing of column values on-disk to reduce

disk bandwidth requirements [56, 164] and lean more heavilyon CPU performance. Addition-

ally, extra tuple information does not need to be stored witheach column. Column-stores use

join indexes to provide more efficient queries across columns. However, since column-stores

are read-optimized, their designs comes at a cost to write performance. Writing an entire row

now requires a disk seek between each column, similar to vertical partitioning, which decreases

performance.

The column-store design stems from significant changes in technology trends and

business processing workloads since the 1970s when the original System R was designed.

Processor speeds have increased significantly as have disk capacities, while disk bandwidth

has increased at a much slower rate. Additionally, the priceper gigabyte of memory has de-

creased [165]. These trends make the heavily disk-based DBMS data structures a bottleneck.
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Similarly, business processing workloads (e. g., OLTP, OLAP, and data warehousing) have be-

come more read heavy and their need for heavyweight logging,threading, and transactional

operations have been decreasing [75].

These continual changes in technology and workload, and a continued reliance on

traditional general-purpose DBMSs, have given rise to a belief that existing DBMS designs

are not a “one size fits all” solution [28, 162, 165]. That is, ageneral-purpose DBMS cannot

simply be tuned and calibrated to properly fit every workload. Many in the database community

have argued and shown [75, 161] that using a traditional DBMSfor a variety of search and

indexing applications is often a poor solution and that a customized, application-specific design

that considers the technology and workload requirements ofthe specific problem can often

significantly outperform general-purpose DBMSs.

The “one size fits all” concept suggests that general-purpose DBMSs may not be an

optimal solution for file system search. DBMSs were designedfor business processing in the

1970s, not modern large-scale file system search. Achievingreasonable performance will often

require additional hardware as well as a database administrator to constantly “tune” database

knobs. DBMSs also have functionality, such as transactionsand coarse locking, that are not

needed for file system search and can add overhead [165]. Similarly, as evidenced by their

contrasting designs, databases are often optimized for either read or write workloads and have

difficulty doing both well [1, 76, 78]. File system search must provide both fast search perfor-

mance and frequent, real-time updates of the index.

2.6.2 Inverted Indexes

Inverted indexes [74, 192] are designed to be text databasesand are the foundation

of content (also known as keyword full-text, or term) searchon the Internet and in current file

system search. An inverted index, for a given text collection, builds adictionary that contains a

mapping for each of theK keywords in the collection to a list of the locations where the key-

words occur in the file system. The basic inverted index architecture is illustrated in Figure 2.3.

Each keyword location is known as apostingand the list of locations for a keyword is called

the keyword’sposting list. For a file system, these locations are generally offsets within files
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Figure 2.3:Inverted index architecture. The dictionary is a data structure that maps keywords

to posting lists. Posting lists contain postings that describe each occurrence of the keyword in

the file system. Searches require retrieving the posting lists for each keyword in the query.

where the keyword occurs. In most cases, each posting in the list contains a tuple with the ID

of the file (such as an inode number) in which the term occurs, the number of times its occurs,

and a list of offset locations within the file for each occurrence. Thus each posting generally

has the format(docid, tf, 〈p1, ..., ptf 〉), wheredocid is the unique document identifier,tf is the

number of term occurrences, andpi is the offset within the file where the term occurs.

The dictionary is usually implemented as a hash table or sort-based data structure that

allows efficient look up using a single term as a key. Dictionary size can often grow quite large

since it requires close toK × N bytes, whereK is the average keyword length in bytes and

N is the number of keywords. For large-scale file systems with many keywords, even with

compression, the dictionary will be far too large to fit in a single machine’s main memory [30].

Thus, they are often either stored on-disk or distributed across a cluster of machines.

Each posting list is stored sequentially on-disk. Given a query, such asindex ∧

search∧ storage, each keyword is looked up in the dictionary and their corresponding posting

lists are read from disk. The union of the posting lists are calculated and a result ranking

function is then applied to produce the final search results.In most cases, search performance is

a function of the amount of data that must be read from disk, the number of disk seeks incurred

to read the data, and the amount of processing (e. g., decompression, ranking, file permission

checks) that must be done to produce the final set of results.
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However, keeping posting lists sequential on-disk can makelist updates very slow, es-

pecially as the posting list grows in size. As a result, posting list incremental update algorithms

are generally either optimized for search performance (i. e., try and maintain posting list se-

quentiality) or update performance (i. e., sacrifice posting list sequentiality for fast writes) [96].

In-place updatealgorithms are update optimized approaches. When a postinglist is created, a

sequential region on disk is allocated that is larger than the required size, leaving some unused

space at the end. As new postings are added, they are written into the over allocated regions of

the posting list, without requiring any extra data reads or disk seeks. If the over allocated region

is not used it becomes wasted space. If the posting list growsbeyond the size of the region, a

new sequential region is allocated elsewhere on disk to place new postings. A disk seek is then

required to read the entire posting list (i. e., all on disk regions). Thus, as posting lists grow in

size, in-place updates can make search performance poor as many disk seeks may be required to

read a posting list from disk.Merge-basedalgorithms are search optimized approaches. When

a posting list is created, a sequential region of the exact size is allocated on disk. When the list is

modified, the original list is read from disk, modified in-memory, and then written sequentially

to a new location on disk. Thus, merge-based approaches incur no extra space overhead and

ensure that posting lists are sequential on disk. However, update performance can be very slow

since the entire posting list must be read and written for each update.

However, there has been additional work to improve the trade-offs between search

and update performance. Hybrid index maintenance [32] divides the index into two sections,

one that is managed with in-place updates and one that is managed with merge-based updates.

This division is based on posting list length where short posting lists (i. e., shorter than some

calculated thresholdV ) are managed with merge-based updates. Short posting listscan more

easily be read and written with a merge-based update and would waste significant disk space

under an in-place approach. Longer posting lists are then managed with an in-place strategy

where merge-based updates would simply be too slow. However, an in-place update mechanism

still requires extra disk seeks to retrieve these long posting lists that are larger than a single

region. Often there is a delay between when file changes are collected and when they are

reflected in the index. The JiTI [93] algorithm allows changes that have not yet been applied to
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the index and are buffered in-memory to still be searched. A postings cache prepares posting

lists in-memory prior to being written out to the main index.A separate query engine then issues

queries over both the main index and the postings cache, allowing the most recent updates to

also be returned.

Web search engines, such a Google and Yahoo!, maintain possibly the largest in-

verted indexes, indexing trillions of web pages [68]. Thesesearch engines utilize multi-million

dollar data centers to search for this many pages. The inverted index is partitioned across the

data center using one of two methods: thelocal inverted file(IFL) or theglobal inverted file

(IFG) [15, 132, 133]. TheIFL strategy divides posting lists across theP servers in the data

center. Searches are then broadcast to allP servers and each returns a disjoint set of results.

TheIFG strategy partitions the keyword space up amongst theP servers, where each server is

responsible for a part of the space, such as1/P fraction of the keywords. Each of theP servers

has enough memory and proxy cache nodes to ensure that queries can be served without going

to disk. The index is re-builtoff-line on a close to weekly basis after additional web pages are

crawled [15]. During this re-build process, a large-scale staging area (a separate cluster of ma-

chines) is used to modify or re-create posting lists and calculate page rankings. An additional

link index is often used to improve rank calculations.

While inverted indexes are the mainstay of modern text retrieval, not all of the designs

are well suited for file system search. Small-scale, disk-based inverted indexes make significant

trade-offs between search and update performance. As a result, either updates are too slow

to handle real-time update requirements or search performance becomes unacceptably slow.

Additionally, small-scale designs have few methods for appropriately distributing the index.

Large-scale designs, such as web search engines, are far tooexpensive and heavyweight to

be effective for a file system. They require dedicated resources and re-build the index too

infrequently. These issues suggest that designs that are tailored to file system search may able

to improve performance.
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2.6.3 File System Optimized Indexing

We are not the first to argue that general-purpose indexing solutions are not the right

approach to file system search. As a result, there are a numberof file system specific indexing

techniques that exist. GLIMPSE [104] reduced disk space requirements, compared to a normal

full-text inverted index, by maintaining only a partial inverted index that does not store the lo-

cation of every term occurrence. They argued that the space requirements for maintaining a full

inverted index were too high for most file systems. GLIMPSE partitioned the search space, us-

ing fixed size blocks of the file space, which were then referenced by the partial inverted index.

A tool similar togrep was used to find exact term locations with each fixed size block. How-

ever, the GLIMPSE tool is almost two decades old and disk capacity is not nearly as significant

a problem today as it was then. As a result, in most cases, evenfor file systems, maintaining a

full inverted index for performance is preferred.

Geometric partitioning [95] aimed to improve inverted index update performance by

breaking up the inverted index’s inverted lists by update time. The most recently updated in-

verted lists were kept small and sequential, allowing future updates to be applied quickly. A

merging algorithm created new partitions as the lists grow over time. Query-based partition-

ing [112] used a similar approach, though it partitioned theinverted index based on file search

frequency, allowing index data for infrequently searched files to be offloaded to second-tier

storage to improve cost. The Wumpus desktop search system [31] introduces a number of im-

provements to conventional inverted index design, which improves full-text search on desktop

file systems. However, its current design targets desktop file systems and lacks a number of fea-

tures critical to large-scale file system search. SmartStore [80] is a search system that indexes

metadata in a distributed R-tree and uses Latent Semantic Indexing (LSI) to group correlated

metadata. SmartStore does not handle real-time updates, and the use of LSI limits its ability to

perform index updates quickly.
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2.7 Summary

There is a rapid increase in the amount of digital data being produced and it is only

expected to increase in the future. In this chapter we described how this rapid growth in data

volumes has introduced a new challenge for large-scale file systems: effectively organizing,

finding, and managing such a large sea of information. In response to this challenge there has

been an increasing trend towards search-based file access. Through a discussion of file search

properties and use cases we showed how search addresses manyof the limitation and restrictions

of current simple hierarchical file organizations.

We argued that existing file system search solutions are ill-equipped to scale to bil-

lions of files. We discussed the search challenges that make existing solutions to too expensive,

slow, and cumbersome to be effective at such scales. We showed that these systems rely on

general-purpose index designs that are not designed for filesystem search and can limit search

and update performance. We also provided a high-level overview of how general-purpose in-

dexes such as DBMSs are used for file system search. Additionally, we described how designing

search systems outside of the file system causes consistencyand efficiency issues that are diffi-

cult to address.

These observations drive the motivation for the following chapters. Since effective

file system design is driven by an understanding of the kinds of data stored and how it is used,

we begin by looking at the properties of large-scale file systems. We then explore how the use

of general-purpose index structures can be avoided with index designs that are designed specif-

ically for file systems and which leverage file system properties. We use these new indexing

techniques to explore how search functionality can be integrated directly into the file system to

avoid the need to maintain a replication of all file attributes in a separate search application.
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Chapter 3

Properties of Large-Scale File Systems

Large-scale network file systems are playing an increasingly important role in today’s

data storage. The motivation to centralize data behind network file systems has been driven

by the desire to lower management costs and the need to reliably access growing amounts of

data from multiple locations and is made possible by improvements in processing and network

capabilities. The design of these systems [88, 116, 138] is guided by an understanding of the

kinds of data being stored and how data is being used, which isoften obtained by measuring

and analyzing file system traces.

There are two different methods used to understand file system properties; measuring

and analyzing workloads, which shows how data is being used as well as measuring and analyz-

ing snapshots, which shows the kinds of data being stored. Workload traces contain data access

requests, such as a file being opened and read. Snapshot traces contain information about the

properties of files stored at a given time, such as their location in the namespace and the types

of files (e. g., doc, pdf).

While a number of trace-based file system workload [17, 48, 123, 137, 177, 178] and

snapshot [5, 22, 39, 43, 145] studies have been conducted in the past, there are factors indicating

that further study is necessary. First, the last major network file system trace study [48] analyzed

traces from 2001, over half a decade ago; there have been significant changes in the architecture

and use of network storage since then. Second, no published workload or snapshot study has

ever analyzed large-scale enterprise network file systems,focusing instead on research or desk-
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top systems, such as those seen in university settings. While useful, their findings likely differ

from those in large enterprise file systems. Third, most studies focus on analyzing properties

that are applicable to improving disk performance. There islittle analysis that focuses on file

organization and workload semantics, which are important for designing better organization and

indexing strategies.

In this chapter, we collect and analyze traces ofbothfile system workloads and snap-

shots from real world, large-scale enterprise network file systems. Our workload traces were

collected over three months from two network file servers deployed in NetApp’s data center.

One server hosts data for the marketing, sales, and finance departments, and the other hosts data

for the engineering departments. Combined, these systems contain over 22 TB of actively used

storage and are used by over 1500 employees. We traced CIFS [92] network traffic, which is

the primary network file protocol used in Windows. Our snapshot traces were collected from

three network file servers also deployed at NetApp. One server hosted web and Wiki server

files, another was a build server for the engineering department, while another served employee

home directories. Combined, these systems contain almost 80 TB of actively used storage. The

analysis of these traces focused on: (1) changes in file access patterns since previous studies, (2)

aspects specific to network systems, such as file sharing, and(3) how the namespace impacts

file attributes. All of which are important for better understanding how we can organize and

manage files.

Our analysis revealed important changes in several aspectsof file system workloads.

For example, we found that read-write file access patterns, which are highly random, are much

more common relative to read-only and write-only access patterns as compared to past stud-

ies. We also found our workloads to be more write-oriented than those previously studied, with

only about twice as many bytes read as written. Both of these findings challenge traditionally

held assumptions about access patterns and sequentiality.We also found that metadata attribute

values are highly clustered in the namespace and have very skewed distributions. These find-

ings demonstrate important properties about how files are organized in large-scale network file

systems. A summary of key observations can be found in Table 3.1.
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Compared to Previous Studies

1. Both workloads are more write-oriented. Read to write byte ratios have signifcantly decreased.

2. Read-write access patterns have increased 30-fold relative to read-only and write-only access patterns.

3. Most bytes are transferred in longer sequential runs. These runs are an order of magnitude larger.

4. Most bytes transferred are from larger files. File sizes are up to an order of magnitude larger.

5. Files live an order of magnitude longer. Fewer than 50% aredeleted within a day of creation.

New Observations

6. Files are rarely re-opened. Over 66% are re-opened once and 95% fewer than five times.

7. Files re-opens are temporally related. Over 60% of re-opens occur within a minute of the first.

8. A small fraction of clients account for a large fraction offile activity. Fewer than 1% of clients account for 50%

of file requests.

9. Files are infrequently shared by more than one client. Over 76% of files are never opened by more than one client.

10. File sharing is rarely concurrent and sharing is usuallyread-only. Only 5% of files opened by multiple clients are

concurrent and 90% of sharing is read-only.

11. Most file types do not have a common access pattern.

12. Specific file metadata attribute values exist in only a small fraction of directories.

13. A small number of metadata attribute values account for alarge fraction of the total values.

Table 3.1:Summary of observations.A summary of important file system trace observations

from our trace analysis. Note that we define clients to be unique IP addresses, as described in

Section 3.3.1.

The remainder of this chapter is organized as follows. The previous workload studies

are discussed in Section 3.1 and our workload tracing methodology is discussed in Section 3.2.

Our workload analysis is discussed in Section 3.3 with the implications described in Section 3.4.

Section 3.5 describes the previous snapshot studies. How wecollected the snapshot traces

is detailed in Section 3.6. Our snapshot trace observationsand their impact are presented in

Section 3.7. In Section 3.8 we summarize this chapter.
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3.1 Previous Workload Studies

File system workload studies have guided file system designsfor decades. In this

section, we discuss the previous studies, which are summarized in Table 3.2, and outline factors

that we believe motivate the need for new file system analysis. In addition, we provide a brief

background of the CIFS protocol.

Study Date of Traces FS/Protocol Network FS Workload

Ousterhout,et al. [123] 1985 BSD Engineering

Ramakrishnan,et al. [131] 1988-89 VAX/VMS x Engineering, HPC, Corporate

Baker,et al. [17] 1991 Sprite x Engineering

Gribble,et al. [71] 1991-97 Sprite, NFS, VxFS x Engineering, Backup

Vogels [177] 1998 FAT, NTFS Engineering, HPC

Zhou and Smith [191] 1999 VFAT PC

Roselli,et al. [137] 1997-00 VxFS, NTFS Engineering, Server

Ellard,et al. [48] 2001 NFS x Engineering, Email

Anderson [10] 2003 & 2007 NFS x Computer Animation

Leung,et al. 2007 CIFS x Corporate, Engineering

Table 3.2:Summary of major file system workload studies over the past two decades.For

each study, we show the date of trace collection, the file system or protocol studied, whether it

involved network file systems, and the workloads studied.

Early file system workload studies, such as those of the BSD [123], VAX/VMS [131],

and Sprite [17] file systems, revealed a number of important observations and trends that guided

file system design for the last two decades. In particular, they observed a significant tendency

towards large, sequential read access, limited read-writeaccess, bursty I/O patterns, and very

short file lifetimes. Another study observed workload self-similarity during short time periods,

though not for long time periods [71]. A more recent study of the Windows NT file system [177]

supported a number of the past observations and trends. In 2000, Roselli,et al. compared four

file system workloads [137]; they noted that block lifetimeshad increased since past studies

and explored the effect on caching strategies. At the time ofour study, the most recent study
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was from 2001 and analyzed NFS traffic to network file servers [48], identifying a number of

peculiarities with NFS tracing and arguing that pathnames can aid file system layout. Since

we conducted our study, another study that examined NFS traces from an intensive computer

animation environment was published [10].

3.1.1 The Need for a New Study

Although there have been a number of previous file system workload studies, several

factors indicate that a new workload study may aid ongoing network file system design.

Time since last study. There have been significant changes in computing power, network

bandwidth, and network file system usage since the last majorstudy in 2001 [48]. A new study

will help understand how these changes impact network file system workloads.

Few network file system studies.Only a few studies have explored network file system work-

loads [17, 48, 131], despite their differences from local file systems. Local file systems work-

loads include the access patterns of many system files, whichare generally read-only and se-

quential, and are focused on the client’s point of view. While such studies are useful for under-

standing client workload, it is critical for network file systems to focus on the workload seen at

the server, which often excludes system files or accesses that hit the client cache.

No CIFS protocol studies.The only major network file system study in the past decade ana-

lyzed NFSv2 and v3 workloads [48]. Though NFS is common on UNIX systems, most Win-

dows systems use CIFS. Given the widespread Windows client population and differences be-

tween CIFS and NFS (e. g., CIFS is a stateful protocol, in contrast to NFSv2 and v3), analysis

beyond NFS can add more insight into network file system workloads.

Limited file system workloads. University [17, 48, 71, 123, 137] and personal computer [191]

workloads have been the focus of a number of past studies. While useful, these workloads may

differ from the workloads of network file systems deployed inother environments.
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3.1.2 The CIFS Protocol

The CIFS protocol, which is based on the Server Message Block(SMB) protocol that

defines most of the file transfer operations used by CIFS, differs in a number of respects from

oft-studied NFSv2 and v3. Most importantly, CIFS is stateful: CIFS user and file operations

act on stateful session IDs and file handles, making analysisof access patterns simpler and

more accurate than in NFSv2 and v3, which require heuristicsto infer the start and end of an

access [48]. Although CIFS may differ from other protocols,we believe our observations are

not tied exclusively to CIFS. Access patterns, file sharing, andother workload characteristics

observed by the file server are influenced by the file system users, their applications, and the

behavior of the file system client, which are not closely tiedto the transfer protocol.

3.2 Workload Tracing Methodology

We collected CIFS network traces from two large-scale, enterprise-class file servers

deployed in the NetApp corporate headquarters. One is a mid-range file server with 3 TB of

total storage, with almost 3 TB used, deployed in the corporate data center that hosts data used

by over 1000 marketing, sales, and finance employees. The other is a high-end file server with

over 28 TB of total storage, with 19 TB used, deployed in the engineering data center. It is

used by over 500 engineering employees. Throughout the restof this paper, we refer to these

workloads ascorporateandengineering, respectively.

All NetApp storage servers support multiple protocols including CIFS, NFS, iSCSI,

and Fibre Channel. We tracedonlyCIFS on each file server. For the corporate server, CIFS was

the primary protocol used, while the engineering server sawa mix of CIFS and NFS protocols.

These servers were accessed by desktops and laptops runningprimarily Windows for the cor-

porate environment and a mix of Windows and Linux for the engineering environment. A small

number of clients also ran Mac OS X and FreeBSD. Both servers could be accessed through a

Gigabit Ethernet LAN, a wireless LAN, or via a remote VPN.

The traces were collected from both the corporate and engineering file servers be-

tween August 10th and December 14th, 2007. For each server, we mirrored a port on the
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network switch to which it was connected and attached it to a Linux workstation running

tcpdump [169]. Since CIFS often utilizes NetBIOS [3], the workstation recorded all file server

traffic on the NetBIOS name, datagram, and session service ports as well as traffic on the CIFS

port. The trace data was periodically copied to a separate file server. Approximately 750 GB and

1.5 TB of uncompressedtcpdump traces were collected from the corporate and engineering

servers, respectively. All traces were post-processed with tshark 0.99.6 [185], a network

packet analyzer. All filenames, usernames, and IP addressedwere anonymized.

Our analysis of CIFS presented us with a number of challenges. CIFS is a stream-

based protocol, so CIFS headers do not always align with TCP packet boundaries. Instead,

CIFS relies on NetBIOS to define the length of the CIFS commandand data. This became

a problem during peak traffic periods whentcpdump dropped a few packets, occasionally

causing a NetBIOS session header to be lost. Without the session header,tshark was unable

to locate the beginning of the next CIFS packet within the TCPstream, though it was able to

recover when it found a new session header aligned with the start of a TCP packet. To recover

CIFS requests that fell within this region, we wrote a program to parse thetcpdump data and

extract complete CIFS packets based on a signature of the CIFS header while ignoring any

NetBIOS session information.

Another issue we encountered was the inability to correlateCIFS sessions to user-

names. CIFS is a session based protocol in which a user beginsa session by connecting to the

file server via an authenticated login process. However, authentication in our trace environment

almost always uses Kerberos [118]. Thus, regardless of the actual user, user authentication cre-

dentials are cryptographically changed with each login. Asa result, we were unable to match a

particular user across multiple sessions. Instead we relied on the client’s IP address to correlate

users to sessions. While less accurate, it provides a reasonable estimate of users since most

users access the servers via the LAN with the same IP address.
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3.3 Workload Analysis

This section presents the results of our analysis of our corporate and engineering CIFS

workloads. We first describe the terminology used throughout the analysis. Our analysis begins

with a comparison of our workloads and then a comparison to past studies. We then analyze

workload activity with a focus on I/O and sharing distributions. Finally, we examine properties

of file type and user session access patterns. We italicize our key observations following the

section in which they are discussed.

3.3.1 Terminology

Our study relies on several frequently used terms to describe our observations. Thus,

we begin by defining the following terms:

I/O A single CIFS read or write command.

Sequential I/O An I/O that immediately follows the previous I/O to a file within an open/close

pair (i.e., its offset equals the sum of the previous I/O’s offset and length). The first I/O

to an open file is always considered sequential.

Random I/O An I/O that is not sequential.

Sequential Run A series of sequential I/Os. An opened file may have multiple sequential runs.

Sequentiality Metric The fraction of bytes transferred sequentially. This metric was derived

from a similar metric described by Ellard,et al. [48].

Open RequestAn open request for a file that has at least one subsequent I/O and for which

a close request was observed. Some CIFS metadata operationscause files to be opened

without ever being read or written. These open requests are artifacts of the CIFS client

implementation, rather than the workload, and are thus excluded.

