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Abstract

Organizing, Indexing, and Searching Large-Scale Fileeyst

by
Andrew W. Leung

The world is moving towards a digital infrastructure. Thisva is driving the demand
for data storage and has already resulted in file systemsctimhin petabytes of data and
billions of files. In the near future file systems will be stayiexabytes of data and trillions of
files. This data growth has introduced the key question of waveffectively find and manage
data in this growing sea of information. Unfortunately, biganization and retrieval methods
have not kept pace with data volumes. Large-scale file systemtinue to rely on hierarchical
namespaces that make finding and managing files difficult.

As a result, there has been an increasing demand for seaseld-ldile access. A
number of commercial file search solutions have become pojpu desktop and small-scale
enterprise systems. However, providing effective seanthiadexing at the scale of billions
of files is not a simple task. Current solutions rely on gelrguapose index designs, such
as relational databases, to provide search. Generalgmiipdexes can be ill-suited for file
system search and can limit performance and scalabilitditidally, current search solutions
are designed as applications that are separate from theydiiens. Providing search through
a separate application requires file attributes and motiita to be replicated into separate
index structures, which presents consistency and effigiprablems at large-scales.

This thesis addresses these problems through novel ap@oé&r organizing, index-
ing, and searching files in large-scale file systems. We adralu analysis of large-scale file
system properties using workload and shapshot tracester lneiderstand the kinds of data be-
ing stored and how it is used. This analysis represents starfajor workload study since 2001
and the first major study of enterprise file system conterdsaarkloads in over a decade. Our
analysis shows a number of important workload propertiee bhanged since previous studies
(e. g, read to write byte ratios have decreased to 2:1 from 4:1gbreniin past studies) and ex-

amines properties that are relevant to file organizationsaadch. Other important observations



include highly skewed workload distributions and clustgrof metadata attribute values in the
namespace.

We hypothesize that file search performance and scalabditybe improved with file
system specific index solutions. We present the design offilewnetadata and file content
indexing approaches that exploit key file system propefites our study. These designs intro-
duce novel file system optimized index partitioning, quesaaition, and versioning techniques.
We show that search performance can be improved up to 1-#sasfimmagnitude compared to
traditional approaches. Additionally, we hypothesizé thigctly integrating search into the file
system can address the consistency and efficiency probléimseparate search applications.
We present new metadata and semantic file system desigristthduce novel disk layout, in-
dexing, and updating methods to enable effective seardiouiitdegrading normal file system
performance. We then discuss on going challenges and hewvtitk may be extended in the

future.
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Chapter 1

Introduction

Today there is a need for data storage like never before daachéed is only in-
creasing. Modern businesses, governments, and peoplf/sidas have shifted to a digital
infrastructure, which is projected to require close to twettabytes (two million petabytes) of
storage by 2011 [58]. This demand, coupled with improveméntard disk capacities and
network bandwidth, has yielded file systems that store p&talof data, billions of files, and
serve data to thousands of users [46, 60,91, 139, 146, 18],Hi& systems of this scale intro-
duce a new challenge; How do we organize so much data so thaasy to find and manage?
These systems store data that make up the backbone of talitgites world and it is paramount
that data can be effectively organized and retrieved. Aatiily this problem is pervasive,
impacting scientific [70, 72], enterprise [51], cloud [12&hd personal [142] storage.

File systems of this scale make effectively finding and mampdata extremely dif-
ficult. Current file organization methods are based on dedigat are over forty years old and
designed for systems with less than 10 MB of data [38]. Thegstesis use a basic hierarchical
namespace that is restrictive, difficult to use, and limieability. These systems require users
to manage and navigate huge hierarchies with billions of,fikehich wastes significant time
and can lead to misplaced or permanently lost data. Sipilagsers and administrators must
rely on slow, manual tools to try and understand the datanieayage, which can leads to under

utilized or poorly managed systems. The basic problem isfilbasystems have grown beyond



the scope of basic file organization and retrieval methodsclvhas decreased our ability to
effectively find, manage, and utilize data

This growing data management problem has lead to an incteamsphasis on search-
based file access. File search involves indexing attribdeeised from file metadata and con-
tent, allowing them to be used for retrieval. File searchgeful in large-scale file systems
because it allows users to speciffrat they want rather thawhereit is. For example, a user
can access his document by just knowing it was accessed iagheeek and deals with the
quarterly financial records. Additionally, finding files tagrate to secondary storage requires
only knowing the kinds of files to be migrate€. @, files larger than 50 MB that have not been
accessed in 6 months), instead of where all of these filesoaetdd. In most cases, a file's
location is irrelevant; users need to retrieve their datagusvhatever information they may
have about it. Moreover, search allows complex, ad hoc mumssto be asked about the files
being stored that help to locate, manage, and analyze dateffectiveness of search-based
file access has led to many file system search applicationsdonie commercially available
for desktop [14, 66, 110] and small-scale enterprise [5586]/file systems. File system search
has also become a popular research area [49, 63, 69, 124, 154]

Unfortunately, enabling fast and effective search in lesgale file systems is very
difficult. Current solutions, which are designed as apfilices outside of the file system and
which rely on general purpose index designs, are too exyensiow, and cumbersome to be
effective in large-scale systems. The index is the datatstrel that enables effective search
functionality. General-purpose indexes, such as relatidatabases, are not designed for file
system search and can be ill-suited to address file systerthseeeds. As Stonebraket al.
state, there is “a substantial performance advantage tiediged architectures” [161] because
general-purpose solutions make few specialized optimizstand can have mismatched or un-
used functionality, which limit their performance and sdality.

Additionally, while increasingly important, file searchgsovided by an application
that is outside of the file system, not the file system itsedfpaBating the two is an odd model
given that search applications and file systems share a cargoa: organization and retrieval

of files. Implementing search functionality in an applioatioutside of the file system leads



to duplication functionality and requires metadata attels and changes to be replicated in a
separate database or search engine. Maintaining two iad#@x@e attributes €. g, the file
system’s and the search application’s index), leads to meangistency and efficiency issues,
particularly at the scale of billions of files. As a resultetsand administrators continue to

struggle to find, organize, and manage data in large-scalsyfitems.