Client A unique IP address. Since Kerberos authentication prevents us from correlating user-

names to users, we instead rely on IP address to identify unique clients.
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3.3.2 Workload Comparison

Table 3.3 shows a summary comparison of overall characteristics for both corporate

and engineering workloads. For each workload we provide some general statistics along with

the frequency of each CIFS request. Table 3.3 shows that engineering has a greater number

of requests, due to a longer tracing period, though, interestingly, both workloads have similar

request percentages. For both, about 21% of requests are fileI/O and about 50% are metadata

operations. There are also a number of CIFS-specific requests. The I/O percentages differ from

NFS workloads, in which 30–80% of all operations were I/O [48, 159]. This difference can

likely be attributed to both differences in workload and protocol.

The total data transferred in the two traces combined was just over 1.6 TB of data,

which is less than 10% of the file servers’ active storage of over 22 TB of data. Since the

data transfer summaries in Table 3.3 include files that were transferred multiple times, our

observations show that somewhat more than 90% of the active storage on the file servers was

untouched over the three month trace period.

The read/write byte ratios have decreased significantly compared to past studies [17,

48, 137]. We found only a 2:1 ratio indicating workloads are becoming less read-centric, in

contrast to past studies that found ratios of 4:1 or higher. We believe that a key reason for

the decrease in the read-write ratio is that client caches absorb a significant percentage of read

requests. It is also interesting that the corporate and engineering request mix are similar, per-

haps because of similar work being performed on the respective clients (e. g., Windows office

workloads) or because client caching and I/O scheduling obfuscate the application and end-user

behavior.Observation 1: Both of the workloads are more write-heavy than workloads studied

previously.

Figures 3.1(a) and 3.1(b) show the distribution of total CIFS requests and I/O requests

for each workload over a one week period and a nine week period, respectively. Figure 3.1(a)

groups request counts into hourly intervals and Figure 3.1(b) uses daily intervals. Figure 3.1(a)

shows, unsurprisingly, that both workloads have strongly diurnal cycles and that there are very

evident peak and idle periods throughout a day. The cyclic idle periods show there are op-
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Corporate Engineering

Clients 5261 2654

Days 65 97

Data read (GB) 364.3 723.4

Data written (GB) 177.7 364.4

R:W I/O ratio 3.2 2.3

R:W byte ratio 2.1 2.0

Total operations 228 million 352 million

Operation name % %

Session create 0.4 0.3

Open 12.0 11.9

Close 4.6 5.8

Read 16.2 15.1

Write 5.1 6.5

Flush 0.1 0.04

Lock 1.2 0.6

Delete 0.03 0.006

File stat 36.7 42.5

Set attribute 1.8 1.2

Directory read 10.3 11.8

Rename 0.04 0.02

Pipe transactions 1.4 0.2

Table 3.3: Summary of trace statistics. File system operations broken down by

workload. All operations map to a single CIFS command exceptfor file stat (com-

posed ofquery path info and query file info) and directory read (composed of

find first2 andfind next2). Pipe transactions map to remote IPC operations.
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portunities for background processes, such as log-cleaning and disk scrubbing to run without

interfering with user requests.

Interestingly, there is a significant amount of variance between individual days in

the number and ratio of both requests and I/O. In days where the number of total requests are

increased, the number of read and write requests are not necessarily increased. This is also the

case between weeks in Figure 3.1(b). The variation between total requests and I/O requests

implies any that single day or week is likely an insufficient profile of the overall workload,

so it is probably inaccurate to extrapolate trace observations from short time periods to longer

periods, as was also noted in past studies [48, 71, 174, 177].It is interesting to note that the

overall request mix presented in Table 3.3 is different fromthe mix present in any single day or

week, suggesting that the overall request mix might be different if a different time period were

traced and is influenced more by workload than by behavior of the file system client.

3.3.3 Comparison to Past Studies

We now compare our CIFS network file system workloads with those of past stud-

ies, including those in NFS [48], Sprite [17], VxFS [137] andWindows NT [177] studies. In

particular, we analyze how file access patterns and file lifetimes have changed. For comparison

purposes, we use tables and figures consistent with those of past studies.

3.3.3.1 File Access Patterns

Table 3.4 provides a summary comparison of file access patterns, showing access

patterns in terms of both I/O requests and bytes transferred. Access patterns are categorized by

whether a file was accessed read-only, write-only, or read-write. Sequential access is divided

into two categories,entire accesses, which transfer the entire file, andpartial accesses, which

do not.

Table 3.4 shows a remarkable increase in the percentage of read-write I/O and bytes

transferred. Most previous studies observed less than 7% oftotal bytes transferred to files ac-

cessed read-write. However, both our corporate and engineering workloads have over 20% of

bytes transferred in read-write accesses. Furthermore, 45.9% of all corporate I/Os and 32.1%
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Figure 3.1: Request distribution over time. The frequency of all requests, read requests,

and write requests are plotted over time. Figure 3.1(a) shows how the request distribution

changes for a single week in October 2007. Here request totals are grouped in one hour intervals.

The peak one hour request total for corporate is 1.7 million and 2.1 million for engineering.

Figure 3.1(b) shows the request distribution for a nine weekperiod between September and

November 2007. Here request totals are grouped into one day intervals. The peak one day

intervals are 9.4 million for corporate and 19.1 million forengineering.
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File System Type Network Local

Workload Corporate Engineering CAMPUS EECS Sprite Ins Res NT

Access Pattern I/Os Bytes I/Os Bytes Bytes Bytes Bytes Bytes Bytes Bytes

Read-Only (% total) 39.0 52.1 50.6 55.3 53.1 16.6 83.5 98.7 91.0 59.0

Entire file sequential 13.5 10.5 35.2 27.4 47.7 53.9 72.5 86.3 53.0 68.0

Partial sequential 58.4 69.2 45.0 55.0 29.3 36.8 25.4 5.9 23.2 20.0

Random 28.1 20.3 19.8 17.6 23.0 9.3 2.1 7.8 23.8 12.0

Write-Only (% total) 15.1 25.2 17.3 23.6 43.8 82.3 15.4 1.1 2.9 26.0

Entire file sequential 21.2 36.2 15.6 35.2 37.2 19.6 67.0 84.7 81.0 78.0

Partial sequential 57.6 55.1 63.4 61.0 52.3 76.2 28.9 9.3 16.5 7.0

Random 21.2 8.7 21.0 3.8 10.5 4.1 4.0 6.0 2.5 15.0

Read-Write (% total) 45.9 22.7 32.1 21.1 3.1 1.1 1.1 0.2 6.1 15.0

Entire file sequential 7.4 0.1 0.4 0.1 1.4 4.4 0.1 0.1 0.0 22.0

Partial sequential 48.1 78.3 27.5 50.0 0.9 1.8 0.0 0.2 0.3 3.0

Random 44.5 21.6 72.1 49.9 97.8 93.9 99.9 99.6 99.7 74.0

Table 3.4:Comparison of file access patterns.File access patterns for the corporate and en-

gineering workloads are compared with those of previous studies. CAMPUS and EECS [48]

are university NFS mail server and home directory workloads, respectively. Both were mea-

sured in 2001. Sprite [17], Ins and Res [137] are university computer lab workloads. Sprite

was measured in 1991 and Ins and Res were measured between 1997 and 2000. NT [177] is a

combination of development and scientific workloads measured in 1998.
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of all engineering I/Os are in read-write accesses. This shows a diversion from the read-only

oriented access patterns of past workloads. When looking closer at read-write access patterns

we find that sequentiality has also changed; 78.3% and 50.0% of bytes are transferred sequen-

tially as compared to roughly 1% of bytes in past studies. However, read-write patterns are

still very random relative to read-only and write-only patterns. These changes may suggest that

network file systems store a higher fraction of mutable data,such as actively changing doc-

uments, which make use of the centralized and shared environment and a smaller fraction of

system files, which tend to have more sequential read accesses. These changes may also sug-

gest that the sequential read-oriented patterns which somefile systems are designed [105] for

are less prevalent in network file systems, and write-optimized file systems [77, 138] may be

better suited.Observation 2: Read-write access patterns are much more frequent comparedto

past studies.

Another interesting observation is that few fewer files havebytes transferred from the

entire file, that is, the whole file is read or written from beginning to end. In past studies, well

over 50% of read-only and write-only files are accessed in their entirety. However, we found

only 10 and 27.4% of read-only bytes in corporate and engineering for which this is the case

and only 36.2 and 35.2% of write-only files.

3.3.3.2 Sequentiality Analysis

Next, we compared the sequential access patterns found in our workloads with past

studies. A sequential run is defined as a series of sequentialI/Os to a file. Figure 3.2(a) shows

the distribution of sequential run lengths. We see that sequential runs are short for both work-

loads, with almost all runs shorter than 100 KB, which is consistent with past studies. This

observation suggests that file systems should continue to optimize for short sequential common-

case accesses. However, Figure 3.2(b), which shows the distribution of bytes transferred during

sequential runs, has a very different implication, indicating that many bytes are transferred in

long sequential runs: between 50–80% of bytes are transferred in runs of 10 MB or less. In ad-

dition, the distribution of sequential runs for the engineering workload is long-tailed, with 8% of

bytes transferred in runs longer than 400 MB. Interestingly, read-write sequential runs exhibit
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Figure 3.2: Sequential run properties. Sequential access patterns are analyzed for various

sequential run lengths. The X-axes are given in a log-scale.Figure 3.2(a) shows the length of

sequential runs, while Figure 3.2(b) shows how many bytes are transferred in sequential runs.

very different characteristics from read-only and write-only runs: Most read-write bytes are

transferred in much smaller runs. This implies that the interactive nature of read-write accesses

is less prone to very large transfers, which tend to be mostlyread-only or write-only. Overall,

we found that most bytes are transferred in much larger runs—up to 1000 times longer—when

compared to those observed in past studies, though most runsare short. Our results suggest file

systems must continue to optimize for small sequential access, though they must be prepared to

handle a small number of very large sequential accesses. This also correlates with the heavy-

tailed distributed of file sizes, which is discussed later; for every large sequential run there must

be at least one large file.Observation 3: Bytes are transferred in much longer sequential runs

than in previous studies.
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Figure 3.3:Sequentiality of data transfer. The frequency of sequentiality metrics is plotted

against different data transfer sizes. Darker regions indicate a higher fraction of total transfers.

Lighter regions indicate a lower fraction. Transfer types are broken into read-only, write-only,

and read-write transfers. Sequentiality metrics are grouped by tenths for clarity.
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We now examine the relationship between request sizes and sequentiality. In Fig-

ure 3.3(a) and Figure 3.3(b) we plot the number of bytes transferred from a file against the

sequentiality of the transfer. This is measured using the sequentiality metric: The fraction of

bytes transferred sequentially, with values closer to one meaning higher sequentiality. Fig-

ures 3.3(a) and 3.3(b) show this information in a heat map in which darker regions indicate a

higher fraction of transfers with that sequentiality metric and lighter regions indicate a lower

fraction. Each region within the heat map represents a 10% range of the sequentiality met-

ric. We see from Figures 3.3(a) and 3.3(b) that small transfers and large transfers are more

sequential for read-only and write-only access, which is the case for both workloads. How-

ever, medium-sized transfers, between 64 KB and 4 MB, are more random. For large and small

transfers, file systems may be able to anticipate high sequentiality for read-only and write-only

access. Read-write accesses, on the other hand, are much more random for most transfer sizes.

Even very large read-write transfers are not always very sequential, which follows from our pre-

vious observations in Figure 3.2(b), suggesting that file systems may have difficulty anticipating

the sequentiality of read-write accesses.

Next, we analyze the relationship between file size and access pattern by examining

the size of files at open time to determine the most frequentlyopened file sizes and the file sizes

from which most bytes are transferred. It should be noted that since we only look at opened

files, it is possible that this does not correlate to the file size distribution across the file system.

Our results are shown in Figures 3.4(a) and 3.4(b). In Figure3.4(a) we see that 57.5% of opens

in the corporate workload are to newly-created files or truncated files with zero size. However,

this is not the case in the engineering workload, where only 6.3% of opens are to zero-size files.

Interestingly, both workloads find that most opened files aresmall; 75% of opened files are

smaller than 20 KB. However, Figure 3.4(a) shows that most bytes are transferred from much

larger files. In both workloads we see that only about 60% of bytes are transferred from files

smaller than 10 MB. The engineering distribution is also long-tailed with 12% of bytes being

transferred from files larger than 5 GB. By comparison, almost all of the bytes transferred in

previous studies came from files smaller than 10 MB. These observations suggest that larger

files play a more significant role in network file system workloads than in those previously

58



File Size at Open

0 100 1K 10K 100K 1M 10M 100M 1GBF
ra

ct
io

n 
of

 F
ile

s 
O

pe
ne

d

0
0.2
0.4
0.6
0.8

1

Corporate Engineering

(a) Open requests by file size.

Engineering

File Size at Open

10 100 1K 10K 100K 1M 10M 100M 1GB
0

0.2
0.4
0.6
0.8

1

Corporate

F
ra

ct
io

n 
of

 B
yt

es
 T

ra
ns

fe
rr

ed

0
0.2
0.4
0.6
0.8

1

Total Entire File

Sequential Random

(b) Bytes transferred by file size.

Figure 3.4:File size access patterns. The distribution of open requests and bytes transferred

are analyzed according to file size at open. The X-axes are shown on a log-scale. Figure 3.4(a)

shows the size of files most frequently opened. Figure 3.4(b)shows the size of files from which

most bytes are transferred.
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Figure 3.5:File open durations.The duration of file opens is analyzed. The X-axis is presented

on a log-scale. Most files are opened very briefly, although engineering files are opened slightly

longer than corporate files.

studied. This may be due to frequent small file requests hitting the local client cache. Thus, file

systems should still optimize small file layout for frequentaccess and large file layout for large

transfers.Observation 4: Bytes are transferred from much larger files than in previousstudies.

Figure 3.5 shows the distribution of file open durations. We find that files are opened

for shorter durations in the corporate workload than in the engineering workload. In the cor-

porate workload, 71.1% of opens are shorter than 100 ms, but just 37.1% are similarly short

in the engineering workload. However, for both workloads most open durations are less than

10 seconds, which is similar to observations in past studies. This is also consistent with our pre-

vious observations that small files, which likely have shortopen durations, are most frequently

accessed.

3.3.3.3 File Lifetime

This section examines how file lifetimes have changed compared to past studies. In

CIFS, files can be either deleted through an explicit delete request, which frees the entire file and

its name, or through truncation, which only frees the data. Figure 3.6 shows the distribution of

file lifetimes, broken down by deletion method. We find that most created files live longer than

24 hours, with 57.0% and 64.9% of corporate and engineering files persisting for more than a

day. Both distributions are long-tailed, meaning many fileslive well beyond 24 hours. However,

files thatare deleted usually live less than a day: only 18.7% and 6.9% of eventually deleted
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Figure 3.6: File lifetimes. The distributions of lifetimes for all created and deleted files are

shown. Time is shown on the X-axis on a log-scale. Files may bedeleted through explicit

delete request or truncation.

files live more than 24 hours. Nonetheless, compared to past studies in which almost all deleted

files live less than a minute, deleted files in our workloads tend to live much longer. This may

be due to fewer temporary files being created over the network. However, we still find that some

files live very short lifetimes. In each workload, 56.4% and 38.6% of deleted files are deleted

within 100 ms of creation, indicating that file systems should expect fewer files to be deleted

and files that live beyond a few hundred milliseconds to have long lifetimes. Observation 5

Files live an order of magnitude longer than in previous studies.

3.3.4 File I/O Properties

We now take a closer look at the properties of file I/O where, asdefined in Sec-

tion 3.3.1, an I/O request is defined as any single read or write operation. We begin by looking at

per-file, per-session I/O inter-arrival times, which include network round-trip latency. Intervals

are categorized by the type of requests (read or write) that bracket the interval; the distribution

of interval lengths is shown in Figure 3.7(a). We find that most inter-arrival times are between
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Figure 3.7:File I/O properties. The burstiness and size properties of I/O requests are shown.

Figure 3.7(a) shows the I/O inter-arrival times. The X-axisis presented on a log-scale. Fig-

ure 3.7(b) shows the sizes of read and write I/O. The X-axis isdivided into 8 KB increments.
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100µs and 100 ms. In fact, 96.4% and 97.7% of all I/Os have arrival times longer than 100µs

and 91.6% and 92.4% are less than 100 ms for corporate and engineering, respectively. This

tight window means that file systems may be able to make informed decisions about when to

prefetch or flush cache data. Interestingly, there is littledistinction between read-read or read-

write and write-read or write-write inter-arrival times. Also, 67.5% and 69.9% of I/O requests

have an inter-arrival time of less than 3 ms, which is shorterthan some measured disk response

times [134]. These observations may indicate cache hits at the server or possibly asynchronous

I/O. It is also interesting that both workloads have similarinter-arrival time distributions even

though the hardware they use is of different classes, a mid-range model versus a high-end model.

Next, we examine the distribution of bytes transferred by a single I/O request. As Fig-

ure 3.7(b) shows, most requests transfer less than 8 KB, despite a 64 KB maximum request size

in CIFS. This distribution may vary between CIFS and NFS since each buffers and schedules

I/O differently. The distribution in Figure 3.7(b) increases for only a few I/O sizes, indicat-

ing that clients generally use a few specific request sizes. This I/O size information can be

combined with the I/O inter-arrival times from Figure 3.7(a) to calculate a distribution of I/Os

per-second (IOPS) that may help file systems determine how much buffer space is required to

support various I/O rates.

3.3.5 File Re-Opens

In this section, we explore how frequently files are re-opened, i. e., opened more than

once during the trace period. Figure 3.8(a), shows the distribution of the number of times a

file is opened. For both workloads, we find that the majority offiles, 65%, are opened only

once during the entire trace period. The infrequent re-access of many files suggests there are

opportunities for files to be archived or moved to lower-tierstorage. Further, we find that about

94% of files are accessed fewer than five times. However, both of these distributions are long-

tailed—some files are opened well over 100,000 times. These frequently re-opened files account

for about 7% of total opens in both workloads.Observation 6: Most files are not re-opened

once they are closed.
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(b) Re-open inter-arrival times.

Figure 3.8: File open properties. The frequency of and duration between file re-opens is

shown. Figure 3.8(a) shows how often files are opened more than once. Figure 3.8(b) shows

the time between re-opens and time intervals on the X-axis are given in a log-scale.

We now look at inter-arrival times between re-opens of a file.Re-open inter-arrival

time is defined as the duration between the last close of a file and the time it is re-opened. A

re-open is consideredconcurrent if a re-open occurs while the file is still open (i. e.,, it has

not yet been closed). The distribution of re-open inter-arrival times is shown in Figure 3.8(b).

We see that few re-opens are concurrent, with only 4.7% of corporate re-opens and 0.7% of

engineering re-opens occurring on a currently-open file. However, re-opensare temporally

related to the previous close; 71.1% and 58.8% of re-opens occur less than one minute after the

file is closed. Using this information, file systems may be able to decide when a file should be

removed from the buffer cache or when it should be scheduled for migration to another storage

tier. Observation 7: If a file is re-opened, it is temporally related to the previous close.
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Figure 3.9:Client activity distribution The fraction of clients responsible for certain activities

is plotted.

3.3.6 Client Request Distribution

We next examine the distribution of file open and data requests amongst clients; recall

from Section 3.3.1 that “client” refers to a unique IP address rather than an individual user.

We use Lorenz curves [100]—cumulative distribution functions of probability distributions—

rather than random variables to show the distribution of requests across clients. Our results,

shown in Figure 3.9, find that a tiny fraction of clients are responsible for a significant fraction

of open requests and bytes transferred. In corporate and engineering, 0.02% and 0.04% of

clients make 11.9% and 22.5% of open requests and account for10.8% and 24.6% of bytes

transferred, respectively. Interestingly, 0.02% of corporate clients and 0.04% of engineering

clients correspond to approximately 1 client for each workload. Additionally, we find that

about 35 corporate clients and 5 engineering clients account for close to 50% of the opens in

each workload. This suggests that the distribution of activity is highly skewed and that file

systems may be able to take advantage of this information by doing informed allocation of

resources or quality of service planning.Observation 8: A small fraction of clients account for

a large fraction of file activity.

3.3.7 File Sharing

This section looks at the extent of file sharing in our workloads. A file is shared when

two or more clients open the same filesome timeduring the trace period; the sharing need not
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(b) Sharing inter-arrival times.

Figure 3.10:File sharing properties. We analyze the frequency and temporal properties of file

sharing. Figure 3.10(a) shows the distribution of files opened by multiple clients. Figure 3.10(b)

shows the duration between shared opens. The durations on the X-axis are in a log-scale.

be concurrent. Since we can only distinguish IP addresses and not actual users, it is possible

that two IP addresses may represent a single (human) user andvice-versa. However, the drastic

skew of our results indicates this likely has little impact on our observations. Also, we only

consider opened files; files which have only had their metadata accessed by multiple clients are

not included in the these results.

Figure 3.10(a) shows the distribution of the frequency withwhich files are opened by

multiple clients. We find that most files are only opened by a single client. In fact, 76.1% and

97.1% of files are only opened by one client in corporate and engineering, respectively. Also,

92.7% and 99.7% of files are ever opened by two or fewer clients. This suggests that the shared

environment offered by network file systems is not often taken advantage of. Other methods of

sharing files, such as email, web and Wiki pages, and content repositories (e. g., svn andgit),
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Figure 3.11:File sharing access patterns.The fraction of read-only, write-only, and read-write

accesses are shown for differing numbers of sharing clients. Gaps are seen where no files were

shared with that number of clients.

may reduce the need for clients to share files via the file system. However, both distributions are

long-tailed, and a few files are opened by many clients. In thecorporate workload, four files are

opened by over 2,000 clients and in the engineering workload, one file is opened by over 1,500

clients. This shows that, while not common, sharing files through the file system can be heavily

used on occasion.Observation 9: Files are infrequently accessed by more than one client.

In Figure 3.10(b) we examine inter-arrival times between different clients opening a

file. We find that concurrent (simultaneous) file sharing is rare. Only 11.4% and 0.2% of shared

opens from different clients were concurrent in corporate and engineering, respectively. When

combined with the observation that most files are only openedby a single client, this suggests

that synchronization for shared file access is not often required, indicating that file systems may

benefit from looser locking semantics. However, when examining the duration between shared

opens we find that sharing does have a temporal relationship in the corporate workload; 55.2%

of shared opens occur within one minute of each other. However, this is not true for engineering,

where only 4.9% of shared opens occur within one minute.
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Figure 3.12:User file sharing equality. The equality of sharing is shown for differing numbers

of sharing clients. The Gini coefficient, which measures thelevel of equality, is near 0 when

sharing clients have about the same number of opens to a file. It is near 1 when clients unevenly

share opens to a file.

We now look at the manner (read-only, write-only, or read-write) with which shared

files are accessed. Figure 3.11 shows the usage patterns for files opened by multiple clients.

Gaps are present where no files were opened by that number of clients. We see that shared files

are accessed read-only the majority of the time. These may beinstances of reference documents

or web pages that are rarely re-written. The number of read-only accesses slightly decreases

as more clients access a file and a read-write pattern begins to emerge. This suggests that files

accessed by many clients are more mutable. These may be business documents, source code, or

web pages. Since synchronization is often only required formultiple concurrent writers, these

results further argue for loose file system synchronizationmechanisms.Observation 10: File

sharing is rarely concurrent and mostly read-only.