1.1 Main Contributions

In this thesis we address this problem by improving how fitescaiganized, indexed,
and searched in large-scale file systems. This thesis egartvio key hypotheses. First, search
performance and scalability can be improved with new inalgx§tructures that leverage file
system specific properties. Second, it is possible to ereffitgéent search directly in the file
system without degrading normal file system performancesg&lwo hypotheses are evaluated
in the three key contributions of this thesis:

(1) We measure and analyze workloads and metadata snafficimotseveral large-scale file
systems used in real world deployments. We conduct a nunfogtudies to compare how
workloads have changed since previous studies, as weled®rm several new experiments.
Our analysis reveals a number of observations that areamti¢w better file organization and
indexing and to file system design in general.

(2) Using observations from our file system analysis, we goreshe design of two new in-
dexing structures for file metadata and content. Our desgpbit file attribute locality and
distribution properties to improve performance and sckiabAdditionally, new approaches to
index updating and versioning are used. An evaluation shibatssearch performance can be
improved between 1-4 orders of magnitude compared toimaditsolutions.

(3) We then present two novel file system designs that direécteégrate search functionality,
eliminating the need for external search applications. flifsé€ organizes metadata so that it
can be easily and effectively queried while maintainingdyperformance for normal metadata

workloads. The second is a new approach to semantic filersydésign that organizes the



namespace into graph-based structure. This new indexwteuallows dynamic, search-based
file access and navigation using inter-file relationships.

The following sections detail the individual thesis camtitions.

1.2 Analysis of Large-Scale File System Properties

Designing better methods for organizing and managing fégaires first understand-
ing the properties of the files being stored and how they agd.uhis understanding is often
guided by measuring and analyzing file system workload andstot traces. Trace-based file
system studies have guided the designs of many past filensyg&8, 116, 138]. For exam-
ple, caching in the Sprite network file system [116] was gdibg the observation that even
small client-side caches can be effective for improvingqrenance [123]. Similarly, the log-
structured file system [138] was guided by observationsrtaatork file system workloads are
becoming increasingly write-oriented [17, 123] due to thespnce of client-side caching.

We collect and analyze traces of file system workloads andeots from several
large-scale network file servers deployed in the NetApp @@ie data center. These servers
were used by thousands of employees from multiple depattme@ur analysis focuses on
trends since past studies, conducts a number of new expesaand looks at the impact on file
organization and indexing. Our study represents the firggmmaorkload study since 2001 [48],
the first to look at large-scale CIFS [92] network workloaaisg the first major study of enter-
prise file server contents and workloads in over ten years.

Our analysis reveals a number of interesting observatgud) as workloads are be-
coming increasingly write-heavy, files are increasing iesiand have longer lifetimes com-
pared to previous studies. Additionally, we find that fileesgxcis mostly transient. Only 66%
of opened files are re-opened and 95% are re-opened lessubdimies. Files are also rarely
shared as 76% of files are never opened by more than one cNgoikload distribution is
heavily skewed with only 1% of clients accouting for almo8&& of file requests. Similarly,

metadata attribute distributions are highly skewed andviothe power-law distribution [152].



Also, metadata attribute values are heavily clusteredemtimespace. All metadata value that

we studied occurred in fewer than 1% of total directories.

1.3 New Approaches to File Indexing

Fast and effective search in large-scale file systems isuliffio achieve. The index is
the data structure that enables search functionality agfteictive index design can limit perfor-
mance and scalability. Current file search solutions etiieneral-purpose indexing methods
that are not designed for file systems. These indexes weignéesfor other workloads, have
few file system search optimizations, and have extra funatity that is not needed for file sys-
tem search. For example, file metadata is often indexed uslagonal database management
systems (DBMSs). However, DBMSs are designed for on-linasaction processing work-
loads [16], use locking and transactions that can add o=drfi55], and are not a perfect fit
for metadata search [162].

We hypothesize that new index designs that leverage filesygroperties can im-
prove performance and scalability. We propose two new imgsigns, one for structured meta-
data search, called Spyglass, and one for unstructuredrids@arch, that leverage observations
from our trace-based analysis to improve performance. kamele, we found that metadata
attribute values exhibispatial locality, which means that they tend to be highly clustered in
the namespace. Thus, files owned by usedr ew are often clustered in locations such as the
user’'s home directory or active project directories andnatescattered across the namespace.
We introduce the notion diierarchical partitioning which allows the index to exploit spatial
locality by partitioning and allowing fine-grained indexntml based on the namespace. Hi-
erarchical partitioning makes it possible for searcheslatgs, and caching to be localized to
only the relevant parts of the namespace. We also introduncardoer of other techniques that
improve query execution, update and versioning operatiad, metadata collection. An eval-
uation of our metadata index prototype shows that seardorpgaince can be improved up to
1-4 orders of magnitude compared to basic DBMS setups, wiildding update performance

that is up to40 x faster and requiring less than 0.1% of total disk space.



1.4 Towards Searchable File Systems

Despite the increasing trend towards search becoming aprimay to access and
manage files, file systems do not provide any search funditipn&urrent file system hier-
archies can only be searched with brute force methods, sughep andf i nd. Instead, a
separate search application that maintains search-bades structures and is separate from
the file system is often used [14, 55, 67]. However, searclicgtions and the file system share
the same goal: organizing and retrieving files. Keeping &brsh separate from the file system
leads to consistency and efficiency issues as all file atésband changes must be replicated in
separate applications, which can limit performance andiliisaespecially at large-scales.

We hypothesize that a more complete, long-term solutioa istegrate search func-
tionality directly into the file system. Doing so eliminatd® need to maintain a secondary
search application, allows file changes to be searched lutime®, and allows data organization
to correspond to the need for search functionality. Howeseabling effective search within
the file system has a number of challenges. First, there nelest lvay to organize file attributes
internally so that they can be efficiently searched and @atdabecond, this organization must
not significantly degrade performance for normal file systesrkloads.