Finally, we analyze which clients account for the most opensto shared files. Equality

measures how open requests are distributed amongst clientssharing a file. Equal file sharing

implies all sharing clients open the shared file an equal number of times. To analyze equality,

we use the Gini coefficient [64], which measures statisticaldispersion, such as the inequality
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of income in economic analysis. We apply the equality concept to how frequently a shared file

is opened by a client. Lower coefficients mean sharing clients open the file more equally (the

same number of times), and higher coefficients mean a few clients account for the majority of

opens. Figure 3.12 shows Gini coefficients for various numbers of shared clients. We see that

as more clients open a file, the level of equality decreases, meaning that fewer clients begin to

dominate the number of open requests. Gini coefficients are lower, less than 0.4, for files opened

by fewer than 20 clients, meaning that when a few clients access a file, they each open the file an

almost equal number of times. As more clients access the file,a small number of clients begin

to account for most of the opens. This may indicate that as more clients share a file, it becomes

less reasonable for all sharing clients to access the file evenly, and a few dominant clients begin

to emerge.

3.3.8 File Type and User Session Patterns

There have been a number of attempts to make layout, caching,and prefetching

decisions based on how specific file types are accessed and theaccess patterns of certain

users [50, 107]. In this section, we take a closer look at how certain file types are accessed

and the access patterns that occur between when a user beginsa CIFS “user session” by log-

ging on and when they log-off. Our emphasis is on whether file types or users have common

access patterns that can be exploited by the file system. We begin by breaking down file type

frequencies for both workloads. Figures 3.13(a) and 3.13(b) show the most frequently opened

and most frequently read and written file types. For frequently read and written file types, we

show the fraction of bytes read for that type. Files with no discernible file extension are labeled

as “unknown”.

We find that the corporate workload has no file type, other thanunknown types, that

dominates open requests. However, 37.4% of all opens in the engineering workload are for C

header files. Both workloads have a single file type that consumes close to 20% of all read and

write I/O. Not surprisingly, these types correspond to generally large files,e. g., mdb (Microsoft

Access Database) files andvmdk (VMWare Virtual Disk) files. However, we find that most file

types do not consume a significantly large fraction of open orI/O requests. This shows that file
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Figure 3.13:File type popularity. The histograms on the right show which file types are opened

most frequently. Those on the left show the file types most frequently read or written and the

percentage of accessed bytes read for those types.
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Figure 3.14:File type access patternsThe frequency of access patterns are plotted for various

file types. Access patterns are categorized into 18 groups. Increasingly dark regions indicate

higher fractions of accesses with that pattern.

systems likely can be optimized for the small subset of frequently accessed file types. Inter-

estingly, there appears to be little correlation between how frequently a file is opened and how

frequently it is read or written. Only three corporate and two engineering file types appear as

both frequently opened and frequently read or written; themdb andvmdk types only constitute

0.5% and 0.08% of opens. Also, it appears file types that are frequently read or written are

mostly read.

We now analyze the hypothesis that file systems can use file type and user access

patterns to improve layout and prefetching [48, 50, 107]. Wedo so by examiningaccess sig-

natures, a vector containing the number of bytes read, bytes written, and sequentiality metric

of a file access. We start by defining an access signature for each open/close pair for each

file type above, we then apply K-means clustering [103] to theaccess signatures of each file

type. K-means groups access signatures with similar patterns into unique clusters with varying

densities. Our results are shown in Figure 3.14. For claritywe have categorized access signa-

tures by the access type: read-only, write-only, or read-write. We further group signatures by

their sequentiality metric ranges: 1–0.81 is considered highly sequential, 0.8–0.2 is considered

mixed sequentiality, and 0.19–0 is considered highly random. Finally, access signatures are
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categorized by the number of bytes transferred; access signatures are considered small if they

transfer no more than 100 KB and large otherwise. Darker regions indicate the file type has

a higher fraction of access signatures with those properties shown on they-axis, and lighter

regions indicate fewer signatures with those characteristics.

Figure 3.14 shows that most file types have several distinct kinds of access patterns,

rather than one as previously presumed. Also, each type has multiple patterns that are more

frequent than others, suggesting that file systems may not beable to properly predict file type

access patterns using only a single pattern. Interestingly, small sequential read patterns occur

frequently across most of the file types, implying that file systems should be optimized for this

pattern, as is often already done.Observation 11: Most file types do not have a single pattern

of access.

Surprisingly, file types such asvmdk that consume a large fraction of total I/Os are

frequently accessed with small sequential reads. In fact, 91% of all vmdk accesses are this

pattern, contradicting the intuition derived from Figure 3.13(b) thatvmdk files have large ac-

cesses. However, a much smaller fraction ofvmdk accesses transfer huge numbers of bytes

in highly random read-write patterns. Several patterns read and write over 10 GB of data with

a sequentiality metric less than 0.5, showing that frequentpatterns may not be representative

of the significant patterns in terms of bytes transferred or sequentiality. This argues that file

systems should anticipate several patterns of access for any file type if layout or prefetching

benefits are to be gained. Also, it is critical that they identify transitions between patterns. For

example, a file system may, by default, prefetch data forvmdk files in small chunks: 100 KB

or less. However, when over 100 KB of avmdk file is accessed this signals the likely start of a

very large transfer. In this case, the file system must properly adjust its prefetching.

Our observation that many file types exhibit several access patterns of varying fre-

quency and significance draws an interesting comparison to the results in Table 3.4. Table 3.4

shows significant read-write I/O and byte transfer activity. However, file types in Figure 3.14

rarely have read-write patterns. This implies that read-write file accesses are in general uncom-

mon however, when they do occur, a large number of bytes are accessed.
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Next, we apply the same K-means clustering approach to access signatures of access

patterns that occur within a CIFS user session. Recall that CIFS users begin a connection to the

file server by creating an authenticated user session and endby eventually logging off. We define

signatures for all accesses performed while the user is logged on. However, we only consider

sessions in which bytes are transferred. The CIFS client opens short, temporary sessions for

various auxiliary functions, which we exclude from this study as they do not represent a normal

user log-in. Like file types, user sessions have several common patterns and no single pattern

can summarize all of a user’s accesses. The majority of user sessions have read-write patterns

with less than 30 MB read and 10 MB written with a sequentiality metric close to 0.5, while a

few patterns have much more significant data transfers that read and write gigabytes of data.

3.4 Design Implications

We now explore some of the possible implications of our workload analysis on net-

work file system designs. We found that read-write access patterns have significantly increased

relative to previous studies (see Section 3.3.3.1). Thoughwe observed higher sequentiality in

read-write patterns than past studies, they are still highly random compared to read-only or

write-only access patterns (see Section 3.3.3.1). In contrast, a number of past studies found

that most I/Os and bytes are transferred in read-only sequential access patterns [17, 123, 177],

which has impacted the designs of several file systems [105, 116]. The observed shift towards

read-write access patterns suggests file systems should look towards improving random access

performance, perhaps through alternative media, such as flash. In addition, we observed that

the ratio of data read to data written is decreasing comparedto past studies [17, 48, 137] (see

Section 3.3.2). This decrease is likely due to increasing effectiveness of client caches and fewer

read-heavy system files on network storage. When coupled with increasing read-write access

patterns, write-optimized file systems, such as LFS [138] and WAFL [77], or NVRAM write

caching appear to be good designs for network file systems.

We observed that files are infrequently re-opened (see Section 3.3.5) and are usually

accessed by only one client (see Section 3.3.7). This suggests that caching strategies which
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exploit this, such as exclusive caching [186], may have practical benefits. Also, the limited

reuse of files indicates that increasing the size of server data caches may add only marginal

benefits. Rather, file servers may find larger metadata cachesmore valuable because metadata

requests made up roughly 50% of all operations in both workloads, as Section 3.3.2 details.

The finding that most created files are not deleted (see Section 3.3.3.3) and few files

are accessed more than once (see Section 3.3.5) suggests that many files may be good candidates

for migration to lower-tier storage or archives. This is further motivated by our observation that

only 1.6 TB were transferred from 22 TB of in-use storage overthree months. While access

to file metadata should be fast, this indicates much file data can be compressed, de-duplicated,

or placed on low power storage, improving utilization and power consumption, without signifi-

cantly impacting performance. In addition, our observation that file re-accesses are temporally

correlated (see Section 3.3.5) means there are opportunities for intelligent migration scheduling

decisions.

3.5 Previous Snapshot Studies

Like workload trace studies, snapshot studies have greatlyinfluenced file system de-

sign [2, 57, 144]. Unlike workloads, snapshot studies analyze the properties of files at rest that

make up the contents of the file system. In most cases, file metadata (e. g., inode fields and

extended attributes) attributes are studied. These studies are called snapshots because they rep-

resent a snapshot of the contents of the file system at a given point in time.

Table 3.5 summarizes the previous snapshot studies. Early file system snapshot stud-

ies focused on two key areas: file size and file lifetime. Thesetwo aspects were particularly

important in early file system design because block allocation and space management algo-

rithms were still in nascent stages. Two early studies on a local DEC machine [145] and NFS file

servers [22] found that most files were less than several KB. For example, Satyanarayanan [145]

found that 50% of files had fewer than 5 blocks (about 20 KB witha 4 KB block size), 95% had

fewer than 100 blocks (about 400 KB), and 99% had less than 1000 blocks (about 4 MB). This

distributions show a high skew towards small files. Additionally, functional lifetime, which is
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Study Date of Traces FS/Protocol Network FS Environment

Satyanarayanan [145] 1981 DEC PDP-10 Academic lab

Bennett,et al. [22] 1991 NFS x Academic lab

Sienknecht,et al. [150] 1991-92 BSD Corporate

Smith and Seltzer [153] 1994 FFS x Academic lab

Douceur and Bolosky [43] 1998 FAT, FAT32, NTFS Engineering/PC

Agrawal,et al. [5] 2000-2004 FAT, FAT32, NTFS Engineering/PC

Dayal [39] 2006 Various x HPC

Leung,et al. 2007 WAFL x Web, Engineering, Home

Table 3.5:Summary of major file system snapshot studies over the past two decades.For

each study, the date of trace collection, the file system or protocol studied, whether it involved

network file systems, and the kinds of workloads it hosted areshown.

the time between a file’s last modification time and last access time, is generally short. Satya-

narayanan found that 32% of files had a functional lifetime less than a day. However, Ben-

nett,et al. [22] found that functional lifetimes were longer on their NFS file servers. A study

of BSD file systems in a corporate setting [150] had similar findings which supported these ob-

servations. Another study [153] looked at snapshots to find how effectively FFS [105] allocates

and organizes data on disk. Interestingly, they found that small files tend to more fragmented

that larger files: Fewer than 35% of files with 2 blocks were optimally allocated though 85% of

blocks in files larger than 64 blocks were allocated optimally.

More recently, two studies [5, 43] have examined five and ten thousand Windows per-

sonal computer file systems, respectively. These studies were significantly larger than previous

studies and were the first to look at many snapshots from very similar environments, Windows

desktop machines at Microsoft; 85% of theses systems used NTFS and the others used FAT and

FAT32 systems. These studies have confirmed that many observations from older studies still

hold true. For example, most files were still very small, lessthan 189 KB. However, they also

observed changing trends since the previous studies, such as, the mean file size had increased

from 108 KB to 189 KB. This finding corresponds with their observation that median file system

capacities had increased from 5 GB to 40 GB. They also noted that directory size distributions
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Data Set Description # of Files Capacity

Web web & Wiki server 15 million 1.28 TB

Eng build space 60 million 30 GB

Home home directories 300 million 76.78 TB

Table 3.6:Metadata traces collected.The small server capacity of the Eng trace is due to the

majority of the files being small source code files: 99% of filesare less than 1 KB.

Attribute Description Attribute Description

inumber inode number owner file owner

path full path name size file size

ext file extension ctime change time

type file or directory atime access time

mtime modification time hlink hard link #

Table 3.7: Attributes used. We analyzed the fields in the inode structure and extractedext

values frompath.

had changed very little. They found that 90% directories still had two or fewer sub-directories

and 20 or fewer entries.

3.6 Snapshot Tracing Methodology

Our file metadata snapshot traces were collected from three large-scale, enterprise-

class file servers in the NetApp corporate headquarters. Onehosts web and Wiki server files,

another is a engineering build server, and another stores employee home directories. The size

of these traces, which we refer to as Web, Eng, and Home, respectively, are described in Ta-

ble 3.6. They represent over a quarter of a billions files and over 80 TB of actively used storage.

The traces were collected using a program we wrote that performs a parallelized crawl of the

namespace and collects metadata using thestat() system call. The crawls were performed
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during the summer of 2007. The attributes that we collected are show in Table 3.7. NetApp

servers support extended attributes, though they were rarely used in these traces and were thus

ignored.

3.7 Snapshot Analysis

Our analysis revealed two key properties that we focus on: Metadata hasspatial lo-

cality and highlyskewed distributionsof values.

3.7.1 Spatial Locality

Spatial locality means that metadata attribute values are clustered in the namespace

(i. e., occurring in relatively few directories). For example,Andrew’s files reside mostly in

directories in the/home/andrew sub-tree, not scattered evenly across the namespace. Thus,

files with owner equal toandrew likely occur in only a small fraction of the total directories

in the file system. Spatial locality comes from the way that users and applications organize files

in the namespace, and has been noted in other file system studies [5, 43]. Users and applications

group files into locations in the namespace that correspond to their semantic meaning (e. g., a

common project, such as a source code tree, or similar file types, such as a directory of binary

executable files). We earlier found that the workload is not evenly distributed which causes a

similar property to exist for timestamps.

To measure spatial locality, we use an attribute value’slocality ratio: the percent of

directories that recursively contain the value, as illustrated in Figure 3.15. A directory recur-

sively contains an attribute value if it or any of its sub-directories contains the value. The figure

on the right has a lower locality ratio because theext attribute valuehtml is recursively con-

tained in fewer directories. Using recursive accounting allows our analysis to be more broad

since it looks an entire sub-trees rather than individual directories. The root directory (e. g., /)

recursively contains all of the attributes that occur in thefile system. Thus, by definition the

locality ratio is a super set of the percent of directories that directly contain an attribute value.
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(a) Locality Ratio=54% (b) Locality Ratio=38%

Figure 3.15:Examples of Locality Ratio. Directories that recursively contain theext attribute

valuehtml are black and gray. The black directories contain the value.The Locality Ratio of

ext valuehtml is 54% (= 7/13) in the first tree and 38% (= 5/13) in the second tree. The

value ofhtml has better spatial locality in the second tree than in the first one.

Table 3.8 shows the locality ratios for the 32 most frequently occurring values for

various attributes (ext, size, owner, ctime, mtime) in each of the traces. Locality ratios are

less than 1% for all attributes, meaning that over 99% of directories do not recursively contain

the value. We expect extended attributes to exhibit similarproperties since they are often tied to

file type and owner attributes.Observation 12:Metadata attribute values are heavily clustered

in the namespace.

Utilizing spatial locality can help prune a query’s search space by identifying only

the parts of the namespace that contain a metadata value. This approach will eliminate a large

number of files from the search space. Unfortunately, most general-purpose DBMSs treat path-

names as flat string attributes. As a result, they do not interpret the hierarchical layout of file

attributes, making it difficult for them to utilize this information. Instead DBMSs typically must

considerall files for a search no matter its locality.

3.7.2 Frequency Distribution

Metadata values also have highly skewed frequencies—theirpopularity distributions

are asymmetric, causing a few very popular metadata values to account for a large fraction

of all total values. This distribution has also been observed in other metadata studies [5, 43].

Figures 3.16(a) and 3.16(b) show the distribution ofext andsize values from our Home trace

on a log-log scale. The linear appearance indicates that thedistributions are Zipf-like and follow
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ext size uid ctime mtime

Web 0.000162% – 0.120% 0.0579% – 0.177% 0.000194% – 0.0558% 0.000291% – 0.0105% 0.000388% – 0.00720%

Eng 0.00101% – 0.264% 0.00194% – 0.462% 0.000578% – 0.137% 0.000453% – 0.0103% 0.000528% – 0.0578%

Home 0.000201% – 0.491% 0.0259% – 0.923% 0.000417% – 0.623% 0.000370% – 0.128% 0.000911% – 0.0103%

Table 3.8:Locality Ratios of the 32 most frequently occurring attribute values.All Locality

Ratios are well below 1%, which means that files with these attribute values are recursively

contained in less than 1% of directories.

the power law distribution [152]. In these distributions, 80% of files have one of the 20 most

popularext or size values, while the remaining 20% of the files have thousands ofother values.

Figure 3.16(c) shows the distribution of the Cartesian product (i. e., the intersection) of the top

20 ext andsize values. The curve is much flatter, which indicates a more evendistribution of

values. Only 33% of files have one of the top 20ext andsize combinations. In Figure 3.16(c),

file percentages for corresponding ranks are at least an order of magnitude lower than in the

other two graphs. This means, for example, that there are many files with owner andrew

and many files withext pdf, but often there are over an order of magnitude fewer files with

bothowner andrew andext pdf attributes.Observation 13: Metadata attribute values have

highly skewed frequency distributions.

These distribution properties show that multi-attribute searches will significantly re-

duce the number of query results as Boolean queries return the intersection of the results for

each query predicate. Unfortunately, most DBMSs rely on attribute value distributions (also

known as selectivity) to choose a query plan. When distributions are skewed, query plans often

require extra data processing [101]; for example, they may retrieve all ofandrew’s files to find

the few that areandrew’s pdf files or vice-versa. Our analysis shows that query execution

should utilize attribute values’ spatial locality rather than their frequency distributions. Spatial

locality provides a more effective way to execute a query because it is more selective and can

better reduce a query’s search space. Additionally, if frequency distribution is to be used, the

frequency of the Cartesian products of the query predicatesshould be used rather than a single

predicate.
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Figure 3.16:Attribute value distribution examples. A rank of 1 represents the attribute value

with the highest file count. The linear curves on the log-log scales in Figures 3.16(a) and 3.16(b)

indicate a Zipf-like distribution, while the flatter curve in Figure 3.16(c) indicates a more even

distribution.
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3.8 Summary

In order to design better file system organization and indexing techniques it is im-

portant to understand the kinds of data that file systems stores and how they are used. In this

chapter we presented an analysis ofboth file system workload and snapshot traces. We ana-

lyzed two large-scale CIFS network file system workloads andthree metadata snapshots from

enterprise-class file servers.

We compared these workloads to previous file system studies to understand how file

access patterns have changed and conducted a number of otherexperiments. We found that

read-write file access patterns and random file access are farmore common than previously

thought and that most file storage remains unused, even over athree month period. Our obser-

vations on sequentiality, file lifetime, file reuse and sharing, and request type distribution also

differ from those in earlier studies. Based on these observations, we made several recommenda-

tions for improving network file server design to handle the workload of modern corporate and

engineering environments. Additionally, we found that metadata attribute values are heavily

clustered in the namespace and that attribute values have highly skewed distributions. We then

discussed how these attributes impact DBMS performance andhow they can be exploited to

improve search performance. While our analysis is a first step at designing better organization

and indexing strategies there are a number of other important experiments that have yet to be

studied. We detail some of these in Section 6.1.
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Chapter 4

New Approaches to File Indexing

Achieving effective search in large-scale file systems is difficult because these systems

contain petabytes of data and billions of files. Index structures must index up to1010 − 1011

metadata attributes and even more content keywords. In addition, they must handle frequent file

updates. Thus, proper index design is critical to achievingeffective file system search.

Unfortunately, current file system search solutions rely ongeneral-purpose index

structures that are not designed for file system search and can limit performance at large-scales.

As discussed in Section 2.5, metadata attributes are often indexed in a relational DBMS and

content keywords are usually indexed in a traditional inverted index. General-purpose index

solutions are appealing as off-of-the-shelf solutions that can provide the needed search func-

tionality and are widely available. For example, Microsoft’s enterprise search indexes metadata

in their Extensible Storage Engine (ESE) DBMS [109]. Also, the Linux desktop search tool,

Beagle [18], relies on the standard Lucene inverted index [11] for content search.

While general-purpose index solutions are quick to deploy,they lack the optimized

designs required to effectively search billions of files. Aneffective indexing system must meet

several requirements. Search performance must be fast and scalable enough to make it a com-

mon method of file access. General-purpose solutions are optimized for other workloads. For

example, DBMS are optimized for OLTP workloads, which can cause needless disk accesses,

poor cache utilization, and extra processing when used for file system search [162]. Addi-

tionally, index update performance must be fast enough to quickly index frequent file changes.
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Unfortunately, most general-purpose index structures areoptimized for search performance,

meaning that updates can be very slow [1, 96]. The index must also have limited resource re-

quirements to ensure that a scalable solution is cost-effective and possible to integrate within

an existing storage system. General-purpose indexes oftendepend on dedicated hardware to

ensure performance [15, 75], which makes them expensive at large-scales. While not part of the

index itself, it is also critical that file metadata and keywords can be effectively gathered from

the file system. It must be possible to quickly collect changes from billions of files without

impacting normal file system performance.

In this chapter, we examine the hypothesis that file system search requirements can

be better meet through new index designs that are specifically optimized for file systems. To

do this we present the design of a file metadata index and a file content index that leverage file

system specific properties discussed in the previous chapter to guide their designs and improve

performance.

Metadata index: We present the design of Spyglass, a novel metadata search system that ex-

ploits file metadata properties to enable fast, scalable search that can be embedded within

the storage system. Our design introduces several new metadata indexing techniques.

Hierarchical partitioning is a new method of namespace-based index partitioning that

exploits namespace locality to provide flexible control of the index. Signature filesare

compact descriptions of a partition’s contents, helping toroute queries only to relevant

partitions and prune the search space to improve performance and scalability. A new

snapshot-basedmetadata collection method provides scalable collection by re-crawling

only the files that have changed. Finally,partition versioning, a novel index versioning

mechanism, enables fast update performance while allowing“back-in-time” search of

past metadata.

Inverted content index: We present an inverted index design that leverages hierarchical parti-

tioning to decompose posting lists into many smaller, disjoint segments based on the file

system’s namespace. Through the use of anindirect indexthat manages these segments,

our approach provides flexible, fine-grained index control that can enhance scalability
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and improve both search and update performance. In addition, we discuss how to lever-

age partitioning to enforce file security permissions, provide personalized search result

rankings, and distribute the index across a cluster.

An evaluation of our Spyglass prototype, using our real-world, large-scale metadata

traces, shows that search performance is improved 1–4 orders of magnitude compared to basic

DBMS setups. Additionally, search performance is scalable; it is capable of searching hundreds

of millions of files in less than a second. Index update performance is up to40× faster than

basic DBMS setups and scales linearly with system size. The index itself typically requires

less than 0.1% of total disk space. Index versioning allows “back-in-time” metadata search

while adding only a tiny overhead to most queries. Finally, our snapshot-based metadata collec-

tion mechanism performs10× faster than a straw-man approach. Our evaluation demonstrates

that file system-specific designs can greatly improve performance compared to general-purpose

solutions.

This remainder of this chapter is organized as follows. Section 4.1 presents the design

of our Spyglass metadata index and Section 4.2 presents the design of our content index. We

evaluate performance using our Spyglass prototype in Section 4.3 and summarize our findings

in Section 4.4.

4.1 Metadata Indexing

In addition to the file system properties presented in Chapter 3, we wanted to better

understand user and administrator metadata search needs. To do this we surveyed over 30 large

scale storage system users and administrators. We asked subjects to rank the perceived useful-

ness of various queries that we supplied, as well as, to supply the kinds of queries they would

like to run and why. We found subjects using metadata search for a wide variety of purposes.

Use cases included managing storage tiers, tracking legal compliance data, searching large

scientific data output files, finding files with incorrect security ACLs, and resource/capacity

planning. Table 4.1 provides examples of some popular use cases and the metadata attributes

searched.
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File Management Question Metadata Search Query

Which files can be migrated to tape? size > 50GB, atime > 6 months.