We propose two new file system designs that directly integgaarch. The first, Mag-
ellan, is a new metadata architecture for large-scale fdgesys that organizes the file system’s
metadata so that it can be efficiently searched. Unlike pusvivork, Magellan does not use
relational databases to enable search. Instead, it usesumw-optimized metadata layout,
indexing, and journaling techniques to provide searchtfanality and high performance in a
single metadata system. In Magellan, all metadata look inpkjding directory look ups, are
handled using a single search structure, eliminating tdengant index structures that plague
existing file systems with search grafted on.

The second, Copernicus, is a new semantic file system ddwitjpriovides a search-
based namespace. Unlike previous semantic file systemé wigiee designed as naming layers
above a traditional file system or general-purpose indexe@ucus uses a dynamic, graph-

based index that stores file attributes and relationshipisis raph replaces the traditional



directory hierarchy and allows the construction of dynamaenespaces. The namespace al-
lows “virtual” directories that correspond to a query angigation to be done using inter-file
relationships. An evaluation of our Magellan prototypevgfidhat it is capable of searching
millions of files in under a second, while providing metadagaformance that is comparable

to, and sometimes better than, other large-scale file sgstem

1.5 Organization

This thesis is organized as follows:

Background and related work: Chapter 2 outlines the file retrieval and management prob-
lems caused by very large data volumes. We also provide tbessary background
information on basic file system search concepts and disghgslarge-scale file sys-
tems make search difficult. Then, we discuss why existingtisms do not address these

difficulties.

Properties of large-scale file systemsChapter 3 presents the measurement and analysis of
large-scale file system workloads and snapshots. We coropafendings with previous
studies, conduct several new experiments, and discuss tofindings impact how file

systems organize and manage files.

New approaches to file indexing: Chapter 4 presents new index designs that exploit the file
system properties that we observed in Chapter 3. We disndsg designs for file meta-

data and content and compare performance to general-guE®8IS solutions.

Towards searchable file systemsChapter 5 discusses how search can be integrated directly
into the file system. We present the design of a hierarchileabkyjistem metadata archi-

tecture and a semantic file system that use search-optiraigaatization and indexing.

Future directions: Chapter 6 discusses the future directions of this work. Vésqmt ways

that current work can be extended and the new researchidire¢hat this work enables.

Conclusions: Chapter 7 summarizes our findings and concludes this thesis.



Chapter 2

Background and Related Work

This chapter discusses the rapid and continuing growth @f é@lumes and the im-
pact it has on file and data management. To address this mijpallee motivate the use of
search-based file access in large-scale file systems. Weitbeide a basic introduction to file
system search concepts and discuss the challenges inrenabltth access in large-scale file

systems.

2.1 The Growing Data Volume Trend

The digital universe is rapidly expanding [58]. Many aspeat business, science,
and daily life are becoming increasingly digital, producawealth of data that must be stored.
For example, today’s media such as photos and videos ardynaligital. Web and cloud
services that host this data must be able to store and servel@iinite amount of this data.
Facebook must manage over 60 billion image files and store 2iv&B of new photo data
every week [52]. It is expected that CERN’s Large Hadron i@eil will annually produce
over 15 PB of data [42]. In another example, government nmasdaich as HIPAA [175] and
Sarbanes-Oxley [176] require the digitization and retentf billions of medical and financial
records. In 2007 the digital universe €., the total number of bytes created, captured, and
replicated) was estimated to be 281 exabytes and is expectgdw ten fold by 2011 to about
2.8 zettabytes [58].
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Figure 2.1: Network-attached storage architecture. Multiple clients utilize a centralized

server for access to shared storage.

The value of and requirements being place on the data beimgrated are also in-
creasing. Many important aspects of society are now demgratethe ability to effectively
store, locate, and utilize this data. Some data, such asi@ibas survey results, can be worth
millions of dollars [179]. Other data, such as governmergagienent of defense files or nu-
clear test results can be vital to national security and siath as genome sequences and bio-
molecular interactions are key to the future of modern medicAdditionally, the digitization
of people’s personal livee( g, personal photos, letters, and communications) has gisé&n d

great sentimental value and made its storage critical teepveng personal histories.

2.2 Scalable Storage Systems

The increasing demand for data storage has driven the de§idata storage sys-
tems for decades. The scale at which data is produced hadfeystem designs to focus on
scalability and eliminating bottlenecks that may limit feemance. There have been major
improvements in throughput and latency, reliability, eefectiveness, and distributed designs
over the years. As a result, today’s large-scale file sysemmgapable of storing petabytes of
data and billions of files, are composed of thousands of dey&nd can serve data to thousands

of users and applications [2, 36, 46, 60, 62, 91, 139, 146, 1iE8).



Early scalable file systems used a basic network-attacloegget model where many
clients were directly connected to a single centralizedagt® server as shown in Figure 2.1.
Storing data on a centralized server allowed it to be moréyesisared, accessed from mul-
tiple locations, and provided more efficient utilizationstbrage resources. Protocols such as
AFS [79] and NFS [127] are used to transfer data between ithiet @ind server. A number of file
systems have been designed for the centralized file sendr,as LFS [138] and WAFL [77].
These systems are often optimized for write performancausstclient caches are able to re-
duce the read traffic seen by the server. However, a singteatieed server can often become a
performance bottleneck that limits scalability. A sing&r can only serve a limited amount
of storage and can become overwhelmed with requests as tiigenwf clients or requests in-
creases. To address this problem, clustered file systeris.asuFrangipani [172] and ONTAP

GX [46], allow multiple central servers to be used.

2.2.1 Parallel File Systems

Parallel file systems are a type of clustered file system thatachieve better scal-
ability by allowing storage devices to be highly cluster ¢, up to thousands of devices) and
by separating the data and metadata paths. The basic desligistrated in Figure 2.2. These
systems are composed of metadata servers (MDSs) that stbieaadle file metadata requests
and data servers that store and handle file data requeseht<Céiommunicate directly to both
metadata and data servers for file operations. Files ane stiiped across many storage devices
allowing clients to access a file using many parallel I/Oastrs.

Network-Attached Secure Disk (NASD) [62] was an early datdile system archi-
tecture that introduced the concept of object-based stor@bject-based storage exploits grow-
ing price reductions and performance improvements in codiym@PU and memory hardware
to provide intelligent network-attached storage devic&@bese object-based storage devices
(OSDs) greatly improve the design because MDSs need to darlasagement, as OSDs can
manage their own local storage.

The original NASD design has spawned a number of other ghfd#é systems. The

General Parallel File System (GPFS) [146] from IBM uses glsimetadata server, called
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Figure 2.2: Parallel file system architecture. Clients send metadata requests to metadata

servers (MDSs) and data requests to separate data stores.

the metanode, to handle metadata requests and perforibwtistt metadata locking. The dis-
tributed locking protocol hands out lock tokens to lock ngeranodes, which eliminates the
need for the metanode to handle all locking requests, thienebroving scalability. A fail-over
mechanism allows another node to step in to perform metaditaties if the metanode fails.

Similarly, the Google File System (GFS) [60] uses a singl¢adi&ta server, called
the master, and many data servers, called chunkserverssiBy a single master, the overall
metadata design is simplified, however, they acknowledgaritpresent a performance bottle-
neck. To reduce load on the master, the master only storekihde of in-memory metadata,
a chunk location mapping, and an operations log for crasbvesg. This approach reduces the
number of client requests made to the master. Also to imppeviormance, GFS uses a loose
consistency model that is acceptable for their workloadi® Oinux PVFS file system [34] also
uses a single metadata server.

However, when metadata requests cannot be avoided, sualtiag d metadata in-
tensive workload, a single metadata server can presentlariumk. To alleviate this problem,
PanFS [183] from Panasas uses a cluster of metadata sexaied, manager nodes. Manager
nodes, unlike other MDSs, do not store metadata in themeddstfile metadata. (e., owner,
size, modification timegtc) is stored directly with the file’s objects on the storageicies. The

metadata manager manages the semantics for these filegsslortking and synchronization.
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Additionally, it maintains an operations log for crash rezxy. Each manager is responsible for
managing a single logical volume, which is usually made ugbafut ten data nodes.

The Ceph file system [180] also clusters MDSs for performaticaugh uses a dif-
ferent approach. Rather than have the storage deviceseharethdata requests for the data
they store, the MDS cluster handles all metadata requestsises the data stores only for
persistent storage. The MDS cluster provides good loaakbalg by allowing fragments of
the namespace, as small as portions of a directory, to bieaitgal across the cluster using a
method called dynamic sub-tree partitioning [182]. MDSdaadecreased through a file map-
ping function [181] that maps inode identifiers to their li@a on storage devices, eliminating
the need for the MDS to perform block look ups. Inodes are eube directly within their

parent directory, allowing more efficient reading and wgtof metadata.

2.2.2 Peer-to-Peer File Systems

Another trend in large-scale file systems has been to lookwatth more effectively
scale costs by relying on commodity desktop computers aetlavailable over the Internet
instead of high-end, customized servers. These systenaftarecomposed of less powerful
machines, such as personal computers, that leverage ch&agly available resources. Each
node’s role is dynamic and there is often no clear cliemteemodel, causing these systems to
often be referred to as peer-to-peer file systems. As themeaihce of commodity hardware
increases to the point where it can rival custom hardwae;foepeer file systems are becoming
increasingly common. These systems are popular for coulistribution networks, such as
BitTorrent and are beginning to move into enterprise emvitents [8, 41].

OceanStore [91] is a global-scale file system that proviéés ikdundancy and secu-
rity. Files are addressed using globally unique identiff@¥dIDs) and different storage mech-
anisms are used for active and archival data. A distributetirg algorithm locates files, using
their GUID, that may be on servers scattered across the gldda can be placed on any node
in the file system, which allows for flexible replication, bawg, and migration. Since devices

are far less reliable then dedicated machines, complexepdigorithms must be used to ensure
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basic file system semantics are preserved even when nodeeite/ fail or may be prone to
abuse.

Like OceanStore, PAST [139] is another global-scale fildaesypswhere commodity
nodes organize into a overlay network. PAST leverages tbhbagldistribution of nodes to
improve the reliability and availability of data, as no daghysical disaster will likely destroy
all copies of a data object, making it an attractive soluionbackup and archival storage.
PAST uses the Pastry [140] overlay routing system, whiclegdakto account geographical
location when routing data.

Pangaea [141] is a peer-to-peer file system that is intermtediafy-to-day use rather
then backup or archival storage. Pangaea uses the unlilseelitiesources of most computers
on a LAN to provide high-performance file access that shoakemble a local file system.
This is done through pervasive replication, which makesesopf data whenever it is accessed,
ensuring that data is always close to the users that aresitogéts To provide data consistency,
replicas use an optimistic coordination protocol thatatidghem to efficiently exchange update
messages.

FARSITE [2] attempts to address a similar problem as Pangaeaiding perfor-
mance comparable to a local file system. FARSITE notes thate slesktop computers are
being utilized, the system is likely to experience a muchewihriety of errors and faults than
traditional file systems. As a result, they use a byzantin#-falerant protocol to ensure that
the system remains available even in the face of unprediéctioors. A distributed directory
protocol [44] that allows the namespace to be distributegl ovany nodes using immutable
tree-structure file identifiers. This approach eliminates meed to migrate files when their
pathnames change because distribution is done using irbhadile identifiers rather than path-
name. Various kinds of metadata leases allow FARSITE teiffdy balance metadata load to

avoid bottlenecks.

2.2.3 Other File Systems

While basic scalability and performance are the focal poiot many applications, a

number of other file systems have been designed to enablekatiols of storage functionality.
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BigTable [36] and Boxwood [102] provide logical abstraoscabove the physical storage that
change the way applications interact with data. These mygste often intended to provide
a better way to represent complex stored data rather thénaniasic hierarchical namespace.
BigTable is a large-scale multi-dimensional map where gaddressed using row, column, and
time stamp identifiers rather than traditional file IDs. Ibislt on top of the Google file system
and uses the Google SSTable, which is a file format that malesexnt key to values, to map keys
to their data locations in the file system. Each row in thegdblcalled a tablet and is the unit
at which data is distributed across the file system. BigTedlgended to be used in large-scale
data processing applications, such as building a web ingiexilarly, Amazon’s Dynamo [41]
uses a basic key-value storage interface built on top of etpgeeer file system. Their focus is
on providing effective Service Level Agreements (SLAS) igtomers and applications.