How many duplicates of this file are in my home directory?owner = andrew, datahash = 0xE431, path = /home/andrew.

Where are my recently modified presentations? owner = andrew, type = (ppt | keynote), mtime < 2 days.

Which legal compliance files can be expired? retention time = expired, mtime > 7 years

Which of my files grew the most in the past week? Top 100 wheresize(today)> size(1 week ago),owner = andrew.

How much storage do these users and applications consume? Sumsize whereowner = andrew, type = database

Table 4.1:Use case examples.Metadata search use cases collected from our user survey. The

high-level questions being addressed are on the left. On theright are the metadata attributes

that are being searched and example values. Users used basicinode metadata as well as special-

ized extended attributes, such as legal retention times. Common search characteristics include

multiple attributes, localization to part of the namespace, and “back-in-time” search.

From our survey we observed three important metadata searchcharacteristics. First,

over 95% of searches includedmultiple metadata attributesto refine search results; a search

on a single attribute over a large file system can return thousands or even millions of results,

which users do not want to sift through. The more specific their queries the more narrow the

scope of the results. Second, about 33% ofsearches were localizedto part of the namespace,

such as a home or project directory. Users often have some idea of where their files are and a

strong idea of where they are not; localizing the search focuses results on only relevant parts of

the namespace. Third, about 25% of the searches that users deemed most importantsearched

multiple versionsof metadata. Users use “back-in-time” searches to understand file trends and

how files are accessed.

4.1.1 Spyglass Design

We designed Spyglass to address the file system search requirements discussed ear-

lier. Spyglass is specially designed to exploit metadata search properties to achieve scale and

performance while being embedded within the storage system. Spyglass focuses on crawling,

updating, and searching metadata.
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Figure 4.1:Spyglass overview.Spyglass resides within the storage system. The crawler ex-

tracts file metadata, which gets stored in the index. The index consists of a number of partitions

and versions, all of which are managed by a caching system.

Spyglass uses several novel techniques that exploit the filesystem properties dis-

cussed in Chapter 3 to provide fast, scalable search in large-scale storage systems. First,hi-

erarchical partitioningpartitions the index based on the namespace, preserving spatial locality

in the index and allowing fine-grained index control. Second, signature files[53] are used im-

prove search performance by leveraging locality to identify only the partitions that are relevant

to a query. Third,partition versioningversions index updates, which improves update perfor-

mance and allows “back-in-time” search of past metadata versions. Finally, Spyglass utilizes

storage systems snapshots to crawl only the files whose metadata has changed, providing fast

collection of metadata changes. Spyglass resides within the storage system and consists of two

major components, shown in Figure 4.1: the Spyglass index, which stores metadata and serves

queries, and a crawler that extracts metadata from the storage system.

4.1.2 Hierarchical Partitioning

To exploit metadata locality and improve scalability, the Spyglass index is partitioned

into a collection of separate, smaller indexes, with a technique we call hierarchical partitioning.
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Figure 4.2:Hierarchical partitioning example. Sub-tree partitions, shown in different colors,

index different storage system sub-trees. Each partition is stored sequentially on disk. The

Spyglass index is a tree of sub-tree partitions.

Hierarchical partitioning is based on the storage system’snamespace and encapsulates separate

parts of the namespace into separate partitions, thus allowing more flexible, fine grained control

of the index. Similar partitioning strategies are often used by file systems to distribute the

namespace across multiple machines [122, 180].

Each of the Spyglass partitions is stored sequentially on disk, as shown in Figure 4.2.

Thus, unlike a DBMS, which stores records adjacently on diskusing their row or column or-

der, Spyglass groups records nearby in the namespace together on disk. This approach improves

performance since the files that satisfy a query are often clustered in only a portion of the names-

pace, as shown by our observations in Section 3.7. For example, a search of the storage system

for andrew’s ppt files likely does not require searching sub-trees such as other user’s home

directories or system file directories. Hierarchical partitioning allows only the sub-trees rele-

vant to a search to be considered, thereby enabling reduction of the search space and improving

scalability. Also, a user may choose to localize the search to only a portion of the namespace.

Hierarchical partitioning allows users to control the scope of the files that are searched. A

DBMS-based solution usually encodes pathnames as flat strings, making it oblivious to the hi-
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erarchical nature of file organization and requiring it to consider the entire namespace for each

search. If the DBMS stores the files sorted by file name, it can improve locality and reduce

the fraction of the index table that must be scanned; however, this approach can still result in

performance problems for index updates, and does not encapsulate the hierarchical relationship

between files.

Spyglass partitions are kept small, on the order of 100,000 files, to maintain locality

in the partition and to ensure that each can be read and searched very quickly. We discuss the

reason for choosing this size in Section 4.3. Since partitions are stored sequentially on disk,

searches can usually be satisfied with only a few small sequential disk reads to retrieve the

partitions that are needed to satisfy a query. Also, sub-trees often grow at a slower rate than the

system as a whole [5, 43], which provides scalability because the number of partitions to search

will often grow slower than the size of the system.

We refer to each partition as asub-tree partition; the Spyglass index is a tree of sub-

tree partitions that reflects the hierarchical ordering of the storage namespace. Each partition

has a mainpartition index, in which file metadata for the partition is stored;partition metadata,

which keeps information about the partition; and pointers to child partitions. Partition metadata

includes information used to determine if a partition is relevant to a search and information used

to support partition versioning.

The Spyglass index is stored persistently on disk; however,all partition metadata,

which is small, is cached in-memory. Apartition cachemanages the movement of entire parti-

tion indexes to and from disk as needed. When a file is accessed, its neighbor files will likely

need to be accessed as well, due to spatial locality. Paging entire partition indexes allows meta-

data for all of these files to be fetched in a single, small sequential read. This concept is similar

to the use of embedded inodes [57], to store inodes adjacent to their parent directory on disk.

In general, Spyglass search performance is a function of thenumber of partitions that

must be read from disk. Thus, the partition cache’s goal is toreduce disk accesses by ensuring

that most partitions searched are already in-memory. Whilewe know of no studies of file system

query patterns we believe that a simple LRU algorithm is effective. Both web queries [19] and

file system access patterns (see Section 3.3) exhibit skewed, Zipf-like popularity distributions,
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suggesting that file metadata queriesmayexhibit similar popularity distributions; this would

mean that only a small subset of partitions will be frequently accessed. An LRU algorithm

keeps these recently accessed partitions in-memory, ensuring high performance for common

queries and efficient cache utilization.

4.1.2.1 Partition Indexes

Each partition index must provide fast, multi-dimensionalsearch of the metadata it

indexes. To do this we use a K-D tree [24], which is ak-dimensional binary tree, because it pro-

vides lightweight, logarithmic point, range, and nearest neighbor search overk dimensions and

allows multi-dimensional search of a partition in tens to hundreds of microseconds. However,

other index structures can provide additional functionality. For example, FastBit [187] provides

high index compression, Berkeley DB [121] provides transactional storage, cache-oblivious

B-trees [21] improve B-tree update time, and K-D-B-trees [136] allow partially in-memory K-

D trees. However, in most cases, the fast, lightweight nature of K-D trees is preferred. The

drawback is that K-D trees are difficult to update; Section 4.1.3 describes techniques to avoid

continuous K-D tree updates.

4.1.2.2 Partition Metadata

Partition metadata contains information about the files in the partition, including paths

of indexed sub-trees, file statistics, signature files, and version information. File statistics, such

as file counts and minimum and maximum values, are kept to answer aggregation and trend

queries without having to process the entire partition index. These statistics are computed as

files are being indexed. Aversion vector, which is described in Section 4.1.3, manages partition

versions. Signature files are used to determine if the partition contains files relevant to a query.

Signature files [53] are bit arrays that serve as compact summaries of a partition’s

contents and exploit metadata locality to prune a query’s search space. A common example of

a signature file is the Bloom Filter [26]. Spyglass can determine whether a partitionmayindex

any files that match a query simply by testing bits in the signature files. A signature file and

an associated hashing function are created for each attribute indexed in the partition. All bits in
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Figure 4.3:Signature file example.Signature files for theext andsize metadata attributes are

shown. Each bit corresponds to a value or set of values in the attribute value space. One bits

indicate that the partitionmaycontain files with that attribute value while zero bits that they

definitely do not. In the top figure, each bit corresponds to anextension. False-positives occur

in cases where multiple extensions hash to the same bit position. In the bottom figure, each bit

corresponds to a range of file sizes.

the signature file are initially set to zero. As files are indexed, their attribute values are hashed

to a bit position in the attribute’s signature file, which is set to one. We illustrate the design of

two signature files in Figure 4.3. To determine if the partition indexes files relevant to a query,

each attribute value being searched is hashed and its bit position is tested. The partition needs

to be searchedonly if all bits tested are set to one. Thus, this approach does not depend on

the frequency distribution of a single attribute value, which we showed in Section 3.7 is a poor

query execution metric. Due to spatial locality, most searches can eliminate many partitions,

reducing the number of disk accesses and processing a query must perform.

As a result of collisions in the hashing function that cause false positives, a signature

file determines only if a partitionmaycontain files relevant to a query, potentially causing a

partition to be searched when it does not contain any files relevant to a search. A false positive

is shown in the top part of Figure 4.3 where we see both thec andpdf extensions hash to the

same bit location. The one bit at that location can only tell if one of those attributes are stored

in the partition, but not which one. However, signature filescannot produce false negatives,
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so partitions with relevant files will never be missed. False-positive rates can be reduced by

varying the size of the signature or changing the hashing function. Increasing signature file

sizes, which are initially around 2 KB, decreases the chances of a collision by increasing the

total number of bits. This trades off increased memory requirements and lower false positive

rates. Changing the hashing function allow a bit’s meaning and how it is used to be improved.

For example, consider a signature file for file size attributes, as shown in the bottom part of

Figure 4.3. Rather than have each bit represent a single sizevalue (e. g., 522 bytes), we can

reduce false positives for common small files by mapping each1 KB range to a single bit for

sizes under 1 MB. The ranges for less common large files can be made more coarse, perhaps

using a single bit for sizes between 25 and 50 MB.

While Spyglass stores signature files in memory, it is possible to store them efficiently

on disk. Signature files can be written to disk in abit-sliced [54] fashion, which allows only

the data for the few bits being tested to be read from disk. Bit-slicing is done by groupingN

signature files together, such as the signature files describing theext attribute forN partitions.

These signature files are stored on disk inN -bit slices, where theith slice contains theith bit

from each of theN signature files. Thus, retrieving slicei during query execution for anext

attribute value will read biti for theN different signature files from disk. This approach allows

the bit in question to be accessed sequentially forN signature files and eliminates the need to

read untested bit positions.

When Spyglass contains many partitions, the number of signature files that must be

tested can become large. The number of signature files that have to be tested can be reduced

by utilizing the tree structure of the Spyglass index to create hierarchically defined signature

files. Hierarchical signature files are smaller signatures (roughly 100 bytes) that summarize the

contents of its partition and the partitions below it in the tree. Hierarchical signature files are

the logical OR of a partition’s signature files and the signature files of its children. A single

failed test of a hierarchical signature file can eliminate huge parts of the index from the search

space, preventing every partition’s signature files from being tested. Hierarchical signature files

are kept small to save memory at the cost of increased false positives.
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4.1.3 Partition Versioning

Spyglass improves update performance and enables “back-in-time” search using a

technique called partition versioning that batches index updates, treating each batch as a new

incremental index version. The motivation for partition versioning is two-fold. First, we wish

to improve index update performance by not having to modify existing index structures. In-

place modification of existing indexes can generate large numbers of disk seeks and can cause

partition’s K-D tree index structure to become unbalanced.Second, back-in-time search can

help answer many important storage management questions that can track file trends and how

they change.

Spyglass batches updates before they are applied as new versions to the index, mean-

ing that the index may be stale because file modifications are not immediately reflected in the

index. However, batching updates improves index update performance by eliminating many

small, random, and frequent updates that can thrash the index and cache. Additionally, from

our user survey, most queries can be satisfied with a slightlystale index. It should be noted

that partition versioning does not require updates to be batched. The index can be updated

in real time by versioning each individual file modification,as is done in most versioning file

systems [144, 156], however this will increase space requirements and decrease performance.

4.1.3.1 Creating Versions

Spyglass versions each sub-tree partition individually rather than the entire index as a

whole in order to maintain locality. A versioned sub-tree partition consists of two components: a

baseline indexandincremental indexes, which are illustrated in Figure 4.4. A baseline index is a

normal partition index that represents the state of the storage system at timeT0, or the time of the

initial update. An incremental index is an index of metadatachangesbetween two points in time

Tn−1 andTn. These changes are indexed in K-D trees, and smaller signature files are created for

each incremental index. Storing changes differs from the approach used in some versioning file

systems [144], which maintain full copies for each version.VersionFS [115] provides similar

semantics to our method by versioning only the deltas between blocks. Changes consist of
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Figure 4.4:Versioning partitioning example. Each sub-tree partition manages its own ver-

sions. A baseline index is a normal partition index from someinitial time T0. Each incremental

index contains the changes required to roll query result forward to a new point in time. Each

sub-tree partition manages its version in a version vector.

metadata creations, deletions, and modifications. Maintaining only changes requires a minimal

amount of storage overhead, resulting in a smaller footprint and less data to read from disk.

Each sub-tree partition starts with a baseline index, as shown in Figure 4.4. When

a batch of metadata changes is received atT1, it is used to build incremental indexes. Each

partition manages its incremental indexes using aversion vector, similar in concept to inode

logs in the Elephant File System [144]. Since file metadata indifferent parts of the file sys-

tem change at different rates, as was shown in Section 3.3 andin other studies [5], partitions

may have different numbers and sizes of incremental indexes. Incremental indexes are stored

sequentially on disk adjacent to their baseline index. As a result, updates are fast because each

partition writes its changes in a single, sequential disk access. Incremental indexes are paged

into memory whenever the baseline index is accessed, increasing the amount of data that must

be read when paging in a partition, though not typically increasing the number of disk seeks.

As a result, the overhead of versioning on overall search performance is usually small.
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Performing a “back-in-time” search that is accurate as of timeTn works as follows.

First, the baseline index is searched, producing query results that are accurate as ofT0. The

incremental indexesT1 throughTn are then searched in chronological order. Each incremental

index searched produces metadata changes that modify the search results, rolling them forward

in time, and eventually generating results that are accurate as ofTn. For example, consider

a query for files withowner andrew that matches two files,Fa and Fb, at T0. A search

of incremental indexes atT1 may yield changes that causeFb to no longer match the query

(e. g., no longer owned byandrew), and a later search of incremental indexes atTn may yield

changes that cause fileFc to match the query (i. e., now owned byandrew). The results of

the query areFa andFc, which is accurate as ofTn. Because this process is done in memory

and each version is relatively small, searching through incremental indexes is often very fast.

In rolling results forward, a small penalty is paid to searchthe most recent changes; however,

updates are much faster because no data needs to be copied, asis the case in CVFS [156], which

rolls version changes backwards rather than forwards.

4.1.3.2 Managing Versions

Over time, older versions tends to decrease in value and should be removed to reduce

search overhead and save space. Spyglass provides two efficient techniques for managing par-

tition versions:version collapsingandversion checkpointing. Version collapsing applies each

partition’s incremental index changes to its baseline index. The result is a single baseline for

each partition that is accurate as of the most recent incremental index. Collapsing is efficient

because all original index data is read sequentially and thenew baseline is written sequentially.

During collapsing the signature files are re-computed to remove one bits that may correspond

to attribute values that no longer exist. An extensible hashing [98] method may be used to in-

crementally grow or shrink the signature files if needed. Version checkpointing allows an index

to be saved to disk as a new copy to preserve an important landmark version of the index and is

similar to file landmarks in Elephant [144].

We describe how collapsing and checkpointing can be used with an example. During

the day, Spyglass is updated hourly, creating new versions every hour, thus allowing “back-in-

94



Inode 50

block 4 block 5 block 6

Inode file in snapshot 1

block 2 block 3

block 1

Inode 50

(mtime changed)

block 4 block 5 block 7

Inode file in snapshot 2

block 2 block 8

block 9

Figure 4.5:Snapshot-based metadata collection.In snapshot 2, block 7 has changed since

snapshot 1. This change is propagated up the tree. Because block 2 has not changed, we do not

need to examine it or any blocks below it.

time” searches to be performed at per-hour granularity overthe day. At the end of each day,

incremental versions are collapsed, reducing space overhead at the cost of prohibiting hour-

by-hour searching over the last day. Also, at the end of each day, a copy of the collapsed

index is checkpointed to disk, representing the storage system state at the end of each day. At

the end of each week, all but the latest daily checkpoints aredeleted; and at the end of each

month, all but the latest weekly checkpoints are deleted. This results in versions of varying time

scales. For example, over the past day any hour can be searched, over the past week any day

can be searched, and over the past month any week can be searched. The frequency for index

collapsing and checkpointing can be configured based on userneeds and space constraints.

4.1.4 Collecting Metadata Changes

The Spyglass crawler takes advantage of NetApp Snapshot
TM

technology in the NetApp

WAFL R© file system [77] on which it was developed to quickly collect metadata changes.

Given two snapshots,Tn−1 andTn, Spyglass calculates the difference between them. This dif-

ference represents all of the file metadata changes betweenTn−1 andTn. Because of the way

snapshots are created, only the metadata ofchangedfiles is re-crawled. This approach is faster

than current approaches which often re-crawl all or most of the file system.
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All metadata in WAFL resides in a single file called theinode file, which is a collection

of fixed length inodes. Extended attributes are included in the inodes. Performing an initial

crawl of the storage system is fast because it simply involves sequentially reading the inode

file. Snapshots are created by making a copy-on-write clone of the inode file. Calculating the

difference between two snapshots leverages this mechanism. This is shown in Figure 4.5. By

looking at the block numbers of the inode file’s indirect and data blocks, we can determine

exactly which blocks have changed. If a block’s number has not changed, then it does not need

to be crawled. If this block is an indirect block, then no blocks that it points to need to be

crawled either because block changes will propagate all theway back up to the inode file’s root

block. As a result, the Spyglass crawler can identify just the data blocks that have changed and

crawl only their data. This approach greatly enhances scalability because crawl performance is

a function of the number of files that have changed rather thanthe total number of files.

Spyglass is not dependent on snapshot-based crawling, though it provides benefits

compared to alternative approaches. Periodically walkingthe file system can be extremely

slow because each file must be traversed. Moreover, traversal can utilize significant system

resources and alter file access times on which file caches depend. Another approach, file system

event notifications (e. g., inotify [86]), requires hooks into critical code paths, potentially

impacting performance. A change log, such as the one used in NTFS, is another alternative;

however, since we are not interested in every system event, asnapshot-based scheme is more

efficient.

4.1.5 Distributed Design

Our discussion thus far has focused on indexing and crawlingon a single storage

server. However, large-scale storage systems are often composed of tens or hundreds of servers.

While we do not currently address how to distribute the index, we believe that hierarchical

partitioning lends itself well to a distributed environment because the Spyglass index is a tree

of partitions. A distributed file system with a single namespace can view Spyglass as a larger

tree composed of partitions placed on multiple servers. As aresult, distributing the index is a

matter of effectively scaling the Spyglass index tree. Also, the use of signature files may be
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effective at routing distributed queries to relevant servers and their sub-trees. Obviously, there

are many challenges to actually implementing this. A complete distributed design is one of the

future directions for this work that we discuss in Section 6.2.

4.2 Content Indexing

In this section we look at how similar file system specific indexing techniques can

be applied to file content search. As mentioned previously, the inverted index is the chief data

structure for keyword search. We outline how these indexingtechniques can be applied to

an inverted index. In particular, our inverted index designutilizes hierarchical partitioning,

which we introduced in Section 4.1 and which exploits namespace locality. Namespace locality

implies that a file’s location within the namespace influences its properties. Part of our design

is based upon the assumption that keyword distributions exhibit a similar namespace locality

property as metadata. That is, the content keywords are alsoclustered in the namespace. For

example, file’s containing the keyword “financial”, “budget”, and “shareholder” are more likely

to be contained in directories pertaining to a company’s quarterly financial documents rather

than a developer source code tree or a directory of system files.

While most evidence for file system content keywords exhibiting namespace locality

is anecdotal, a previous study did find a variety of keywords that were more common in some

file system data sets than others [167]. A more complete file system keyword analysis is future

work discussed in Section 6.2. However, even in the absence of keyword namespace locality,

our approach provides a method for fine grained control of theindex and posting lists that users

can use to localize their searches, improve update performance, and which can utilize other

partitioning strategies, such as partitioning along file security permissions.

4.2.1 Index Design

Recall from Section 2.6.2 that an inverted index contains a dictionary of keywords

that map to posting lists, which specify the locations in thefile system where the keywords

occur. Our new index design consists of two-levels. At the first level is a single inverted index,
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Figure 4.6:Indirect Index Design. The indirect index stores the dictionary for the entire file

system and each keyword’s posting lists contain locations of partition segments. Each partition

segment is kept sequential on-disk.

called theindirect index, that points to the locations of posting listsegmentsrather than the

entire posting list itself and is illustrated in Figure 4.6.The indirect index is similar to the

inverted index used in GLIMPSE [104]. At the second level is alarge collection of posting

list segments. A posting list segment is a region of a postinglist that is stored sequentially on-

disk. Posting lists are partitioned into segments using hierarchical partitioning. Thus, a segment

represents the postings for a keyword that occurs within a specific sub-tree in the namespace.

An illustration of how a posting list is partitioning into segments is shown in Figure 4.7. The

namespace is partitioned so that each sub-tree’s partitionis relatively small, on the order of

100,000 files, similar to our design in Spyglass. By partitioning the posting lists into segments

we ensure fast performance for searching or updating any onepartition, as posting lists are small

enough to efficiently read, write, and cache in-memory. In essence, partitioning makes the index

namespace locality-aware and allow the index to be controlled at the granularity of sub-trees.

However, it should be pointed out the partition does not needto be based on namespace location

and other metrics, such as security or owner, may also be appropriate.
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Figure 4.7: Segment Partitioning. The namespace is broken into partitions that represent

disjoint sub-trees. Each partition maintains posting listsegments for keywords that occur within

its sub-trees. Since each partition is relatively small, these segments can be kept sequential on-

disk.

The purpose of the indirect index is to identify which sub-tree partitions contain any

postings for a given keyword. Doing so allows search, update, security, and ranking to operate

at the granularity of sub-trees. The indirect index maintains the dictionary for the entire file

system. The reason to maintain a single dictionary is that keeping a dictionary per-partition

would simply require too much space overhead since many keywords will be replicated in many

dictionaries. Each keyword’s dictionary entry points to a posting list that contains the on-disk

address of segments that contain actual postings, which is shown in Figure 4.6. Since the

indirect index only maintains a dictionary and posting lists containing segment pointers, it can

be kept in-memory if properly distributed across the nodes in the file system, which we will

discuss later in this chapter.
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4.2.2 Query Execution

All search queries go through the indirect index. The indirect index identifies which

segments contain the posting data relevant to the search. Since each segment is sequential on-

disk, retrieving a single segment is fast. A disk seek will often be required between segments.