Boxwood [102] allows the construction of general data d$tmes over a cluster of
storage servers. The storage system can be used as anyaithstrdcture would be used by an
application. For instance, building a distributed databhasignificantly easier when the storage
system presents distributed B-tree or hash table abstnactiBoxwood handles many of the
underlying communication mechanisms that make developamjtional distributed systems
difficult.

The need to preserve data for decades or centuries hastesuthe design of sev-
eral large-scale archival file systems. It is predicted drahival storage demands will ex-
ceed primary storage demands as more data is created an@&eptenti [130] is a content-
addressable distributed archival storage system thas $eednsure data is maintained through
write-once storage. The namespace is the content hashles d&ta blocks and is distributed
across nodes in the system and uses disk-based storagetihatiéape, which provides better
reliability and performance. Similarly, Pergamum [166¢sislisk storage, rather than tape and
through the use of spin-down and data encoding techniqueprcaide cheaper, more reliable

long-term storage.
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2.3 The Data Management Problem in Large-Scale File Systems

The increasing amount of data being stored in enterprisadc@nd high performance
file systems is changing the way we access and manage filesmphavements in file system
design that we discussed have enabled the storage of pegadiytlata and billions of files.
However, this growth has resulted in a new and largely ursbproblem; How to effectively
find and manage data at such large-scales. File systemdzwmd#es into a basic hierarchical
namespace that was designed over forty years ago when fitgrsysontained less than 10 MB
of data [38]. File access requires explicit knowledge offiless name and location. While the
hierarchical namespace has been successful as file systemgtown to millions of files (as
evidenced by its longevity), its limitations become obd@und very problematic as file systems
reach billions of files. The basic problem is tlzat file systems have grown in scale, improve-
ments in file organization and retrieval have not kept paselteng in no way to effectively find
and manage files in large-scale file systems

The goal of the file system is to provide reliable, persisstmtage of files and to orga-
nize them in a way that they can be easily accessed and eztriS8tored data is of limited value
if it cannot be effectively accessed and utilized. When fjigtams lack effective organization
and retrieval functionality, data essentially becomeapjred” within the file system, cannot
be utilized, and is of little value. In some cases poor orzgion can cause files to be com-
pletely lost. For example, NASA's original footage of the andanding has been permanently
misplaced despite being stored on tape shortly after it eesrded [171].

Moreover, storage users and administrator waste considetiene trying to organize
and locate data. At the petabyte-scale and beyond, basis sash as recalling specific file
locations, finding which files consume the most disk spacsharing files between users be-
come difficult and time consuming. Additionally, there argrawing number of complicated
tasks such as regulatory compliance, managing hostedrilegloud, and migrating files be-
tween storage tiers for maximum efficiency that businessest solve. For users, this wasted
time can decrease productivity and limits the overall difecess of the file system. If a file’s

location is not know, a great deal of effort and time must Enspavigating and traversing the
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namespace trying to locate it. This process becomes muah difticult, time consuming, and
less accurate when users must sift through billions of fiéssa result, great care must be taken
in organizing files and monitoring how data is used. Dirde®and files may be meticulously
named with thdopethat they can be recalled later or located through basiciue/sing. For a
storage administrator, not being able to properly find aradyae data can lead to under utilized,
poor performing, and less reliable storage systems. Fongbea if an administrator cannot find
out which files are rarely or frequently accessed they cateiarmine proper tiering strategies.
Ineffective management is perhaps more serious as it dutatalin the file system in jeopardy.
File systems organize files into a hierarchical namespduis. ofganization provides

a number of problems for finding and managing files at larggesc

1. Files organization is restrictiveFile system organization closely resembles the way ob-
jects would be organized in the physical world, such as filea filing cabinet. In the
physical world, retrieving a file from a filing cabinet may veég knowing that it is in
first folder, in the second drawer of the third cabinet of tbheary. Retrieving a digital
file requires knowing its physical location in the file systeRetrieving a file may re-
quire knowing it is in directoryustr/local/foo/ under the namenyfile.txt and under the
[/cs/students/ mount point. However, the file’s location by itself is a pooetnic for re-
trieval because it does not describe the file and is irretetathe data that it contains.
What matters is being able to find files with whatever infoinraimay be known about

them.

Additionally, as in the physical world, files can only be angaed along a single axis.
For example, academic papers in a physical filing cabinet lbeagorted by the author’s
last name. This organization is helpful if the author’s laaime is known but useless if
only the title or subject of the paper is known. Similarly,arfile system, if directory
and file organization is based on the file’s owner then it iy \ekfficult to find a file if
only its type or subject matter are known. It is not hard todgima how difficult it would
be to find and manage a physical filing cabinet containingobdl files; it is similarly

difficult to manage file systems of this size. File systems @miain a number of per-
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file attributes, such as size, access and modifications tiex@ésnsion, and owner that
would be useful for retrieval. However, these attributesrast indexed and can only be
used for retrieval during a brute force search. Similarlgsfcan only be related through
parent — child relationships with directories. Other important intee-fielationships,
such as provenance, temporal context, or use in a relatgelcprare lost. Even the
physical world is better in some regards. For example, fiésause card catalogs which
are a level of indirection between a books location in thealip and its attributese( g,

author, date of publication, topic) that aid retrieval.

. File organization and retrieval are manualAccessing a file requires manually telling
the file system specifically where the file is. When a file’s tmrais not known, the
file system’s namespace must be manually navigated. Theyfitera provides no way
to automatically locate these files or aid the search. Fomei@ if an administrator
wants to know which files have not been accessed in the pashrtiten a brute force
navigation of the namespace must be done where each fil&satimes are analyzed.
Answering these kinds of questions with brute force seagdaritoo slow to be practical

at large-scales.