While retrieving a keyword’s full posting list (i. e., all segments for the keyword)

requires a disk seek between each segment, our use of hierarchical partitioning allows us to

exploit namespace locality to retrieve fewer segments. As mentioned earlier, it is assumed

that keywords and phrases have namespace locality and only occur in a fraction of the parti-

tions (which we plan to quantify in future our future work). For example, the Boolean query

storage ∧ research ∧ santa∧ cruz requires (depending on the ranking algorithm) that a par-

tition contain files with all four terms before it should be searched. If it does not contain all

four terms, often it does not need to be searched at all. Usingthe indirect index, we can easily

identify the partitions that contain the fullintersectionof the query terms. By taking the inter-

section of the partitions returned, we can identify just thesegments that contain files matching

the query. Reading only these small segments can significantly reduce the amount of data read

compared to fetching postings from across the entire file systems. Likewise, by reducing the

search space to a few small partitions, with disk seeks occurring along partition boundaries, the

total number of disk seeks can be significantly reduced.

The search space can also be reduced when a search query is localized to part of the

namespace. For example, a user may want to search only their home directory or the sub-tree

containing files for a certain project. In existing systems,the entire file system is searched and

then results are pruned to ensure they fall within the sub-tree. However, through the use of a

look up table that maps directory pathnames to their partitions, our approach reduces the scope

of the search space to only the scope specified in the query. For example, a query scoped to a

user’s home directory eliminates all segments not within their home directory from the search

space. Thus, users can control the scope and performance of their queries, which is critical in

large-scale file systems. Often as the file system grows, the files a user cares about searching
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and accessing grows at a much slower rate. Our approach allows search to scale with what the

user wants to search, rather than the total size of the file system.

Once in-memory, segments are managed by an LRU cache. As mentioned previously,

there have been no studies of file system query patterns though web searches [19, 94] and file

access patterns(see Section 3.3) both exhibit Zipf-like distributions. This implies skewed pop-

ularity distributions are likely for partitions and that anLRU algorithm will be able to keep

popular partitions in-memory, greatly improving performance for common-case searches. Ad-

ditionally, this enables better cache utilization since only index data related to popular partitions

is kept in-memory, rather than data from all over the file system. Efficient cache utilization is

important for direct integration with the file system since it will often share the same hardware

with the file system.

4.2.3 Index Updates

One of the key challenges with file system search is balancingsearch and update per-

formance. As discussed in Section 2.6.2, inverted indexes traditionally use either an in-place

or merge-based update strategy [96]. An in-place update strategy is an update-optimized ap-

proach. When postings lists are written to disk, a sequential region on-disk is allocated that is

larger than the required amount. When new postings are addedto the list they are written to

the empty region. However, when the region fills and new posting needs to be written, a new

sequential region is allocated elsewhere on-disk and the new postings are written to it. Thus, in-

place updates are fast to write since they can usually be written sequentially and do not require

much pre-processing. However, as posting lists grow they become very fragmented which de-

grades search performance. Alternatively, a merge-based update strategy is a search-optimized

approach. When a posting list is modified it is read from disk,modified in-memory, and written

out sequentially to a new location. This strategy ensures that posting lists are sequential on-

disk, though requires the entire posting to be read and written in order to update it, which can

be extremely slow for large posting lists.

Our approach achieves a better balance in two ways. First, since posting list segments

only contain postings from partitions, they are small enough to make merge-based updates
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efficient. When modifying a posting list, we are able to quickly read the entire list, modify it in

memory, and quickly write it out sequentially to disk. Doingso keeps segment updates relatively

fast and ensures that segments are sequential on-disk. An in-place approach is also feasible

since small segments often will not need to allocate more than one disk block though the space

overhead from over-allocating disk blocks for many segments can become quite high. Second,

our approach can exploit locality in file access patterns to reduce overall disk I/Os. Often only

a subset of file system sub-trees are frequently modified as weshowed in Section 3.3.6 and was

shown in others studies [5, 43]. As a result, queries often only need to read segments from a

small number of partitions. By reading fewer segments, far less data needs to read for an update

compared to retrieving an entire posting list, cache space is better utilized, and updates can be

coalesced in-memory before being written back to disk.

4.2.4 Additional Functionality

In addition to improving scalability, hierarchical partitioning can potentially improve

how file permissions are enforced, aid result ranking, and improve space utilization.

Secure file search is difficult because either an index is keptfor each user, which re-

quires a huge amount of disk space, or permissions for all search results need to be checked,

which can be very slow [33]. However, most users only have access privileges to a limited num-

ber of sub-trees in the namespace [125]. Hierarchical partitioning, through the use of additional

security metadata stored in the indirect index, can eliminate sub-trees a user cannot access from

the search space. Doing so prevents users from searching files they cannot access without re-

quiring any additional indexes and reduces the total numberof search results returned, which

limits the number of files whose permissions must be checked.

Ranking file system search results is difficult because most files are unstructured doc-

uments with little semantic information. However, sub-trees in the namespace often have dis-

tinct, unique purposes, such as a user’s home directory or a source code tree. Using hierarchical

partitioning, we can leverage this information to improve how search results are ranked in two

ways. First, files in the same partition may have a semantic relationship (i. e., files for the same

project) that can be used when calculating rankings. Second, different ranking requirements
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may be set for different partitions. Rather than use a “one size fits all” ranking function for all

billion files in the file system, we can potentially use different ranking functions for different

parts of the namespace. For example, files from a source code tree can be ranked differently

than files in a scientist’s test data, potentially improvingsearch relevance for users.

Both file system access patterns and web searches have Zipf-like distributions. As-

suming these distributions hold true for file system search,a large set of index partitions will be

cold (i. e., not frequently searched). Our approach can allow us to identify these cold partitions

and either heavily compress them or migrate them to lower-tier storage (low-end disk or tape)

to improve cost and space utilization. A similar concept hasbeen applied to legal compliance

data in file systems and has shown the potential for significant space savings [112].

4.2.5 Distributing the Index

Large-scale inverted indexes are usually distributed [15]as are large-scale file sys-

tems. A distributed design enables better scalability and parallel processing capabilities. It is

important that the index is aware of how the file system is distributed so that it can place index

components near the data that they index and can effectivelybalance load across the nodes. We

now discuss how our index can be distributed across the nodesin a file system. We use parallel

file systems, such as Ceph [180], as the context for our discussion because they are intended

for large-scale environments and are highly distributed. In a parallel file system, a cluster of

metadata servers (MDSs) handles metadata operations whilea cluster of object storage devices

(OSDs) handles data operations. The MDS cluster manages thenamespace and stores all file

metadata persistently on the OSD cluster. A more in-depth discussion of parallel file systems is

provided in Section 2.2.

We intend for the indirect index to be distributed across theMDS cluster and across

enough nodes so that it can be kept in-memory. Since a significant amount of query pre-

processing takes place in the indirect index (e. g., determining which partitions to search), keep-

ing it in-memory will significantly improve performance, however is not required. Posting list

segments will be stored on the OSD cluster and since they are small they can map directly to
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physical objects. Storing segments on the OSD cluster also provides parallel access to many

segments at a time.

The indirect index will be partitioned across the MDS cluster using aglobal inverted

file (IFG) partitioning approach [15]. In this approach keywords areused to partition the index

such that each MDS stores only a subset of the keywords in the file system. For example, with

two MDS nodesA andB, A may index and store all keywords in the range[a − q] andB may

index and store all remaining keywords. Along with a good keyword partitioning strategy,IFG

can provide good load balancing and limit network bandwidthrequirements as messages are

sent only to the MDS nodes responsible for keywords in the query.

In our design, the example Boolean querystorage ∧ santa∧ cruz will be evaluated

as follows. A user will issue the query through a single MDS node (possibly of their choos-

ing) which will shepherd the query execution. This shepherdnode will query the MDS nodes

responsible for the keywords “storage”, “santa”, and “cruz” based on theIFG partitioning.

These nodes will return their indirect index posting lists,which are stored in-memory, and the

shepherd will compute the intersection of these to determine which partitions contain all three

terms and are thus relevant to the query. The shepherd will cache these posting lists (to improve

subsequent query performance) and then query the other MDS nodes for the segments that cor-

respond to the relevant partitions. These segments will be read from the OSD cluster, cached at

the three MDS nodes, and returned to the shepherd. The shepherd will aggregate the results list

from the segments and rank them before returning them to the user.

4.3 Experimental Evaluation

In this section we evaluate how well the new indexing techniques we presented ad-

dress the file system search challenges described in the beginning of the chapter and how our

designs compare to general-purpose solutions. To do this, we evaluate a Spyglass prototype im-

plementation. Due to the lack of a representative file systemcontent keyword data set and the

need to first examine whether namespace locality impacts keywords in large-scale file systems,

we do not evaluate our inverted index design. However, sinceour metadata and content index
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designs share many features, the results of our Spyglass evaluation are still very relevant. To

evaluate Spyglass we first measured metadata collection speed, index update performance, and

disk space usage. We then analyzed search performance and how effectively index locality is

utilized. Finally, we measured partition versioning overhead.

4.3.1 Implementation Details

Our Spyglass prototype was implemented as a user-space process on Linux. An RPC-

based interface to WAFL gathers metadata changes using our snapshot-based crawler. Our

prototype dynamically partitions the index as it is being updated. As files and directories are

inserted into the index, they are placed into the partition with the longest pathname match (i. e.,

the pathname match farthest down the tree). New partitions are created when a directory is

inserted and all matching partitions are full. A partition is considered full when it contains over

100,000 files. We use 100,000 as the soft partition limit in order to ensure that partitions are

small enough to be efficiently read and written to disk. Usinga much smaller partition size

will often increase the number of partitions that must be accessed for a query; this incurs extra

expensive disk seeks. Using a much larger partition size decreases the number of partitions that

must be accessed for a query; however it poorly encapsulatesspatial locality, causing extra data

to be read from disk. In the case of symbolic and hard links, multiple index entries are used for

the file.

During the update process, partitions are buffered in-memory and written sequen-

tially to disk when full; each is stored in a separate file. K-Dtrees were implemented using

libkdtree++ [97]. Signature file bit-arrays are about 2 KB, buthierarchical signature files

are only 100 bytes, ensuring that signature files can fit within our memory constraints. Hashing

functions that allowed each signature file’s bit to correspond to a range of values were used for

file size and time attributes to reduce false positive rates.When incremental indexes are created,

they are appended to their partition on disk. Finally, we implement a simple search API that

allows point, range, top-k, and aggregation searches. We plan to extend this interfaceas future

work.
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4.3.2 Experimental Setup

We evaluated performance using our metadata snapshot traces described in Table 3.6.

These traces have varying sizes, allowing us to examine scalability. Our Web and Eng traces

also have incremental snapshot traces of daily metadata changes for several days. Since no

standard metadata search benchmarks exist, we constructedsynthetic sets of queries, discussed

later in this section, from our metadata traces to evaluate search performance. All experiments

were performed on a dual core AMD Opteron machine with 8 GB of main memory running

Ubuntu Linux 7.10. All index files were stored on a network partition that accessed a high-end

NetApp file server over NFS.

We also evaluated the performance of two popular relationalDBMSs, PostgreSQL

and MySQL, which serve as relative comparison points to DBMS-based solutions used in other

metadata search systems. The goal of our comparison is to provide some context to frame our

Spyglass evaluation, not to compare performance to the bestpossible DBMS setup. We com-

pared Spyglass to an index-only DBMS setup, which is used in several commercial metadata

search systems, and also tuned various options, such as pagesize, to the best of our ability.

This setup is effective at pointing out several basic DBMS performance problems. DBMS per-

formancecan be improved through the techniques discussed in Chapter 2; however, as stated

earlier, they do not completely match metadata search cost and performance requirements.

Our Spyglass prototype indexes the metadata attributes listed in Table 3.7. Our index-

only DBMSs include a base relation with the same metadata attributes and a B+-tree index for

each. Each B+-tree indexes table row ID. An index-only design reduces space usage compared

to some more advanced setups, though it has slower search performance. In all three traces,

cache sizes were configured to 128 MB, 512 MB, and 2.5 GB for theWeb, Eng, and Home

traces, respectively. These sizes are small relative to thesize of their trace and correspond to

about 1 MB for every 125,000 files, which provides linear scaling of cache sizes.
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Figure 4.8: Metadata collection performance. We compare Spyglass’s snapshot-based

crawler (SB) to a straw-man design (SM). Our crawler has goodscalability; performance is

a function of the number of changed files rather than system size.

4.3.3 Metadata Collection Performance

We first evaluated our snapshot-based metadata crawler and compared it to a straw-

man approach. Fast collection performance impacts how often updates occur and system re-

source utilization. Our straw-man approach performs a parallelized walk of the file system

usingstat() to extract metadata. Figure 4.8(a) shows the performance ofa baseline crawl of

all file metadata. Our snapshot based crawler is up to10× faster than our straw-man for 100

million files because our approach simply scans the inode file. As a result, a 100 million file

system is crawled in less than 20 minutes.

Figure 4.8(b) shows the time required to collect incremental metadata changes. We

examine systems with 2%, 5%, and 10% of their files changed. For example, a baseline of

40 million files and 5% change has 2 million changed files. For the 100 million file tests, each

of our crawls finishes in under 45 minutes, while our straw-man takes up to 5 hours. Our crawler

is able to crawl the inode file at about 70,000 files per second.Our crawler effectively scales
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Figure 4.9:Update performance. The time required to build an initial baseline index shown

on a log-scale. Spyglass updates quickly and scales linearly because updates are written to disk

mostly sequentially.

because we incur only a fractional overhead as more files are crawled; this is due to our crawling

only changed blocks of the inode file.

4.3.4 Update Performance

Figure 4.9 shows the time required to build the initial indexfor each of our metadata

traces. Spyglass requires about 4 minutes, 20 minutes, and 100 minutes for the three traces,

respectively. These times correspond to a rate of about 65,000 files per second, indicating that

update performance scales linearly. Linear scaling occursbecause updates to each partition are

written sequentially, with seeks occurring only between partitions. Incremental index updates

have a similar performance profile because metadata changesare written in the same fashion

and few disk seeks are added. Our reference DBMSs take between 8× and44× longer to update

because DBMSs require loading their base table and updatingindex structures. While loading

the table is fast, updating index structures often requiresseeks back to the base table or extra

108



Web Eng Home

S
pa

ce
 O

ve
rh

ea
d 

(G
B

s)

0

1

10

100

.7

6
4

3

24
19 17

86
103

Spyglass PostgreSQL Table

PostgreSQL Indexes

MySQL Table

MySQL Indexes
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index.

data copies. As a result, DBMS updates with our Home trace cantake a day or more; however,

approaches such as cache-oblivious B-trees [21] may be ableto reduce this gap.

4.3.5 Space Overhead

Figure 4.10 shows the disk space usage for all three of our traces. Efficient space

usage has two primary benefits: less disk space taken from thestorage system and the ability to

cache a higher fraction of the index. Spyglass requires lessthan 0.1% of the total disk space for

the Web and Home traces. However, it requires about 10% for the Eng trace because the total

system size is low due to very small files. Spyglass requires about 50 bytes per file across all

traces, resulting in space usage that scales linearly with system size. Space usage in Spyglass is

5×–8× lower than in our references DBMSs because they require space to store the base table

and index structures. Figure 4.10 shows that building indexstructures can more the double the

total space requirements.

109



Query Selectivity

.000001 .00001 .0001 .001 .01 .1

Q
ue

ry
 E

xe
cu

tio
n 

T
im

e

100us

1ms

10ms

100ms

1s

10s

Spyglass PostgreSQL MySQL

Figure 4.11:Comparison of Selectivity Impact. The selectivity of queries in our query set is

plotted against the execution time for that query. We find that query performance in Spyglass

is much less correlated to the selectivity of the query predicates than the DBMSs, which are

closely correlated with selectivity.

4.3.6 Selectivity Impact

We evaluated the effect of metadata selectivity on the performance of Spyglass and

the DBMSs. We again generated query sets ofext andowner from the Web trace with varying

selectivity—the ratio of the number of results to all records. Figure 4.11 plots query selectivity

against query execution time. We found that the performanceof PostgreSQL and MySQL is

highly correlated with query selectivity. However, this correlation is much weaker in Spyglass,

which exhibits much more variance. For example, a Spyglass query with selectivity7 × 10−6

runs in 161 ms while another with selectivity8 × 10−6 requires 3 ms. This variance is caused

by the higher sensitivity of Spyglass to hierarchical locality and query locality, as opposed to

simple query selectivity. This behavior is unlike that of a DBMS, which accesses records from

disk based on the predicate it thinks is the most selective. The weak correlation with selectivity

in Spyglass means it is less affected by the highly skewed distribution of storage metadata which

makes determining selectivity difficult.
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Set Search Metadata Attributes

Set 1 Which user and application files consume the most space? Sumsizes for files usingowner andext.

Set 2 How much space, in this part of the system, do files from query 1consume? Use query 1 with an additional directorypath.

Set 3 What are the recently modified application files in my home directory? Retrieve all files usingmtime, owner, ext, andpath.

Table 4.2:Query Sets.A summary of the searches used to generate our evaluation query sets.

4.3.7 Search Performance

To evaluate Spyglass search performance, we generated setsof queries derived from

real-world queries in our user study; there are, unfortunately, no standard benchmarks for file

system search. These query sets are summarized in Table 4.2.Our first set is based on a

storage administrator searching for the user and application files that are consuming the most

space (e. g., total size ofandrew’s vmdk files)—an example of a simple two-attribute search.

The second set is an administrator localizing the same search to only part of the namespace,

which shows how localizing the search changes performance.The third set is a storage user

searching for recently modified files of a particular type in aspecific sub-tree, demonstrating

how searching many attributes impacts performance. Each query set consists of 100 queries,

with attribute values randomly selected from our traces. Randomly selecting attribute values

means that our query sets loosely follow the distribution ofvalues in our traces and that a

variety of values are used.

Figure 4.12 shows the total run times for each set of queries.In general, query set

1 takes Spyglass the longest to complete, while query sets 2 and 3 finish much faster. This

performance difference is caused by the ability of sets 2 and3 to localize the search to only a

part of the namespace by including a path with the query. Spyglass is able to search only files

from this part of the storage system by using hierarchical partitioning. As a result, the search

space for these queries is bound to the size of the sub-tree, no matter how large the storage

system. Because the search space is already small, using many attributes has little impact on

performance for set 3. Query set 1, on the other hand, must consider all partitions and tests each

partition’s signature files to determine which to search. While many partitions are eliminated,
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Figure 4.12:Query set run times. The total time required to run each set of queries. Each

set is labeled 1 through 3 and is clustered by trace file. Each trace is shown on a separate log-

scale axis. Spyglass improves performance by reducing the search space to a small number of

partitions, especially for query sets 2 and 3, which are localized to only a part of the namespace.

there are more partitions to search than in the other query sets, which accounts for the longer

run times.

Our comparison DBMSs perform closer to Spyglass on our smallest trace, Web; how-

ever, we see the gap widen as the system size increases. In fact, Spyglass is over four orders of

magnitude faster for query sets 2 and 3 on our Home trace, which is our largest at 300 million

files. The large performance gap is due to several reasons. First, our DBMSs consider files from

all parts of the namespace, making the search space much larger. Second, skewed attribute value

distributions cause our DBMSs to process extra data even when there are few results. Third, the

DBMSs base tables ignore metadata locality, causing extra disk seeks to find files close in the

namespace but far apart in the table. Spyglass, on the other hand, uses hierarchical partitioning

to significantly reduce the search space, performs only small, sequential disk accesses, and can

exploit locality in the workload to greatly improve cache utilization.

Using the results from Figure 4.12, we calculated query throughput, shown in Ta-

ble 4.3. Query throughput (queries per second) provides a normalized view of our results and

the query loads that can be achieved. Spyglass achieves throughput of multiple queries per sec-

ond in all but two cases; in contrast, the reference DBMSs do not achieve one query per second

in any instance, and, in many cases, cannot even sustain one query per five minutes. Figure 4.13

shows an alternate view of performance; a cumulative distribution function (CDF) of query ex-
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System Web Eng Home

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Spyglass 2.38 2.12 71.4 0.315 14.1 18.9 0.05 15.4 14.1

PostgreSQL 0.418 0.418 0.94 0.062 0.034 0.168 0.003 0.001 0.003

MySQL 0.714 0.68 0.063 0.647 0.123 0.115 0.019 0.004 0.009

Table 4.3:Query throughput. We use the results from Figure 4.12 to calculate query through-

put (queries per second). We find that Spyglass can achieve query throughput that enables fast

metadata search even on large-scale storage systems.

ecution times on our Home trace, allowing us to see how each query performed. In query sets 2

and 3, Spyglass finishes all searches in less than a second because localized searches bound the

search space. For query set 1, we see that 75% of queries take less than one second, indicating

that most queries are fast and that a few slow queries contribute significantly to the total run

times in Figure 4.12. These queries take longer because theymust read many partitions from

disk, either because few were previously cached or many partitions are searched.

4.3.8 Index Locality

We now evaluate how well Spyglass exploits spatial localityto improve query perfor-

mance. We generated another set of queries, based on query 1 from Table 4.2, with 500 queries

with owner andext values randomly selected from our Eng trace. We generated similar query

sets for individualext andowner attributes.

Figure 4.14(a) shows a CDF of the fraction of partitions searched. Searching more

partitions often increases the amount of data that must be read from disk, which decreases

performance. We see that 50% of searches using just theext attribute reference fewer than 75%

of partitions. However, 50% of searches using bothext andowner together reference fewer

than 2% of the partitions, since searching more attributes increases the locality of the search,

thereby reducing the number of partitions that must be searched. Figure 4.14(b) shows a CDF
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(c) Query set 3.

Figure 4.13:Query execution times.A CDF of query set execution times for the Eng trace.

In Figures 4.13(b) and 4.13(c), all queries are extremely fast because these sets include a path

predicate that allows Spyglass to narrow the search to a few partitions.
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Figure 4.14:Index locality. A CDF of the number of partitions accessed and the number of

accesses that were cache hits for our query set. Searching multiple attributes reduces the number

of partition accesses and increases cache hits.
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Figure 4.15:Impact of signature file size. The percent of one bits in signature files for four

different attributes is shown. The percent of one bits decreases as signature file size increases.

However, even in the case where signature files are only 1 KB less than 4% of total bits are set

to one. As mentioned earlier, thesize andatime attributes use special hashing functions that

treat each bit as a range rather than a discrete value. This approach keeps the fraction of one

bits below 1% in all cases.

of cache hit percentages for the same set of queries. Higher cache hit percentages means that

fewer partitions are read from disk. Searchingowner andext attributes together results in 95%

of queries having a cache hit percentage of 95% or better due to the higher locality exhibited

by multi-attribute searches. The higher locality causes repeated searches in the sub-trees where

these files reside and allows Spyglass to ignore more non-relevant partitions.

The number of partitions searched during a query is dependent on how effectively

signature files can correctly eliminate partitions from thesearch space. Signature files that are

small will often produce more false-positives, which causes the number of partitions searched to

increase. The probability of a false-positive is dependanton the percent of bits in the signature

file that are set to one [26]. Figure 4.15 shows how the percentof one bits change with signature

file size for four different attributes in Spyglass using ourWeb trace. The average percent of

one bits across all of the partitions for each of the attributes is shown. We see that the percent of

one bits decreases as the size of the signature files increase. For theext andowner attributes,

the percent is2−3× lower for 6 KB signature files, compared to 1 KB. However, it isimportant
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Figure 4.16:Versioning overhead. The figure on the left shows total run time for a set of

450 queries. Each version adds about 10% overhead. On the right, a CDF shows per-query

overheads. Over 50% of queries have an overhead of 5 ms or less.

to point out that even with signature files at 1 KB, the total percent of bits set to one is less than

4%. The reason for this is that hierarchical partitioning exploits namespace locality to keep files

with similar attribute values together. As a result, each partition only has a limited number of

attribute values. Also, thesize andatime signature files use hashing functions where each bit

corresponds to a range rather than a discrete value, as described in Section 4.1.2. As a result,

the percent of one bits is always well below 1%. Our Spyglass prototype uses 2 KB signature

files for each of the ten attributes described in Table 3.7. This size yields good accuracy and is

compact, requiring only 200 MB of memory for 1 billion files.