Additionally, users and administrators need to answertguesabout the properties of
the files being stored in order to properly manage their datdarge-scales, it can be
very difficult to manually answer these questions becauseetls often only a limited
understanding of what is being stored and how it is being.uBedexample, answering
“which files should be backed up and which should be deletéd®iere are the files with
the flight information from my last vacation?”, or “which fdevere recently modified in
my source code tree?”, are very difficult to answer becawsedfien require traversal of
billions of files. At the scale of billions of files, manual amgyzation and access are often

not practical.
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2.3.1 Search-Based File Management

The data management problem stems from the factfilbagystem hierarchies have
grown beyond the ability of any single user or administraimeffectively manage thenThe
lack of an effective and scalable method to locate and manfigs has resulted in the ten-
dency for data utility or usefulness to decrease as the it ®ystem increases. Fortunately,
decades of research and practice in the file systems, infamigtrieval, and database com-
munities have shown thaearch provides a highly scalable retrieval method that address
many of these problemEile system search improves file system management byiatidiles
to be retrieved using any of their features or attributedri®eng a file requires only knowing
what one wants rather thawhereto find it. Search eases the burden of organizing and nav-
igating huge file hierarchies and allowing files to be quicklynmarized to provide a better
understanding of the state of the file system [148]. Addéliyn prior work has shown that
search is far better aligned with how users think about andllréheir data than standard file
hierarchies [47,157,170]. The scalability of search adréexal method is also made evident
by it success on the Internet, where search engines, suclh@gezand Yahoo!, have revo-
lutionized how web pages are organized and accessed. @iy, file system search has
found commercial success on both desktop [14, 66, 110] amadl-seale enterprise [55, 67, 85]
file systems. There has also been an increasing demand feeéiteh in high-end computing
(HEC) [72], cloud [126], personal [142], and enterprise][6le systems. While we are not
suggesting hierarchies are never useful (they are the bkdios in some cases), they are a

poor choice as a general solution.

2.3.2 File System Search Background

File systems store two kinds of data: the file data itself aethhata, which is data
describing the file data. These two kinds of data allow d#iférkinds of file searches to be

performed.
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2.3.2.1 File metadata

File metadata, such as inode fieldgs ¢, size, owner, timestampsjc), generated
by the storage system and extended attributeg){ document title, retention policy, backup
dates.etc), generated by users and applications, is typically reptesl agattribute, value)
pairs that describe file properties. Today’s storage systam contain millions to billions of
files and each file can have dozens of metadata attribute-palis, resulting in a data set with
10'° — 10! total pairs. Metadata search involves indexing file metagath as inode fields
and extended attributes.

Metadata search allows point, range, fapand aggregation search over file proper-
ties, facilitating complex, ad hoc queries about the filaadpstored. Metadata search can help
users and administrators understand the kinds of files lsangd, where they are located, how
they are used, how they got there (provenance), and wheyrestioaild belong. For example, it
can help an administrator answer “which files can be moveddord tier storage?” or “which
application’s and user’s files are consuming the most spadé@tadata search can also help
a user find his or her ten most recently accessed presemstaiidargest virtual machine im-
ages, manage their storage space, or track file changesie#fifficanswering these questions
can greatly improve how users and administrators managgifilerge-scale file systems. As
a result, metadata search tools are becoming more prevedesint reports state that 37% of
enterprise businesses use such tools and 40% plan to dofsonedr future [51]. Additionally,
it is one of the research areas deemed “very important” byhigke-end computing commu-

nity [72].

2.3.2.2 File content

File content search involves searching the data that exikinathe file’s contents.
The content that can be searched are keywords, terms, sibditett that are extract from a file
usingtransducers Transducers are programs that read a file’s contents asd ppecific file
types to extract information, which are often string-bakeglvords. For example, a transducer

that can parspdf file types can parse an academic systems paper about filexsyatel extract
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keywords such adisk, log — structured, or workload from its contents. A large-scale file
system may contain thousands of keywords per file, yieldogsibly up tal0'2 —10'3 keyword
occurrences.

Content search is the foundation of most modern file systamtkepplications. This
type of search is very similar to the type of web search thatckeengines like Google and Ya-
hoo! provide. These search engines parse keywords and fiemmsveb pages and documents
and index them. File content search allows a file to be retdaywsing almost any piece of in-
formation contained within the file. Search results are ednksing algorithms, such as TF/IDF
(term frequencyinverse document frequency) [135], whaahks the files it believes to better
match what the user is looking for higher. In contrast, matadearch uses Boolean search

where query results either completely satisfies all fieldbénquery or they do not.

2.3.3 Large-Scale File System Search Use Cases

To further emphasize the importance of search in largeeddal systems we discuss

several use case examples.

1. Managing scientific data_arge-scale file systems are commonly used for high-pedooa
computation (HPC) applications, such as scientific sinmnat[39, 178]. A single high-
performance physics simulation, for example, can gendhatesands of files containing
experiment data. The large number of files makes finding thatkerelevant or interest-
ing results very difficult. As a result, a scientist may go teaj lengths to organize the
experiment files in a way that aids later navigation [23]. &xample, a file’s name may
be a composition of the experiment’s attributes. An experitrthat succeeded, took 1
hour and 30 minutes to complete, and calculated a partidlisioa value of 22 micro-
joules may be namedun_1_succ_1h30m22uj . dat a. However, this still requires
the scientist to manually parse thousands of files, whiclois, sedious, and inaccurate.
On the other hand, file search allows the scientist to eaailygate these files by simply
querying the attributes that they are interested in. Fomgia, finding all successful ex-

periment files can be done by querying .atlat a files in the. . . / phys_si m dat a/
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directory that are associated with the attribsiteccessf ul . Likewise, a scientist may
be able to find the average energy from a particle collisiogusrying all successful tests

and averaging the energy attributes of the search results.

. Aiding administrator policies.File system administrators rely on an understanding of
what kinds of data are stored on a file system and how it is useggign and enforce
their management policies. As file systems grow, it becomererifficult to gather
this information, often resulting in poor management petic For example, large-scale
file systems often employ tiered storage that allows diffeotasses of data to reside on
different classes of storage [184]. Finding which files slaeside on top-tier storage
and which should reside on lower-tier storage is a diffichtire for administrators [111],
causing migration policies to often be simplistic and inaate. However, search can help
an administrator decide on and enforce migration polics.administrator who wants
to migrate all files that have not been accessed in the past@iths to tier-two is hard
pressed to traverse possibly a billion files to find them. Ysiearch, the administrator
can simply query for the files with modification times longean six months ago and get
an answer much faster. Likewise, before deciding on a simtmpolicy the administrator
may try and find how many files are actively being accessechddfitsearch, finding the
files accessed during the course of the day is difficult; h@wnesearch requires only a

simple daily query to answer this question.

. Meeting legal obligationsWith today’s increasing digital legislation, such as Sadsa

Oxley [176] and HIPAA [175], many file systems amquiredto keep data for certain
periods of time and to ensure it is not changed and is alwagitasle. This is a difficult

task in large file systems because it requires an admirmsttatnavigate and monitor
up to billions of files to track compliance data. Additioyalthe administrator must be
able to ensure that these files have not been modified and madtléd to produce them
when subpoenaed to do so. Failure to meet these requireramtesult in potential
legal actions. However, search greatly eases these paitmaciig, monitoring, and

producing files can all simply be done through queries. Fangie, an administrator
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may attach attributes to a file that define its legal retenperod, a hash of its contents
for verification, and the internal financial audits it may leéted to. Thus, in response
to a subpoena or lawsuit, a query on these attributes caklguicing up all related

documents and verify their contents.

. Archival data managementOften the largest file systems are those that act as digital
archives [130, 166, 189]. Archival data is often written er@nd retrieved infrequently,
possibly decades later by different useesd, children or heirs). As a result, directory
and file organizations are often long forgotten and can bdame to easily re-learn.
When archived data cannot effectively be retrieved or calater be found, it makes the
preservation of the bits less important. However, searokiges a simple and effective
mechanism for the contents of a digital archive data to lsédiound. For example, if one
were to inherit their grandparent’s archived data in a vailid were looking for digital
photos from a specific event, they could easily find this dataugh by query attributes
related to the event. Likewise, if an archive stores medieabrds, a simple search for
the patient and the date can return their records. Manuatls@h an archive may take

weeks and not guarantee that the data is found.

. Everyday file usaga/Vhile the examples above demonstrate areas where seagipfigh
they do not represent most users’ everyday interactions thé file system. Typically,
large-scale file systems are used for a variety of applicgtiith different users perform-
ing different tasks. For example, a large file system may loaeeuser managing digital
photos taken during an archeology excavation, one using@ab drafting files, others
working on a source code project, and others working on fiahdocuments. Each of
these users faces the challenge of organizing and mandugirgdiata. File search can
ease the burden of trying to organize files into hierarchesabse users are no longer
worried about forgetting a single file path. Likewise, theylanger need to waste time
or risk losing files when they cannot recall their pathnam@sice organizing, finding,
and managing files is the primary way users interact with tkeesfistem, search has the

potential to drastically change how the file system, in galnés used and to improve its
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overall utility. In other words, it can potentially revolahize the file system as it did with

the Internet.

2.4 Large-Scale File System Search Challenges

While search is important to the overall utility of largeake file systems, there are
a number of challenges that must be still be addressed. Bsths$ions with large-scale file
system customers [129] and personal experience have shmawrexisting enterprise search
tools [12, 55, 67, 85, 109] are often too expensive, slowcamlbersome to be effective in large-

scale systems. We now discuss some of the key challenges.

1. Cost. Searching large-scale file systems requires indexingbdliof attributes and key-
words. Large-scale search engines and database systgnos édicated hardware to
achieve high-performance at these scales. Dedicated hegdallows these systems to
serve searches from main-memory, utilize all CPU resouiaed not worry about disk
space utilization. Additionally, most are not embeddechinithe system, requiring ad-
ditional network bandwidth to communicate with the storagever. Businesses that
use these search systems, such as large banks and web ssapdmies, can afford
to provide this hardware because search performance iokiyeir business’s success.
Many DBMSs used in banking systems assume abundant CPU, tmeamal disk re-
sources [75]. Large-scale search engines, such as Goaf¥ahno! use large, dedicated
clusters with thousands of machines to achieve high-pmdaoce [15]. However, with
these hardware requirements it can cost tens of thousarndisllafs to search just mil-
lions of files [65]. This cost is far too high for most file systdudgets. Even if the cost
can be budgeted, other file system necessities, such asrft®rpance and capacity, gen-
erally take precedence. As a result, reliance on dedicatstivare for high-performance

search can limit deployment in most large-scale file systems

2. Performance. Search performance is critical for usability. For exampleb search

engines aim to return results in several hundred millisdsdd1]. Likewise, update
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performance is important because updates must be fregumylied so that search re-
sults accurately reflect the state of the file system. AchgVast search and update
performance is difficult to do in file systems with billionsfiles and frequent file mod-
ifications [10, 48, 178]. Unfortunately, current solutiooiten rely on general-purpose,
off-the-shelf indexing and search technology that is ndinoged for file systems. Al-
though standard indexing solutions, such as DBMSs havdibmth&rom decades of per-
formance research and optimizations, such as verticatipamg [87] and materialized
views, their designs are not a perfect fit for file system deafithese systems lack file
system specific optimizations and have functionality tlsanat needed for file system
search and which can add overhead even when disabled [1®1.isTnot a new con-
cept; the DBMS community has argued that general-purpos#&8Bare not a “one
size fits all solution” [28, 162, 165], instead saying thaplagation-specific designs are
often best. Similarly, Rosenblum and Ousterhout argued‘fite system design is gov-
erned by...technology...and workload” [138], whicin@t the approach taken by general-
purpose solutions. As a result, it is difficult to achievelaike, high-performance search
in large-scale file systems. While many desktop searchregstan achieve performance
on a single, small desktop, it is difficult to scale these tsohs to multi-user file systems

with billions of files.