4.3.9 Versioning Overhead

To measure the search overhead added by partition versioning, we generated 450 queries

based on query 1 from Table 4.2 with values randomly selectedfrom our Web trace. We in-

cluded three full days of incremental metadata changes, andused them to perform three in-

cremental index updates. Figure 4.16 shows the time required to run our query set with an

increasing number of versions; each version adds about a 10%overhead to the total run time.

However, the overhead added to most queries is quite small. Figure 4.16 also shows, via a
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CDF of the query overheads incurred for each version, that more than 50% of the queries have

less than a 5 ms overhead. Thus, it is a few much slower queriesthat contribute to most of the

10% overhead. This behavior occurs because overhead is typically incurred when incremental

indexes are read from disk, which doesn’t occur once a partition is cached. Since reading extra

versions does not typically incur extra disk seeks, the overhead for the slower queries is mostly

due to reading partitions with much larger incremental indexes from disk.

4.4 Summary

Providing effective search at the scale of billions of files is not easy. There are a

number of requirements, such as scalable file crawling, fastsearch and update performance, and

efficient resource utilization, that must be addressed. Thedesign of an effective search index

is critical to meeting these requirements. However, existing search solutions rely on general-

purpose index structures, such as DBMSs, that are not designs for file search and which limit

performance and scalability.

In this chapter we examined the hypothesis that these requirements can be better meet

with index designs that are optimized for file system search.To examine this hypothesis we

presented the design of two new indexing structures; one forfile metadata and one for content

search. Unlike general-purpose indexes, our index designsleveraged the large-scale file system

properties presented in Chapter 3 to improve performance and scalability. Our designs intro-

duced several novel file system indexing techniques. Flexible index control is provided by an

index partitioning mechanism, called hierarchical partitioning, that leverages namespace local-

ity. We introduced the use of signature files and an indirect index to effectively route queries and

significantly reduce a query’s search space. A novel index versioning mechanism was used to

provide both fast index updates and “back-in-time” search.An evaluation of our metadata index

shows search performance improvements up to 1–4 orders of magnitude compared to existing

DBMS based solutions, while providing faster update performance and using only a fraction

of the disk space. Our findings support a similar hypothesis from the DBMS community that

argues application-specific designs will often out performa general-purpose solution.
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Chapter 5

Towards Searchable File Systems

Search is becoming an increasingly important way for users to access and manage

their files. However, current file systems are ill-suited to meet these emerging needs because

they organize files using a basic hierarchical namespace that is not easy to search. Modern file

organizations still resemble those designed over forty years ago, when file systems contained

orders of magnitude fewer files and basic hierarchical namespace navigation was more than

sufficient [38]. As a result, searching a file system requiresbrute-force namespace traversal,

which is not practical at large scale. Currently to address this problem, file search is imple-

mented with a search application—a separate index or database of the file system’s attributes

and metadata outside of the file system—as is done in Linux (e. g., thelocate tool), personal

computers [14], and enterprise search appliances [67, 85].

Though search applications have been somewhat effective for desktop and small-scale

servers, they face several inherent limitations at larger scales. First, search applications must

track all file changes in the file system, a difficult challengein a system with billions of files

and constant file changes. Second, file changes must be quickly re-indexed to prevent a search

from returning very old and inaccurate results. Keeping theapplication’s index and file system

consistent is difficult because collecting file changes is often slow [81, 158] and search applica-

tions are often inefficient to update [1, 173]. Third, searchapplications often require significant

disk, memory, and CPU resources to manage larger file systemsusing the same techniques that
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are successful at smaller scales. Thus, a new approach is necessary to scale file system search

to large-scale file systems.

An alternative solution is to build file search functionality directly into the file system.

This eliminates the need to manage a secondary database, allowing file changes to be searched

in real-time, and enabling internal file organization that corresponds to the users’ need for search

functionality. However, enabling search within the file system has its own challenges. First, file

metadata and data must be organized and indexed so that it canbe searched quickly, even as

the system scales. Second, this organization must still provide good file system performance.

Previous approaches, such as replacing the file system with arelational database [59, 119], have

had difficulty addressing these challenges.

In this chapter we explore the hypothesis that search can be integrated directly into

the file system’s design to enable scalable and efficient search while providing good file system

performance. To examine this hypothesis we present two new approaches to how file systems

internally organize and index files. The first is Magellan, a searchable metadata architecture

and the second is Copernicus, a semantic file system design that organizes files into a dynamic,

search-based namespace.

Magellan: Unlike previous work, Magellan does not use relational databases to enable search.

Instead, it uses new query-optimized metadata layout, indexing, and update techniques

to ensure searchability and high performance in a single filesystem. Users view a tradi-

tional hierarchical interface, though in Magellan,all metadata and file look ups, including

directory look ups, are handled using a single search structure, eliminating the redundant

data structures that plague existing file systems with search grafted on. Our evaluation

of Magellan shows that it is possible to provide a scalable, fast, and searchable meta-

data system for large-scale storage, thus facilitating filesystem search without hampering

performance.

Copernicus: Unlike Magellan, which enables search withing a traditional hierarchical names-

pace, Copernicus enables search to be directly integrated into a dynamic, search-based

namespace. Copernicus uses a dynamic graph-based index that clusters semantically re-
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lated files into vertexes and allows inter-file relationships to form edges between them.

This architecture significantly differs from previous semantic file system designs which

simply impose a naming layer over a standard file system or database. This graph replaces

the traditional directory hierarchy, can be efficiently queried, and allows the construction

of dynamic namespaces. The namespace allows “virtual” directories that correspond to a

query and allows navigation using inter-file relationships.

The remainder of this chapter is organized as follows. Section 5.1 discusses the chal-

lenges for combining search and file systems. The Magellan design is presented in Section 5.2

and the Copernicus design is presented in Section 5.3. Our Magellan prototype implementation

is evaluated in Section 5.4. We summarize our findings in Section 5.5.

5.1 Background

Hierarchical file systems have long been the “standard” mechanism for accessing file

systems, large and small. As file systems have grown in both size and number of files, however,

the need for file search has grown; this need has not been adequately met by existing approaches.

5.1.1 Search Applications

File system search is traditionally addressed with a separate search application, such

as the Linuxlocate program, Apple Spotlight [14] and Google Enterprise Search[67]. Search

applications re-index file metadata and file content in a separate search-optimized structure,

often a relational database or information retrieval engine. These applications augment the

file system, providing the ability to efficiently search fileswithout the need for file system

modifications, making them easy to deploy onto existing systems. Figure 5.1 shows how these

applications interact with the file system. The applicationmaintains search indexes for file

metadata and content, such as databases or inverted files, which are stored persistently as files

in the file system.

These applications have been somewhat successful on desktop and smaller scale file

systems. However, they require that two separate indexes ofall metadata be maintained—
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Figure 5.1:File search applications.The search application resides on top of the file system

and stores file metadata and content in separate search-optimized indexes. Maintaining several

large index structures can add significant space and time overheads.

both the file system’s index and the search application’s index—which presents several inherent

challenges as a large-scale and long-term solution:

1) File attributes and changes must be replicated in the searchapplication. Metadata and con-

tent is replicated into the search appliance bypulling it from the file system or having itpushed

in by the file system. A pull approach, as used by Google Enterprise, discovers file changes

through periodic crawls of the file system. These crawls are slow in file systems containing tens

of millions to billions of files that must be crawled. Worse, the file system’s performance is usu-

ally disrupted during the crawl because of the I/O demands imposed by a complete file system

traversal. Crawls cannot collect changes in real-time, which often leads to inconsistency be-

tween the search application and file system, thus causing incorrect (out-of-date) search results

to be returned.

Pushing updates from the file system into the application allows real-time updates.

However, the file system must be modified to be aware of the search application. Additionally,

search applications are search-optimized, which often makes update performance notoriously

slow [1, 173]. Apple Spotlight, which uses a push approach, does not apply updates in real-time

for precisely these reasons. As a result, searches in Apple Spotlight may not reflect the most

recent changes in the file system, though such files are often the ones desired by the user.
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2) Search applications consume additional resources.Search applications often rely on abun-

dant hardware resources to enable fast performance. For example, many commercial products

can only be purchased as a hardware and software bundle [67, 85]. Requiring additional hard-

ware resources makes these systems expensive and difficult to manage at large-scales. Modern

large file systems focus on energy consumption and consolidation [9], making efficient resource

utilization critical.

3) Search appliances add a level of indirection.Building databases on top of file systems

has inefficiencies that have been known for decades [160]; thus, accessing a file through a

search application can be much less efficient than through a file system [148]. Accessing a file

requires the search application to query its index to find thematching files, which will often

require accessing index files stored in the file system. Once file names are returned, the file

names are copied to the file system and the files are then retrieved from the file system itself,

which requires navigating the file system’s namespace indexfor each file. Accessing files found

through searches in a search application require at least double the number of steps, which is

both inefficient and redundant.

4) Users must interact with two interfaces.Accessing files requires users to interact with two

different file interfaces depending on how they want to retrieve their data. The application’s

query interface must be used for file search while normal file access is performed through the

file system’s standard interface (e. g., POSIX). Using multiple interfaces to achieve a common

goal is both cumbersome and complicates interactions with the storage system.

5.1.2 Integrating Search into the File System

We believe that a more complete solution is for the file systemto organize files in a

way that facilitates efficient search. Search applicationsand file systems share the same goal:

organizing and retrieving files. Implementing the two functions separately leads to duplicate

functionality and inefficiencies. With search becoming an increasingly common way to access

and manage files, file systems must provide this functionality as an integral part of their func-

tionality. However, organizing file system metadata so thatit can efficiently be searched is not

an easy task.
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Because current file systems provide only basic directory tree navigation, search ap-

plications are theonly option for flexible, non-hierarchical access. The primary reason behind

this shortcoming is that, despite drastic changes in technology and usage, metadata designs re-

main similar to those developed over 40 years ago [38], when file systems held less than 10 MB.

These designs make metadata search difficult for several reasons.

1) Queries must quickly access large amounts of data from disk.File systems often have meta-

data scattered throughout the disk [57]. Thus, scanning themetadata of millions of files for

a search can require many expensive disk seeks. Moreover, scanning file content for a search

(e. g., grep) may read most of the disk’s contents, which is not only slow,especially given the

rapidly increasing disk capacities compared to slower improvements in disk bandwidth, but file

data can also be highly scattered on disk [153].

2) Queries must quickly analyze large amounts of data.File metadata and data must be linearly

scanned to find files that match the query. File systems do not directly index file metadata or

content keywords, which forces slow linear search techniques to be used to find relevant files.

3) File systems do not know where to look for files.The file system does not know where the

relevant files for a query are located and must often search a large portion of (or the entire) the

file system. In large-scale systems, searching large parts of the file system can be impractical

because of the sheer volume of data that must be examined.

5.2 Integrating Metadata Search

In this section we present the design of a searchable metadata architecture for large-

scale file systems called Magellan. We designed Magellan with two primary goals. First, we

wanted a metadata organization that could be quickly searched. Second, we wanted to provide

the same metadata performance and reliability that users have come to expect in other high

performance file systems. We focus on the problems that make current designs difficult to

search, leaving other useful metadata designs intact. Our design leverages metadata specific

indexing techniques we developed in Chapter 4.

124



This section discusses the new metadata techniques that Magellan uses to achieve

these goals:

• The use of a search-optimized metadata layout that clustersthe metadata for a sub-tree in

the namespace on disk to allow large amounts of metadata to bequickly accessed for a

query.

• Indexing metadata in multi-dimensional search trees that can quickly answer metadata

queries.

• Efficient routing of queries to particular sub-trees of the file system using Bloom fil-

ters [26].

• The use of metadata journaling to provide good update performance and reliability for

our search-optimized designs.

Magellan was designed to be the metadata server (MDS) for Ceph, a prototype large-

scale parallel file system [180]. In Ceph, metadata is managed by a separate metadata server

outside of the data path. We discuss issues specific to Ceph where necessary, though our design

is applicable to many file systems; systems such as PVFS [34] use separate metadata servers,

and an optimized metadata system can be integrated into standard Linux file systems via the

vfs layer, since Magellan’s interface is similar to POSIX though with the addition of a query

interface.

5.2.1 Metadata Clustering

In existing file systems, searches must read large amounts ofmetadata from disk since

searching the file system require traversing the directory tree and may need to perform millions

of readdir() andstat() operations to access file and directory metadata. For example,

a search to find where a virtual machine has saved a user’s virtual disk images may read all

metadata below/usr/ to find files withowner equal to3407 (the user’s UID) andfile type

equal tovmdk.
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Figure 5.2:Metadata clustering. Each block corresponds to an inode on disk. Shaded blocks

labeled ’D’ are directory inodes while non-shaded blocks labeled ’F’ are file inodes. In the

top disk layout, the indirection between directory and file inodes causes them to be scattered

across the disk. The bottom disk layout shows how metadata clustering co-locates inodes for an

entire sub-tree on disk to improve search performance. Inodes reference their parent directory

in Magellan; thus, the pointers are reversed.

Accessing metadata often requires numerous disk seeks to access the file and directory

inodes, limiting search performance. Though file systems attempt to locate inodes near their

parent directory on disk, inodes can still be scattered across the disk. For example, FFS stores

inodes in the same on disk cylinder group as their parent directory [105]. However, prior work

has shown that inodes for a directory are often spread acrossmultiple disk blocks. Furthermore,

directory inodes are not usually adjacent to the first file inode they name, nor are file inodes

often adjacent to the next named inode in the directory [57].We illustrate this concept in the

top part of Figure 5.2, which shows how a sub-tree can be scattered on disk.
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Magellan addresses this problem by grouping inodes into large groups calledclusters,

which are similar in concept to hierarchical partitioning which was presented in Section 4.1.2.

Each cluster contains the metadata for a sub-tree in the namespace and is stored sequentially in

a serialized form on disk, allowing it to be quickly accessedfor a query. For example, a cluster

may store inodes corresponding to the files and directories in the/projects/magellan/

sub-tree. The bottom part of Figure 5.2 shows how clusters are organized on disk. Retrieving all

of the metadata in this sub-tree can be done in a single large sequential disk access. Conceptu-

ally, metadata clustering is similar to embedded inodes [57] which store file inodes adjacent to

their parent directory on disk. Metadata clustering goes further and stores a group of file inodes

and directories adjacent on disk. Co-locating directoriesand files makes hard links difficult to

implement. We address this with a table that tracks hard linked files whose inodes are located

in another cluster.

Metadata clustering exploits several file system properties. First, disks are much bet-

ter at sequential transfers than random accesses. Metadataclustering leverages this to prefetch

an entire sub-tree in a single large sequential access. Second, file metadata exhibitsnames-

pace locality: Metadata attributes are dependent on their location in thenamespace, which we

showed in Section 3.7. For example, files owned by a certain user are likely to be clustered

in that user’s home directory or their active project directories, not randomly scattered across

the file system. Thus, queries will often need to search files and directories that are nearby in

the namespace. Clustering allows this metadata to be accessed more quickly using fewer I/O

requests. Third, metadata clustering works well for many file system workloads that exhibit

similar locality in their workloads, as was shown in Section3.3 and prior studies [137]. Often,

workloads access multiple, related directories, which clustering works well for.

5.2.1.1 Cluster organization

Clusters are organized into a hierarchy, with each cluster maintaining pointers to its

child clusters—clusters containing sub-trees in the namespace. A simple example is a cluster

storing inodes for/usr/ and/usr/lib/ and pointing to a child cluster that stores inodes for

/usr/include/ and/usr/bin/, each of which points to its own children. This hierarchy
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can be navigated in the same way as a normal directory tree. Techniques for indexing inodes

within a cluster are discussed in Section 5.2.2.

While clustering can improve performance by allowing fast prefetching of metadata

for a query, it can negatively impact performance if it becomes too large, since clusters that are

too large waste disk bandwidth by prefetching metadata for unneeded files. Magellan prevents

clusters from becoming too large by using a hard limit on the number of directories a cluster can

contain and a soft limit on the number of files. While a hard limit on the number of directories

can be enforced by splitting clusters with too many directories, we chose a soft limit on files to

allow each file to remain in the same cluster as its parent directory. Our evaluation found that

clusters with tens of thousands of files provide the best performance, as discussed in Section 5.4.

5.2.1.2 Creating and caching clusters

Magellan uses a greedy algorithm to cluster metadata. When an inode is created, it

is assigned to the cluster containing its parent directory.File inodes are always placed in this

cluster. If the new inode is a directory inode, and the cluster has reached its size limit, a new

cluster is created as a child of the current directory and theinode is inserted into it. Otherwise,

it is inserted into the current cluster. Though this approach works fairly well in practice, it does

have drawbacks. First, a very large directory will result ina very large cluster. Second, no effort

is made to achieve a uniform distribution of cluster sizes. These issues can be addressed with a

clustering algorithm that re-balances cluster distributions over time.

Allocation of a new cluster is similar to allocation of extents in extent-based file sys-

tems, such as XFS [168]. When a cluster is created, a sequential region is allocated on disk

with a size that is a function of the preset maximum cluster size (generally on the order of 1

to 2 MBs). This allocated region is intended to be larger thanthe size of the cluster to allow

the cluster to grow over time without having to be relocated and without causing fragmenta-

tion. Since Magellan is being design for use in Ceph, it is beneficial if allocated regions can

correspond to a single Ceph object because it eases cluster management. These regions are

dynamically allocated because in Ceph free space and objectallocation are managed using a

pseudo-random hashing function [181]. However, it is also possible to use an extent tree, as is
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used in XFS. With this hashing function, the location of an object is calculated using its object

identifier and maps to a Ceph storage device on which the object is stored. The storage device

manages its own internal allocation and storage of objects.In the case where a cluster grows too

large for a single object it can become fragmented across objects and slow access times. How-

ever, Ceph provides the opportunity for parallel access to objects that are on separate storage

devices.

Magellan manages memory using acluster cachethat is responsible for paging clus-

ters to and from disk, using a basic LRU algorithm to determine which clusters to keep in the

cache. Clusters can be flushed to disk under five conditions: (1) the cluster cache is full and

needs to free up space; (2) a cluster has been dirty for too long; (3) there are too many journal

entries and a cluster must be flushed to free up journal space (as discussed in Section 5.2.4); (4)

an application has requested that the cluster be flushed (e. g., via sync()); or (5) it is being

flushed by a background thread that periodically flushes clusters to keep the number of dirty

clusters low. Clusters index inodes using in-memory searchtrees that cannot be partially paged

in or out of memory, so the cache is managed in large, cluster-sized units. The cluster cache

will write the cluster to its previous on disk location provided there is enough space. If not,

the cluster will written to a new location that is large enough and the old space will be freed.

In Ceph, clusters larger than a single object may be striped across multiple storage devices to

provide parallel access.

5.2.2 Indexing Metadata

Searches must quickly analyze large amounts of metadata to find the files matching

a query. However, current file systems do not index the metadata attributes that need to be

searched. For example, searching for files withowner equal to UID3047 andmodification

time earlier than7 days ago, requires linearly scanning every inode because it is not known

which may match the query.
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File inode
Ino: 18921

Parent ino: 18256

Owner: 115

Title: 'magellan'

Type: PDF

Directory inode
ino: 18256,

Parent ino: 8568,

Owner: 115

...

...

Figure 5.3:Inode indexing with a K-D tree. A K-D tree is shown with nodes that are directory

inodes are shaded with a ’D’. File inodes are not shaded and labeled ’F’. K-D trees are organized

based on attribute value not namespace hierarchy. Thus, a file inode can point to other file

inodes,etc. The namespace hierarchy is maintained by inodes containingthe inode number of

their parent directory. Extended attributes, such atitle andfile type are included in the inode.

5.2.2.1 Indexing with K-D trees

To address this problem, each cluster indexes its inodes in aK-D tree: ak-dimensional

binary search tree [24]. Inode metadata attributes (e. g., owner, size) are dimensions in the tree

and any combination of these can be searched using point, range, or nearest neighbor queries.

K-D trees are similar to binary trees, though different dimensions are used to pivot at different

levels in the tree. K-D trees allow a single data structure toindex all of a cluster’s metadata.

A one-dimensional data structure, such as a B-tree, would require an index for each attribute,

making reading, querying, and updating metadata more difficult.

Each inode is a node in the K-D tree, and contains basic attributes and any extended

attributes (e. g., file type, last backup date, etc.) that are indexed in the tree, as shown in

Figure 5.3. Figure 5.3 shows that inodes are organized basedon their attribute values, not their

order in the namespace. For example, a file inode’s right pointer points to another file inode

because it has a lower value for some attribute. It is important to note that inodes often store

information not indexed by the K-D tree, such as block pointers.

To maintain namespace relationships, each inode stores itsown name and the inode

number of its parent directory, as shown in Figure 5.3. Areaddir() operation simply queries

the directory’s cluster for all files withparent inode equal to the directory’s inode number.
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Storing names with their inodes allows queries forfilename to not have to locate the parent

directory first and eliminates the level of indirection between directories and their entry inodes

that exist in normal file systems. In fact,all file system metadata operations translate to K-D

tree queries. For example, anopen() on/usr/foo.txt is a query in the cluster containing

/usr/’s inode for a file withfilename equal tofoo.txt, parent inode equal to/usr/’s

inode number, and with the appropriatemode permissions.

5.2.2.2 Index updates

As a search-optimized data structure, K-D trees provide thebest search performance

when they are balanced. However, adding or removing nodes can make it less balanced. Meta-

data modifications must do both: remove the old inode and insert an updated one. While updates

are fastO(log N) operations, many updates can unbalance the K-D tree. The cluster cache ad-

dresses this problem by rebalancing a K-D trees before it is written to disk. Doing so piggybacks

theO(N log N) cost of rebalancing onto the bandwidth-limited serialization back to disk, hid-

ing the delay. This approach also ensures that, when a K-D tree is read from disk, it is already

optimized.

5.2.2.3 Caching inodes

While K-D trees are good for multi-attribute queries, they are less efficient for some

common operations. Many file systems, such as Apple’s HFS+ [13], index inodes using just

the inode number, often in a B-tree. Operations such as path resolution that perform look ups

using just an inode number are done more efficiently in a B-tree than a K-D tree that indexes

multiple attributes, since searching just one dimension ina K-D tree uses a range query that

requiresO(kN1−1/k) time, wherek is the number of dimensions andN is the size of the tree

as compared to a B-tree’sO(log N) look up.

To address this issue, each cluster maintains aninode cachethat stores pointers to

inodes previously accessed in the K-D tree. The inode cache is a hash table that short-circuits

inode look ups, avoiding K-D tree look ups for recently-usedinodes. The inode cache uses
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filename andparent inode as the keys, and is managed by an LRU algorithm. The cache is

not persistent; it is cleared when the cluster is evicted from memory.

5.2.3 Query Execution

Searching through many millions of files is a daunting task, even when metadata is

effectively clustered out on disk and indexed. Fortunately, as we mentioned earlier in Sec-

tion 5.2.1, metadata attributes exhibit namespace locality, which means that attribute values are

influenced by their namespace location and files with similarattributes are often clustered in the

namespace.

Magellan exploits this property by usingBloom filters[26] to describe the contents

of each cluster and toroute queriesto only the sub-trees that contain relevant metadata. Bloom

filters serve a similar role as signature files in our Spyglassdesign from Chapter 4. Each cluster

stores a Bloom filter for each attribute type that it indexes.Bits in the Bloom filters are initialized

to zero when they are created. As inodes are inserted into thecluster, metadata values are hashed

to positions in the bit array, which are set to one. In a Bloom filter, a one bit indicates that a

file with that attributemaybe indexed in the cluster, while a zero bit indicates that thecluster

contains no files with that attribute. A one bit is probabilistic because of hash collisions; two

attribute values may hash to the same bit position causing false-positives. A query only searches

a cluster whenall bits tested by the query are set to one, eliminating many clusters from the

search space. False positives cause a query to search clusters that do not contain relevant files,

degrading performance but not leading to incorrect results. Magellan keeps Bloom filters small

(a few kilobytes) to ensure that they fit in memory.

Unfortunately, deleting values from Bloom filters is difficult, since when removing

or modifying an attribute, the bit corresponding to the old attribute value cannot be set to zero

because the cluster may contain other values that hash to that bit position. However, not deleting

values will cause false positives to increase. To address this, Magellan clears and recomputes

Bloom filters when a cluster’s K-D tree is being flushed to disk. Writing the K-D tree to disk

visits each inode, allowing the Bloom filter to be rebuilt.
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5.2.4 Cluster-Based Journaling

Search-optimized systems organize data so that it can be read and queried as fast

as possible, often causing update performance to suffer [1]. This is a difficult problem in a

search-optimized file system because updates are very frequent, particularly for file systems

with hundreds of millions of files. Moreover, metadata must be kept safe, requiring synchronous

updates. Magellan’s design complicates efficient updates in two ways. First, clusters are too

large to be written to disk every time they are modified. Second, K-D trees are in-memory

structures; thus, information cannot be inserted into the middle of the serialized stream on disk.

To address this issue, Magellan uses acluster-based journalingtechnique that writes

updates safely to an on disk journal and updates the in-memory cluster, but delays writing the

cluster back to its primary on disk location. This techniqueprovides three key advantages. First,

updates in the journal are persistent across a crash since they can be replayed. Second, metadata

updates are indexed and can be searched in real-time. Third,update operations are fast because

disk writes are mostly sequential journal writes that need not wait for the cluster to be written.

This approach differs from most journaling file systems thatuse the journal as a temporary

staging area and write metadata back to its primary disk location shortly after the update is

journaled [128, 147]. In Magellan, the journal is a means to recreate the in memory state in case

of a crash; thus, update performance is closer to that of a log-structure file system [138].

Cluster-based journaling allows updates to achieve good disk utilization; writes are

either streaming sequential writes to the journal or large sequential cluster writes. Since clusters

are managed by the cluster cache, it can exploit temporal locality in workloads as was shown

in Section 3.3, allowing it to keep frequently-updated clusters in memory, updating them on

disk only when they become “cold”. This approach also allowsmany metadata operations to be

reflected in a single cluster optimization and write, and allows many journal entries to be freed

at once, further improving efficiency.

While cluster-based journaling provides several nice features it does have trade-offs.

Since metadata updates are not immediately written to theirprimary on-disk location, the jour-

nal can grow very large because these journal entries are nottrimmed until the cluster is com-
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mitted to disk. Magellan allows the journal to grow to hundreds of megabytes before requiring

that clusters be flushed. Having a larger journal requires more memory resources as well as

more journal replay time in the event of a crash. Since journal writes are a significant part

of update performance, staging the journal in non-volatilememory such as MRAM or phase

change memory could significantly boost performance if the hardware can be afforded. In ad-

dition to requiring additional memory space for the journal, delaying cluster writes to disk and

performing them in the background still has the potential toimpact foreground workloads. An

update to a cluster that is being flushed back to disk will cause the update to be blocked until

the flush is completed. Since flushing a cluster often requires both a rebalance and large disk

write, this latency can be quite high. It is possible to lazily apply the update after the flush and

have the update return prior to the flush completing, though will require extra data structures

and processing. One of the benefits of designing Magellan foruse in a parallel file system like

Ceph is that bandwidth is abundant, meaning that cluster writes and journal writes can happen

simultaneously without have to compete for I/O bandwidth.

5.3 Integrating Semantic File System Functionality

Thus far, our discussion of index and searchable file system design have focused on

hierarchical namespaces. We highlighted the key limitations of these namespaces in Section 2.3.

While our new index and file system designs enable more efficient search, which improves their

effectiveness, hierarchical namespaces are not a well suited long-term solution. Instead it is

often argued that search-based namespaces are a more effective method for managing billions

of files [47, 148, 170]. In these namespaces, search is the primary access method and files are

organized based on their attributes and search queries.

File systems that implement a search-based namespace are generally called semantic

file systems. Semantic file systems are generally designed asa naming layer above a traditional

file system or database [63, 69, 124] as we discussed in Section 2.5. While providing users with

a better interface to storage, this design is not very scalable because it only changes how files

are presented to users not how they are stored and indexed. Asa result, current designs suffer

134



from many of the index and file system design limitations thatwe have already discussed and

are not able to effectively scale.

In this section we outline the architecture of Copernicus, asemantic file system that

uses new internal organization and indexing techniques to improve performance and scalability.

The architecture that we propose aims to achieve several goals:

Flexible naming. The main drawback with current hierarchical file systems is their inability

to allow flexible and semantic access to files. Files should beable to be accessed using their

attributesandrelationships. Thus, the file system must efficiently extract and infer the necessary

attributes and relationships and index them in real-time.

Dynamic navigation. While search is extremely useful for retrieval, users stillneed a way

to navigate the namespace. Navigation should be more expressive than justparent → child

hierarchies, should allow dynamically changing (or virtual) directories and need not be acyclic.

Relationships should be allowed between two files, rather than only directories and files.

Scalability. Large file systems are the most difficult to manage, making it critical that both

search and I/O performance scale to billions of files. Effective scalability requires fine-grained

control of file index structures that allow disk layouts and memory utilization to properly match

workloads.

Backwards compatibility. Existing applications rely on hierarchical namespaces. Itis critical

that new file systems be able to support legacy applications to facilitate migration to a new

paradigm.

5.3.1 Copernicus Design

Copernicus is designed as an object-based parallel file system so that it can achieve

high scalability by decoupling the metadata and data paths and allowing parallel access to stor-

age devices. However, Copernicus’s techniques are applicable to a wide range of architec-

tures. As mentioned in Section 2.2, object-based file systems consist of three main components:

clients, a metadata server cluster (MDS), and a cluster of object-based storage devices (OSD).

Clients perform file I/O directly with OSDs. File data is placed and located on OSDs using

a pseudo-random hashing algorithm [181]. Metadata and search requests are submitted to the
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MDS, which manages the namespace. Thus, most of the Copernicus design is focused on the

MDS.

Copernicus achieves a scalable, semantic namespace using several new techniques as

well as techniques derived from our previous Magellan and Spyglass designs. A dynamic graph-

based index provides file metadata and attribute layouts that enable scalable search, as shown in

Figure 5.4. Files that are semantically similar and likely to be accessed together are grouped into

clusters, which are similar to traditional directories, and form thevertices of the graph. These

clusters are similar to the cluster’s Magellan used in Section 5.2, however are not grouped

based on the hierarchical namespace. Inter-file relationships, such as provenance [114, 149]

and temporal access patterns [155], create edges between files that enable semantic navigation.

Directories are instead “virtual,” and instantiated by queries. Backwards naming compatibility

can be enabled by creating a hierarchical tree from the graph. Clusters store metadata and

attributes in search-optimized index structures. The use of search indexes for native storage

mechanisms allows Copernicus to be easily searched withoutadditional search applications.

Finally, a new journaling mechanism allows file metadata modifications to be written quickly

and safely to disk while still providing real-time index updates.

Before we discuss specific design details, we present some specific examples of how

Copernicus can improve how files are managed in large-scale file systems.

Understanding file dependencies.Consider a scientist running an HPC DNA sequencing ap-

plication. To interpret the results, it is useful to know howthe data is being generated. As the

experiment runs, Copernicus allows the results to be searched in real time. If a compelling result

is found, a virtual directory can be created using a query forall files from past experiments with

similar results. By searching the provenance links of thosefiles, the scientist can find which

DNA sequencing libraries or input parameters are the commonfactor for all of the result files.

System administration. Imagine a storage administrator who discovers a serious bugin a script

that has affected an unknown number of files. To locate and fix these files, the administrator can

search provenance relationships to find the contaminated files (e. g., files opened by the script)

and build a virtual directory containing these files. A corrected version of the script can be run

over the files in this directory to quickly undo the erroneouschanges.
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Figure 5.4: Copernicus overview. Clusters, shown in different colors, group semantically

related files. Files within a cluster form a smaller graph based on how the files are related.

These links, and the links between clusters, create the Copernicus namespace. Each cluster is

relatively small and is stored in a sequential region on diskfor fast access.

Finding misplaced files. Consider a user working on a paper about file system search and

looking for related work. The user recalls reading an interesting paper while working on “mo-

tivation.tex” but does not know the paper’s title or author.However, using temporal links and

metadata, a virtual directory can be constructed of all filesthat were accessed at the same time

as “motivation.tex”, arepdfs, and contain “file system” and “search”. The directory allows the

user to easily browse the results.

5.3.2 Graph Construction

Copernicus uses a graph-based index to provide a metadata and attribute layout that

can be efficiently searched. The graph is managed by the MDS. Each file is represented with

an inode and is uniquely identified by its inode number. Inodes and associated attributes—

content keywords and relationships—are grouped into physical clusters based on their semantic

similarity. Clusters are like directories in that they represent a physical grouping of related

files likely to be accessed together, in the same way that file systems try to keep files adjacent

to their containing directory on disk. This grouping provides a flexible, fine-grained way to
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access and control files. However, unlike directories, cluster groupings are semantic rather than

hierarchical and are transparent to users: Clusters only provide physical organization for inodes.

Given a file’s inode number, a pseudo-random placement algorithm, CRUSH [181], identifies

the locations of the file’s data on the OSDs, meaning data pointers are not stored within the

inode.

Inodes are grouped into clusters usingclustering policies, which define their semantic

similarity. Clustering policies may be set by users, administrators, or Copernicus, and can

change over time, allowing layouts to adjust to the current access patterns. Inodes may move

between clusters as their attributes change. Example clustering policies include clustering files

for a common project (e. g., files related to an HPC experiment), grouping files with shared

attributes (e. g., files owned by Andrew or all virtual machine images), or clustering files with

common access patterns (e. g., files often accessed in sequence or in parallel). Previous work has

used Latent Semantic Indexing (LSI) as a policy to group related files [80]. In Copernicus, files

are allowed to reside in only one cluster because maintaining multiple active replicas makes

synchronization difficult. Clusters are kept relatively small, around105 files, to ensure fast

access to any one cluster; thus, a large file system may have104 or more clusters.

Copernicus creates a namespace using the semantic relationships that exist between

files. Relationships are directed and are represented as triples of the form〈relationship type,

source file, target file〉, and can define any kind of relationship. Relationship linksmay exist

between files within the same or different clusters as illustrated in Figure 5.4. The graph need

not be acyclic, permitting more flexible relationships. Relationship links are created implicitly

by Copernicus depending on how files are used and can also be created explicitly by users and

applications. Unlike a traditional file system, links only exist between two files; directories in

Copernicus are “virtual” and simply represent the set of files matching a search query. These

virtual directories are represented by an inode in the graphand the associated query is stored in

the data region on the OSDs pointed to by the inode (similar tohow directory entries are pointed

to by the directory’s inode in traditional file systems). A virtual directories query is periodically

evaluated to ensure the results are not too stale. Users can also force the file system to execute
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the query again at any time. Combining virtual directories and links provides an easy way to

represent related files and navigate the namespace as well asprovide backwards compatibility.

5.3.3 Cluster Indexing

Files in Copernicus may be retrieved using their metadata, content, or relationship

attributes. Each cluster stores these attributes in separate search-optimized index structures,

improving efficiency by allowing files to easily be searched without a separate application.

File metadata is represented as〈attribute, value〉 pairs and includes simple POSIX metadata

and extended attributes. Metadata is indexed in a in-memory, multi-dimensional binary search

tree called a K-D tree [24], which we also used in our Spyglassand Magellan designs. Since

clusters are relatively small, each K-D tree can often be stored in a sequential region on disk.

This layout, which is similar to embedded inodes [57], provides fast read access and prefetching

of related metadata.

Relationship attributes are also stored in a K-D tree that has three dimensions for the

three fields in the relationship triple. K-D trees allow any combination of the relationship triple

to be queried. If a relationship exists between files in different clusters, the cluster storing the

source file’s inode indexes the relationship, to prevent duplication.

Each cluster stores full-text keywords, which are extracted from its files’ contents

using application-specifictransducers, in its own inverted index. This design allows keyword

search at the granularity of clusters and helps keep postinglists small so that they can be kept se-

quential on disk. A global indirect index, which we introduced in Section 4.2, is used to identify

which clusters contain posting lists for a keyword. As mentioned previously, an indirect index

consists of a keyword dictionary with each keyword entry pointing to a list of〈cluster, weight〉

pairs, allowing the MDS to quickly identify the clusters most likely to contain an answer to a

query and rule out those clusters thatcannotsatisfy the query.
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5.3.4 Query Execution

All file accesses (e. g., open() andstat()) translate to queries over the Coperni-

cus graph index. While navigation can be done using graph traversal algorithms, queries must

also be able to identify the clusters containing files relevant to the search. Since semantically

related files are clustered in the namespace, it is very likely that the vast majority of clusters

do not need to be searched. We showed this to be the case in Section 4.1, despite only mod-

est semantic clustering. Additionally, Copernicus employs an LRU-based caching algorithm to

ensure that queries for hot or popular clusters do not go to disk.

For file metadata and relationships, Copernicus identifies relevant clusters usingBloom

filters [26]—bit arrays with associated hashing functions that compactly describe the contents

of a cluster. Bloom filters provided similar functionality in Magellan as did signature files in

Spyglass. Each cluster maintains a Bloom filter for each metadata attribute that it indexes. In ad-

dition each cluster maintains three Bloom filters that describe the relationships that it contains.

These Bloom filters describe each of the fields in the〈relationship type, source file, target file〉

relationship triple. When a cluster stores a metadata or relationship attribute, it hashes its value

to a bit position in a bloom filter, which is then set to one. To determine if a cluster contains any

files related to a query, the values in the query are also hashed to bit positions, which are then

tested. If, and only if, all tested bits are set to one is the cluster read from disk and searched. To

ensure fast access, bloom filters are kept in memory. To do this, each is kept small:103 to 105

bit positions per bloom filter. While false positives can occur when two values hash to the same

bit position, the only effect is that a cluster is searched when it does not contain files relevant to

the query, degrading search performance but not impacting accuracy.

The sheer number of possible keywords occurring in file content make Bloom filters

ineffective for keyword search. However, the indirect index allows fast identification of the

clusters containing posting lists for the query keywords. For each keyword in the query, the

list of clusters containing the keyword is retrieved. Assuming Boolean search, the lists are then

intersected, producing the set of clusters that appeared inall lists. Only the posting lists from

the clusters appearing in this set are retrieved and searched. The weights can be used to further
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optimize query processing, first searching in clusters thatare most likely to contain the desired

results.

5.3.5 Managing Updates

Copernicus must effectively balance search and update performance, provide real-

time index updates, and provide the data safety that users expect. Copernicus uses an approach

similar to the cluster-based journaling method used in Magellan for managing metadata and

relationship updates, and a client-based approach for managing content keywords. When file

metadata or relationships are created, removed or modified,the update is first written safely

to a journal on disk. By first journaling updates safely to disk, Copernicus is able to provide

needed data safety in case of a crash. The K-D tree containingthe file’s inode or relationship

information is then modified and marked as dirty in the cache,thereby reflecting changes in

the index in real-time. When a cluster is evicted from the cache, the entire K-D tree is written

sequentially to disk and its entries are removed from the journal. Copernicus allows the journal

to grow up to hundreds of megabytes before it is trimmed, which helps to amortize multiple

updates into a single disk write.

As mentioned in Section 5.2, K-D trees do not efficiently handle frequent inserts and

modifications. Inserting new inodes into the tree can cause it to become unbalanced, degrading

search performance. Again like Magellan, K-D trees are re-balanced before they are written to

disk. Also, inode modifications first require the original inode to be removed and then a new

inode to be inserted. Both of these operations are fast compared to writing to the journal, but

since disk speed dictates update performance, storing the journal in NVRAM can significantly

boost performance.

Clients write file data directly to OSDs. When a file is closed,Copernicus accesses

the file’s data from the OSDs and use a transducer to extract keywords. To aid this process,

clients submit a list of write offsets and lengths to the MDS when they close a file. These

offsets tell the MDS which parts of the file to analyze and can greatly improve performance for

large files. Cluster posting lists are then updated with extracted keywords. Since cluster posting
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lists are small, an in-place update method [96] can be used, ensuring that they remain sequential

on disk.

5.4 Experimental Results

In this section we evaluate the performance of our searchable file system designs. To

do this we evaluate a prototype implementation of Magellan.Our Copernicus design is still in its

early stages and there are a number of practical design questions that must be addressed before

it can be evaluated. However, since the two share a number of design features, this evaluation

is relevant to Copernicus. Our current evaluation seeks to examine the following questions: (1)

How does Magellan’s metadata indexing impact performance?(2) How does our journaling

technique affect metadata updates? (3) Does metadata clustering improve disk utilization? (4)

How does our prototype’s metadata performance compare to other file systems? (5) What kind

of search performance is provided? Our evaluation shows that Magellan can search millions of

files, often in under a second, while providing performance comparable to other file systems for

a variety of workloads.

5.4.1 Implementation Details

We implemented our prototype as the metadata server (MDS) for the Ceph parallel

file system [180], for several reasons. First, parallel file systems often handle metadata and data

separately [34, 180]: metadata requests are handled by the MDS while data requests are handled

by separate storage devices, allowing us to focus solely on MDS design. Second, Ceph targets

the same large-scale, high-performance systems as Magellan. Third, data placement is done

with a separate hashing function [181], freeing Magellan from the need to perform data block

management. Like Ceph, our prototype is a Linux user processthat uses a synchronous file in a

localext3 file system for persistent storage.

In our prototype, each cluster has a maximum of 2,000 directories and a soft limit of

20,000 inodes, keeping them fast to access and query. We discuss the reasoning behind these

numbers later in this section. K-D trees were implemented using libkdtree++ [97], version
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Attribute Description Attribute Description

ino inode number ctime change time

pino parent inode number atime access time

name file name owner file owner

type file or directory group file group

size file size mode file mode

mtime modification time

Table 5.1:Inode attributes used.The attributes that inodes contained in our experiments.

0.7.0. Each inode has eleven attributes that are indexed, listed in Table 5.1. Each Bloom filter is

about 2 KB in size—small enough to represent many attribute values while not using significant

amounts of memory. The hashing functions we use for the file size and time attributes allow bits

to correspond to ranges of values. Each cluster’s inode cache is around 10 KB in size, which

can cache pointers to at most roughly 10% of the clusters inodes. Given the maximum cluster

size, clusters generally contain between one to two MB of inode metadata. When a cluster’s

inode cache is full, the ratio of memory used for inode metadata to the metadata describing

the cluster (e. g., Bloom filters, inode caches) is roughly 40:1. However, cluster caches contain

inode pointers for the most recently accessed inodes which means they generally do not use

close to the full 10 KB and only contain pointers when the cluster is in memory. While our

prototype implements most metadata server functionality,there are a number of features not

yet implemented. Among these are hard or symbolic links, handling of client cache leases, and

metadata replication. None of these functions present a significant implementation barrier, and

none should significantly impact performance.

All of our experiments were performed on an Intel Pentium 4 machine with dual

2.80 GHz CPUs and 3.1 GB of RAM. The machine ran CentOS 5.3 withLinux kernel ver-

sion 2.6.18. All data was stored on a directly attached Maxtor ATA 7Y250M0 7200 RPM disk.
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5.4.2 Microbenchmarks

We begin by evaluating the performance of individual Magellan components using

microbenchmarks.

5.4.2.1 Cluster Indexing Performance

We evaluated the update and query performance for asinglecluster in order to un-

derstand how indexing metadata in a K-D tree affects performance. Figure 5.5(a) shows the

latencies for creating and querying files in a single clusteras the cluster size increases. Results

are averaged over five runs with the standard deviations shown. We randomly generated files

because different file systems have different attribute distributions that can make the K-D tree

un-balanced and bias results in different ways [4]. The queries we used used were range queries

for between two and five attributes.

We measured query latencies in a balanced and unbalanced K-Dtree, as well as brute

force traversal. Querying an unbalanced K-D tree is5 − 15× faster than a brute force traver-

sal, which is already a significant speed up for just a single cluster. Unsurprisingly, brute force

traversal scales linearly with cluster size; in contrast, K-D tree query performance scales mostly

sub-linearly. However, it is clear that K-D tree organization impacts performance; some queries

in a tree with 70,000 files are 10% slower than queries across 140,000 files. A balanced clus-

ter provides a 33–75% query performance improvement over anunbalanced cluster. However,

when storing close to 200,000 files, queries can still take longer than 10 ms. While this perfor-

mance may be acceptable for “real” queries, it is too slow formany metadata look ups, such

as path resolution. Below 50,000 files, however, all queriesrequire hundreds of microseconds,

assuming the cluster is already in memory.

The slow performance at large cluster sizes demonstrates the need to keep cluster

sizes limited. While an exact match query in a K-D tree (i. e., all indexed metadata values

are known in advance) takesO(log N) time, these queries typically aren’t useful because it

is rarely the case thatall metadata values are known prior to accessing a file. Instead,many

queries are range queries that use fewer thank-dimensions. These queries requiresO(kN1−1/k)
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Figure 5.5: Cluster indexing performance. Figure 5.5(a) shows the latencies for balanced

and unbalanced K-D tree queries, brute force traversal, andinserts as cluster size increases. A

balanced K-D tree is the fastest to search and inserts are fast even in larger clusters. Figure 5.5(b)

shows latencies for K-D tree rebalancing and disk writes. Rebalancing is slower because it is

requiresO(N × log N) time.
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time, whereN is the number of files, andk is the dimensionality, meaning that performance

increasingly degrades with cluster size. While hundred microsecond latencies are acceptable,

Magellan further improves performance using the hash tablebased inode cache that each cluster

maintains for recently accessed inodes.

In contrast to query performance, insert performance remains fast as cluster size in-

creases. The insert algorithm is similar to the exact match query algorithm, requiring only

O(log N) time to complete. Even for larger K-D trees, inserts take less than 10µs. The down-

side is that each insert makes the tree less balanced, degrading performance for subsequent

queries until the tree is rebalanced. Thus, while inserts are fast, there is a hidden cost being paid

in slower queries and having to rebalance the tree later.

Figure 5.5(b) shows latencies for writing a cluster to disk and rebalancing, the two

major steps performed when a dirty cluster is written to disk. Each inode is roughly 100 bytes

in size, meaning a cluster with 50,000 files is close 5 MB in size. Surprisingly, rebalancing is

the more significant of the two steps, taking3− 4× longer than writing the cluster to disk. The

K-D tree rebalancing algorithm takesO(N × log N) time, which accounts for this difference.

However, even if we did not rebalance the K-D tree prior to flushing it to disk, K-D tree write

performance is not fast enough to be done synchronously whenmetadata is updated as they can

take tens to hundreds of milliseconds. Since a K-D tree is always written asynchronously, its

performance does not affect user operation latencies, though it can impact server CPU utiliza-

tion.

5.4.2.2 Update Performance

To evaluate how cluster-based journaling impacts update performance, we used a

benchmark that creates between 100,000 and 2,000,000 files,and measured the throughput

at various sizes. To do this, we used the metadata traces thatwe collected from three stor-

age servers deployed at NetApp and studied in Section 3.7. Weused different traces because

each has different namespace organizations that impact performance [4] (e. g., having few very

large directories or many small directories). The servers were used by different groups within

NetApp: a web server (Web), an engineering build server (Eng), and a home directory server

146



0 500000 1000000 1500000 2000000
Number of files

0

500

1000

1500

2000

2500

3000

T
h

ro
u

g
h

p
u

t 
(o

p
s
/s

e
c
)

Web
Eng
Home

Figure 5.6:Create performance. The throughput (creates/second) is shown for various sys-

tem sizes. Magellan’s update mechanism keeps create throughput high because disk writes are

mostly to the end of the journal, which yields good disk utilization. Throughput drops slightly

at larger sizes because more time is spent searching clusters.

(Home). Files were inserted in the order that they were crawled; since multiple threads were

used in the original crawl, the traces interleave around tendifferent crawls each doing depth-first

search order.

Figure 5.6 shows the throughput averaged over five runs and standard deviations as

the number of creates increases. We find that, in general, throughput is very high, between 1,500

and 2,500 creates per second, because of Magellan’s cluster-based journaling. This throughput

is higher than those recently published for comparable parallel file system metadata servers

on comparable hardware; Ceph achieves around 1,000 createsper second [180] and Panasas

achieves between 800 and 1,600 creates per second on varioushardware setups [183]. Each

create appends an update entry to the on-disk journal and then updates the in memory K-D tree.

Since the K-D tree write is delayed, this cost is paid later asthe benchmark streams largely

sequential updates to disk.

However, create throughput drops slightly as the number of files in a cluster increases

because the K-D tree itself is larger. While only a few operations experience latency increases

due to waiting for a K-D tree to be flushed to disk, larger K-D trees also cause more inode

cache misses, more Bloom filter false positives, and longer query latencies, thus increasing

create latencies (e. g.,, because a file creation operation must check to see if the file already
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exists). In most cases, checking Bloom filters is sufficient for determining is a file already

exists; again, though, the higher rate of false positives causes more K-D tree searches. Since

inode caches only contain the most recently accessed files, it will not prevent K-D tree queries

when Bloom filters yield false positives. There are a limitednumber of instances where a create

operation is waiting for a cluster to be written back to disk because the create benchmark usually

updates clusters in a linear fashion and only accesses otherclusters for path resolution. Thus, it

is usually unlike that a cluster will be accessed while it is being flushed.

5.4.2.3 Metadata Clustering

We next examined how different maximum cluster sizes affects performance and disk

utilization. To do this, we evaluated Magellan’s create andquery throughputs as its maximum

cluster size increases. The maximum cluster size is the sizeat which Magellan tries to cap

clusters. If a file is inserted, it is placed in the cluster of its parent directory, regardless of size.

For a directory, however, Magellan creates a new cluster if the cluster has too many directories

or total inodes. Maximum cluster size refers to the maximum inode limit; we set the maximum

directory limit to1/10th of that.

Figure 5.7(a) shows the total throughput for creating 500,000 files from the Web trace

over five runs as the maximum cluster size varies from 500 to 40,000 inodes. As the figure

shows, create throughput steadily decreases as maximum cluster size increases. While the

throughput at cluster size 500 is around 2,800 creates per second, at cluster size 40,000, which

is an80× increase, throughput drops roughly 50%. Disk utilization is not the issue, since both

use mostly sequential disk writes. Rather, the decrease is primarily due to having to operate

on larger K-D trees. Smaller clusters have more effective inode caching (less data to cache per

K-D tree) and Bloom filters (fewer files yielding fewer false positives). Additionally, queries

on smaller K-D trees are faster. Since journal writes and K-Dtree insert performance do not

improve with cluster size, a larger maximum cluster size haslittle positive impact.

Figure 5.7(b) shows that query performance scales quite differently from create per-

formance. We used a simple query that represented a user searching for a file she owns with a

particular name (e. g., filename equal tomypaper.pdf andowner id equal to3704). We
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Figure 5.7:Metadata clustering. Figure 5.7(a) shows create throughput as maximum cluster

size increases. Performance decreases with cluster size because inode caching and Bloom filters

become less effective and K-D tree operations become slower. Figure 5.7(b) shows that query

performance is worse for small and large sizes.
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Name Application Metadata Operations

Multiphysics A Shock physics 70,000

Multiphysics B Shock physics 150,000

Hydrocode Wave analysis 210,000

Postmark E-Mail and Internet 250,000

Table 5.2:Metadata workload details.

find that query throughputincreases7−8× as maximum cluster size varies from 500 to 25,000.

When clusters are small, metadata clustering is not as helpful because many disk seeks may still

be required to read the needed metadata. As clusters get larger disk utilization improves. How-

ever, throughput decreases 15% when maximum cluster size increases from 30,000 to 40,000

files. When clusters are too large, time is wasted reading unneeded metadata, which can also

displace useful information in the cluster cache. In addition, larger K-D trees are slower to

query. The “sweet spot” seems to be around 20,000 files per cluster, which we use as our pro-

totype’s default and which works well for our experiments. While the precise location of this

“sweet spot” will vary between workloads, the general trendthat we observe will be consistent

across workloads.

5.4.3 Macrobenchmarks

We next evaluated general file system and search performanceusing a series of mac-

robenchmarks.

5.4.3.1 File System Workload Performance

We compared our prototype to the original Ceph MDS using fourdifferent application

workloads. Three workloads are HPC application traces fromSandia National Laboratory [143]

and the other is the Postmark [84] benchmark. Table 5.2 provides additional workload details.

We used HPC workloads because they represent performance critical applications. Postmark

was chosen because it presents a more general workload, and is a commonly used benchmark.
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Figure 5.8:Metadata workload performance comparison.Magellan is compared to the Ceph

metadata server using four different metadata workloads. In all cases, both provide comparable

performance. Performance differences are often due to K-D tree utilization.

Multiphysics A Multiphysics B Hydrocode Postmark

Magellan 3041 2455 10345 1729

Ceph 2678 2656 14187 1688

Table 5.3:Metadata throughput (ops/sec).The Magellan and Ceph throughput for the four

workloads.

While the benchmarks are not large enough to evaluate all aspects of file system performance

(many common metadata benchmarks are not [174]), they are able to highlight some important

performance differences. We modified the HPC workloads to ensure that directories were cre-

ated before they were used. We used Postmark version 1.51 andconfigured it to use 50,000

files, 20,000 directories, and 10,000 transactions. All experiments were performed with cold

caches.

Figure 5.8 shows the run times and standard errors averaged over five runs, with

the corresponding throughputs shown in Table 5.3. Total runtimes are comparable for both,

showing that Magellan is able to achieve similar file system performance to the original Ceph

MDS. However, performance varies between the two; at most, our prototype ranges from 13%

slower than Ceph to 12% faster. As in the previous experiments, a key reason for performance

decreases was K-D tree performance. The Multiphysics A and Multiphysics B traces have

very similar distributions of operations, though Multiphysics B creates about twice as many
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Set Query Metadata Attributes

Set 1 Where is this file located? Retrieve files usingfilename andowner.

Set 2 Where, in this part of the system, is this file located? Use query 1 with an additional directorypath.

Set 3 Which of my files were modified near this time and at least this size? Retrieve files usingowner, mtime, andsize.

Table 5.4:Query Sets.A summary of the searches used to generate our evaluation query sets.

files. Table 5.3 shows that between the two, our prototype’s throughput drops by about 20%

from about 3,000 operations per second to 2,500, while Ceph’s throughput remains close to

consistent. This 20% overhead is spent almost entirely doing K-D tree searches.

Our prototype yields a 12% performance improvement over Ceph for the Postmark

workload. Postmark creates a number of files consecutively which benefit from cluster-based

journaling. Throughput for these operations can be up1.5− 2× faster than Ceph. Additionally,

the ordered nature of the workload produces good inode cachehit ratios (path resolution look

ups frequently hits the inode cache because these inodes were recently created).

These workloads show differences and limitations (e. g., large K-D tree performance)

with our design, though they indicate that it can achieve good file system performance. A key

reason for this is that, while Magellan makes a number of design changes, it keeps the basic

metadata structure (e. g., using directory and file inodes, organizing inodes into a physical hier-

archy). This validates an important goal of our design: Address issues with search performance

while maintaining many aspects that current metadata designs do well.

5.4.3.2 Search Performance

To evaluate search performance, we created three file systemimages using the Web,

Eng, and Home metadata traces with two, four, and eight million files, respectively. The cluster

cache size is set to 20, 40, and 80 MB for each image, respectively, so that searches are not

performed solely in memory. Before running the queries, we warmed the cluster cache with

random cluster data.

Unfortunately, there are no standard file system search benchmarks. Instead, we gen-

erated synthetic query sets based on queries that we believerepresent common metadata search
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(a) Web server.
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(b) Engineering server.
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(c) Home server.

Figure 5.9:Query execution times.A CDF of query latencies for our three query sets. In most

cases, query latency is less than a second even as system sizeincreases. Query set 2 performs

better than query set 1 because it includes a directory path from where Magellan begins the

search, which rules out files not in that sub-tree from the search space.
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Figure 5.10:Fraction of clusters queried.A CDF of the fraction of clusters queried for query

set 1 on our three data sets is shown. Magellan is able to leverage Bloom filters to exploit

namespace locality and eliminate many clusters from the search space.

use cases. The queries and the attributes used are given in Table 5.4. Query attributes are pop-

ulated with random data from the traces, which allows the queries to follow the same attribute

distributions in the data sets while providing some randomness. Query set 1 and 2 produced

very few search results (generally around one to five) while query set 3 could yield thousands

of results.

Figure 5.9 shows the cumulative distribution functions (CDF) for our query sets run

over the three different traces. Our prototype is able to achieve search latencies that are less

than a second in most cases, even as file system size increases. In fact, all queries across all

traces are less than six seconds, with the exception of several in the Home trace that were

between eight and fifteen seconds. Evaluating query set 1 using a brute force search, which

is the only search option if no separate search application is available, took 20 minutes for the

Web trace and 80 minutes on the Home trace on a localext3 file system on the same hardware

configurations. Compared to Magellan, brute force search isup to 4–5 orders of magnitude

slower. In addition, to the search-optimized on disk layoutand inode indexing, Magellan is able

to leverage namespace locality by using Bloom filters to eliminate a large fraction of the clusters

from the search space. Figure 5.10 shows a CDF of the fractionof clusters accessed for a query

using query set 1 on all three of our traces. We see that 50% of queries access fewer than 40%

of the clusters in all traces. Additionally, over 80% of queries access fewer than 60% of the
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clusters. Query set 2 includes a directory path from which tobegin the search, which explicitly

limits the search space. As a result, search performance forquery set 2 is consistently fastest.

However, in some cases query set 1 is faster than query set 2. This is because the queries for

query set 2 use a different set of randomly selected attribute values than query set 1, which can

alter run time and cache hit ratios.

While queries typically run in under a second, some queries take longer. For exam-

ple, latencies are mostly between 2 and 4 seconds for query set 1 on our Web data set in Fig-

ure 5.9(a). In these cases, many of the clusters are accessedfrom disk, which increases latency.

The Web trace contained a lot of common file names (e. g., index.html andbanner.jpg)

that were spread across the file system. We believe these experiments show that Magellan is

capable of providing search performance that is fast enoughto allow metadata search to be a

primary way for users and administrators to access and manage their files.

5.5 Summary

The rapid growth in data volume is changing how we access and manage our files.

Large-scale systems increasingly require search to betterlocate and utilize data. While search

applications that are separate from the file system are adequate for small-scale systems, they

have inherent limitations when used as large-scale, long-term file search solutions. We believe

that a better approach is to build search functionality directly into the file system itself.

In this chapter, we analyzed the hypothesis that it is possible to enable effective search

performance directly within the file system without sacrificing file system performance. We pre-

sented the design of a new file system metadata architecture called Magellan that enables meta-

data to be efficiently searched while maintaining good file system performance. Unlike previ-

ous solutions that relied on relational databases, Magellan uses several novel search-optimized

metadata layout, indexing, and update techniques. Additionally, we outlined the architecture

of Copernicus, as scalable, semantic file system. Unlike previous semantic file system designs

which are designed as naming layers on top of a normal file system or database, Copernicus uses

a novel graph-based index to enable a scalable search-basednamespace and namespace naviga-
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tion using inter-file relationships. Using real-world data, our evaluation showed that Magellan

can search over file systems with millions of files in less thana second and provide file system

performance comparable to other systems. While Magellan and Copernicus’s search-optimized

designs do have limitations, they demonstrates that searchand file systems can be effectively

combined, representing a key stepping stone in the path to enabling better ways to locate and

manage our data.
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Chapter 6

Future Directions

In this thesis we present a very different approach to organizing and indexing files in

large-scale file systems. While we discuss some initial designs and findings that support our

hypotheses, this research area is in its nascent stages and there are number of practical trade-

offs and design issues that need to be addressed. In addition, there a number of ways in which

this work can be extended in the future to further improve data management in large-scale file

systems. We outline possible future work for each chapter individually.

6.1 Large-Scale File Systems Properties

There are a number of studies that can impact file system search designs that have not

been examined before. Our examination of file system workloads looked at many traditional

properties such as access sequentially and access patterns. Many of our initial observations can

be extended to provide additional useful information. For example, we found that a small frac-

tion of clients can constitute a large portion of the workload traffic. Taking a closer look at the

access patterns of individual clients, particularly the “power clients” who generate significant

traffic, could provide valuable insights into how the workload properties are distributed across

the clients and how file systems can better tailor data organization, caching, and prefetching

for client needs. Also, our study found that metadata requests constitute roughly half of all

requests, making a closer examination of metadata workloads important. In particular, the tem-
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poral correlations between metadata requests (e. g., in Linux readdir() may be commonly

followed by multiplestat() operations) are highly relevant.

An important area that has not been thoroughly examined is spatial namespace local-

ity. Thus far, we have examined only how the namespace impacts metadata attribute values. It

is important to also know how workload properties differ forvarious parts of the namespace.

For example, directories containing read-only system filesmay have very different workload

properties than a directory storing database or log files. Understanding how namespace loca-

tion impacts workload can be used to improve disk layout, prefetching, and caching designs.

Previous work has demonstrated potential file system performance benefits using file type and

size attribute information to guide on disk layout [190], which we have shown are influenced

by location in the namespace. Our index designs and other previous file systems [57, 182] as-

sume some amount of namespace locality in the workload but a proper characterization, such

as calculating the distribution of requests across directories in the namespace, is important. Ad-

ditionally, understanding namespace locality can improvehow file systems organize and index

data for different parts of the namespace.

Our Spyglass metadata index design benefited from empiricalanalysis of real-world

metadata properties. Similarly, large-scale web search engine designs [15] have benefited from

studies of web page content and keyword properties [19, 45].However, to the best of our knowl-

edge, no equivalent study has been conducted for large-scale file system content keywords. The

collection and analysis of file keywords will help guide future file system inverted index de-

signs. Particular areas of interest include keyword namespace locality and keyword correlations

for ranking. An important consideration for keyword collection in file systems is security as

many users will not want their data analyzed in the clear.

6.2 New Approaches to File Indexing

Our index designs are among the first meant specifically for file systems. However,

there is only limited knowledge of how file system users will use search and only a limited

corpus of available file search data from which to draw designdecisions. As a result, there
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are many design trade-offs and improvements that can still be made as search becomes more

ubiquitous. In our designs we only leveraged namespace locality to partition the index. How-

ever, using other partitioning mechanisms may provide additional benefits. Partitioning based

on access patterns may be able to improve cost-effectiveness. For example, files that have not

been accessed in over six months may be rarely queried since in most cases querying for a file

is indicative of a future access. These files can be grouped together and possibly migrated to

cheaper, lower-tier storage. Other mechanisms, such as, machine learning clustering algorithms,

classification algorithms, or provenance may also be useful.

Another important area that we have not fully addressed is how to distribute the index

across a large-scale file system. It is likely that in large-scale file systems the index will have to

be distributed to achieve the needed performance and scalability. However, there are a number

of trade-offs that must be considered when distributing theindex and many of these depend on

the file system’s architecture. For example, in a clustered NAS environment [46], it may be

appropriate to build an inverted index on each file server since each manages an entire sub-tree

(e. g., a logical volume) and files are not striped across servers. However, in a parallel file

system [62], it may be beneficial to centralize some parts of the index (e. g., the dictionary) at

the metadata server for management purposes. Additionally, co-locating index structures with

the files they index can greatly improve update performance.

6.3 Towards Searchable File Systems

We presented the designs of two file systems that use new internal organizations that

allow files to be efficiently searched. These file systems are very different from traditional

designs and thus a number of practical questions remain. Theuse of K-D trees in Magellan

and Copernicus provided a reasonably effective method for multi-dimensional attribute search.

However, it does have drawbacks, such as being an in-memory only data structure, needing to be

rebalanced for better performance, and providing poor performance when large. Thus, looking

at how other multi-dimensional index structures can improve or enable new functionality is

important. For example, FastBit [187] provides high compression ratios that trade-off CPU
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with disk and cache utilization. Also, K-D-B-trees [136] are K-D trees that need to only reside

partially in-memory. While this structure may negate some of the prefetching of metadata

clustering, it may reduce unneeded data being read or written to disk.

Thus far our work has not looked at how to enforce file securitypermissions in search.

Doing so is an important problem because many data sets, suchas medical records and scien-

tific results, are in need of effective search but have highlysensitive data. As discussed in

Section 2.4, enforcing security while maintaining good performance is difficult. Existing so-

lutions either ignore permissions [66], build a separate index for each user [110] that adds

significant space and update overhead, or perform permission checks for every search result

(e. g., stat()) that degrades search performance and pollutes the file cache. Additionally,

permission changes must be synchronously applied to the index, otherwise a security leak is

possible. One approach to this problem is to embedded security permission information into

the metadata clustering. This approach can partition the index along permission boundaries

and use this information to eliminate clusters from the search space that the user does not have

permission to access. Doing so can help reduce the size of thesearch space while enforcing file

permissions.

Additionally, the dynamic graph-based index that Copernicus uses still has a number

of basic questions that need to be resolved. For example, it is expected that a general graph that

is based on inter-file relationships will perform similar tocurrent hierarchical graphs. However,

it is unclear if it can provide the kinds of efficient update performance under normal to intense

file system workloads. An effective implementation is needed to verify theses ideas and under-

stand the differences. Additionally, automatic ways to extract inter-file relationships and proper

clustering attributes are needed.
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Chapter 7

Conclusions

The world is moving towards a digital infrastructure, creating an unprecedented need

for data storage. Today’s file systems must store petabytes of data across billions of files and

may be storing exabytes of data and trillions of files in the near future [58]. This data stor-

age need has introduced a new challenge: How do we effectively manage and organize such

large file systems? This is a challenge because large-scale file systems organize files using a

hierarchical namespace that was designed over forty years ago for file systems containing less

than 10 MB [38]. This organization is restrictive, difficultto use, and can limit scalability. As

a result, there has been increasing demand for search-basedfile access, which allows users to

access files by describingwhat they want rather thanwhereit is.

Unfortunately, large-scale file systems are difficult to search. Current file system

search solutions are designed as applications that are separate from the file system and utilize

general-purpose index structures to provide search functionality. Keeping search separate from

the file system leads to consistency and efficiency issues at large-scales and general-purpose

indexes are not optimized for file system search, which can limit their performance and scala-

bility. As a result, current solutions are too expensive, slow, and cumbersome to be effective at

large-scales.

This thesis has demonstrated several novel approaches to how files are organized,

indexed, and searched in large-scale file systems. We hypothesized that more effective search

can be achieved using new index structures that are specifically designed for file systems and
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new file system designs that better integrate search-based access. We explored these hypotheses

we three main contributions: (1) a fresh look at large-scalefile system properties using workload

and snapshot traces, (2) new index designs for file metadata and content that leverage these

properties, (3) and new file metadata and semantic file systemdesigns that directly integrate

search functionality.

We now describe the conclusions of each specific contribution.

Properties of large-scale file systems:We measured and analyzed file system workload and

snapshot traces collected from several large-scale file systems in the NetApp data center.

Our study represents the first major workload study since 2001 [48], the first large-scale

analysis of CIFS [92] workloads, and the first to study large-scale enterprise snapshot and

workload traces in over a decade.

Our analysis showed that a number of important file system workload properties, such

as access patterns and sequentially, have changed since previous studies and are different

on network file systems than on previous local file systems. Additionally, we found new

observations regarding file sharing, file re-access, metadata attribute distributions, among

others. Some of our important findings include workloads aremore write-heavy than in

the past: read to write byte ratios are only 2:1, compared to 4:1 or higher in past studies.

Also, a large portion of file data is cold with less than 10% of total storage being accessed

during our three month tracing period and files are infrequently re-accessed with 66%

of opened files not being accessed again. We found that metadata attribute values are

heavily clustered in the namespace. Attribute values we studied occurred in fewer than

1% of the total directories. Also, metadata attribute distribution are highly skewed though

their intersections are more uniformly distributed. We discussed how these observation

can impact future file system design and organization.

New approaches to file indexing:We developed two new index structures that aim to improve

search and update performance and scalability by leveraging the file system properties

that we observed. We presented designs of an index for file metadata and an index for

file content search. Unlike general-purpose indexes that current solutions rely on, our
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index designs are the first that are meant specifically for filesystems and which exploit

file system properties. We introduced hierarchical partitioning as a method for providing

flexible index control that leveraged namespace locality. Our metadata index used signa-

ture files to reduce the search space during query execution and our content index used a

new index structure called the indirect index for the same purpose. Our metadata index

introduced partition-based versioning to provide fast update performance, while our con-

tent index used a merge-based algorithm to update posting lists in our indirect index. An

evaluation of our metadata index using real-world trace data showed that it can provide

search performance that is up to 1–4 orders of magnitude faster than basic DBMS setups,

while providing update performance that is up to40× faster and using less than 0.1% of

the file system’s disk space. These results showed that file system search performance

and scalability can be significantly improved with specialized index designs.

Towards searchable file systems:We designed two new file systems that can directly pro-

vide file search. Rather than rely on external search applications which face significant

consistency and efficiency problems at large-scales, our designs use novel internal data

layout, indexing, and update algorithms to provide fast filesearch directly within the

file system. We introduced a new metadata architecture, called Magellan, that uses a

novel metadata layout to improve disk utilization for searches. Also, inodes are stored

in multi-dimensional index structures that provide efficient multi-attribute search and a

new journaling mechanism allows fast and reliable metadataupdates. We also outlined

the design of a new semantic file system called Copernicus. Unlike previous semantic

file system designs that used a basic naming layer on top of a traditional file system or

database, Copernicus uses a novel graph-based index to provide a dynamic, searchable

namespace. Semantically related files are clustered together and inter-file relationships

allow navigation of the namespace. An evaluation of our Magellan prototype showed

that searches could often be performed in under a second. Additionally, performance

for normal file system workloads ranged from 13% slower to 12%faster than the Ceph

file system. We also found that cluster-based journaling enabled good performance for
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metadata updates and showed the performance trade-offs associated with indexing inodes

in multi-dimensional data structures. Our evaluation demonstrated that efficient search

performance can be enabled within the file system while providing normal workload per-

formance comparable to that of other file systems.

In summary, effective data access is a primary goal of a file system, though is becom-

ing increasingly difficult with the rapid growth of data volumes. The new file indexing and file

system search designs presented in this thesis allow data tobe more effectively accessed and

managed at large-scales. This work, along with the new research areas that follow, should play

a key role in enabling the continued construction of highly scalable file systems.
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