. Data collection and consistenciile search is often implemented as an application out-
side of the file system. In order for search results to acelyraeflect the file system,
file changes must be extracted from the file system and thesgek must be replicated
in the search application’s index. However, large-scatesyistems have billions of files
and highly demanding workloads with rapidly changing fil&8,[48, 178]. This size and
workload make efficiently collecting these changes veriiadift. Also, collection meth-
ods such as crawling the file system or interposing hooksgalid paths, can have a
negative impact on file system performance. We have obseomdnercial systems that

took 22 hours to crawl 500 GB and 10 days to crawl 10 TB. Dueearthbility to quickly
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collect changes and update the index, large-scale webhseagines updates are applied

off-line on a separate cluster and the index is re-built Wes].

. Highly distributed. In order to achieve needed performance and scalabilitye lfite
systems are distributed. Similarly, a large-scale seardbx, which can have space re-
quirements that are as high as 20% of the file system’s cgp@€i}, must also be dis-
tributed. However, distributed search engines, such asseaith engines, often perform
static partitioning across a cluster of dedicated machamesperform only manual, of-
fline updates [106, 132]. These hardware and update methedsoa feasible for file
system search, which must often be integrated with the féeesy to limit cost, must be
frequently updated, and handle changing workloads. Aattttiy, distributing the index
can help to co-locate indexes near the files that they neettesa and provides parallel

execution, such as with MapReduce [40].

. Ranking.Searching the web has been greatly improved through sdatesarch result
ranking algorithms [29]. These algorithms often rank risssb well that they only need
to return the few topK results to satisfy most queries [151]. However, such allgors
do not yet exist for file systems, particularly, large-sdadesystems. Current desktop and
enterprise file systems often rely on simplistic rankingathms that require users to sift
possibly through thousands of search results. File systemently lack the semantic
information, such as hyperlinks, that web rankings albanig leverage [25]. In large-
scale file systems, a single search can return millions oftsgsnaking accurate ranking
critical. To address this problem there has been an incrgasnount of work looking at

how to use semantic links [73, 149, 155] in the file system ogprove ranking.

. Security.Large-scale file systems often store data, such as nucktaegeilts, that make
security critical. File system search should not leak f@iy¢d data otherwise it cannot be
used in a wide variety of systems. Unfortunately, currestsilstem search tools either
do not enforce file permissions [12] or significantly degradeformance [33] to do so.
In many cases, security is addressed by building a separdéx ifor each user [33].

This approach guarantees that the user has permission éssatite files in his or her
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index. However, this approach also requires prohibitiveth disk space since files are
often replicated in many indexes. Moreover, changing asfirmissions can require
updating a large number of user indexes. Another approath perform permission
checks i e, st at () calls) for every search result and only return results tlaashe
check. However, performing a permission check on what mamitleons of files can

significantly impact performance and pollute file systermheac

7. Interface. The traditional file system interface €., POSIX) has lasted more than three
decades in part because it uses a simple (albeit limitednazgtion paradigm. How-
ever, search-based access methods require a more coenplicirface since files can be
accessed with any of their attributes, search results neushdwn, and inter-file relation-
ships need to be visualized. Moreover, the interface musirbple enough for users to
be able and willing to use frequently. Basic search int@$asuch as the simple Google
keyword box, are likely too simplistic to express the kindigjoeries that users need to
ask, while languages such as SQL [35] are likely too comfadotaCurrent and previous
work has looked at how to use new interfaces [7, 89] to impinteraction with the file

system.

2.5 Existing Solutions

This thesis builds on work in the file system, informatiomiestal, and database com-
munities. We now highlight existing work in file system sdmfmom these fields and discuss

the challenges that still remain for large-scale file syssearch.

2.5.1 Brute Force Search

Early file system search tools aimed to make brute force Bdass cumbersome.
Tools such a$i nd andgr ep walked the file system hierarchy, accessing each file, antkehe
ing whether it matched the query. When file systems wereivelatsmall these tools were
quite effective. However, at large-scales this approaatotspractical because searches can

take hours or days and utilize most of the file systems ressurc
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A number of approaches have looked at how to improve the pedice of brute
force search. For example, MapReduce [40] can distrigutep operations across a cluster so
that they are close to the data they need to access and rumaillepaDiamond [81] uses an
approach calledtarly Discardto quickly identify if a file is relevant to a query. Early Daxcl
used application-specific “searchlets” to determine whéiteds irrelevant to a given query.
This approach reduces the amount of data that must be reathhyzi;mg a small part of a file

to determine whether it is worth continuing to search.

2.5.2 Desktop and Enterprise Search

More recently search systems have relied on indexing todwgperformance. The
index is a data structure that pre-computes the locatioritobates and keywords in the file
system. Thus a query only needs to perform an index look uperahan a traversal of the
entire file system. This is the approach taken by the many sktdp [12, 66, 108, 110] and
small-scale enterprise [55, 67, 82, 85] file system searplicagtions. These applications often
consist of a general-purpose relational database (DBM$aainverted index. The DBMS pro-
vides structured metadata search while the inverted ind®xdes unstructured content search.
Additionally, they are implemented as applications o the file system. These applica-
tions supplement the file system’s lack of search supportdanaot require the file system to
be modified. The file system is periodically crawled to refleeiv file changes in the search
application’s index.

Virtually all major operating systems (Windows, OSX, andix) now ship with file
system search functionality included. Additionally, neceeports show that most enterprise
businesses use or are planning on using an enterprise fiesrsygearch appliance in the near
future [51]. Businesses often use these appliances to rrapgmployee productivity and to
ensure legal compliance guidelines are followed. Both tgsknd enterprise search target
smaller-scale systems, storing gigabytes of data andomslliof files [65]. As a result, the
general-purpose indexing solutions these applicatioastsrelatively effective at such scales.

Since these applications reside outside of the file systéaratfributes are usually collected by
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walking the file system namespace and reading each file'sdaietand data. Oftaransducers
are used to parse various file type formasg, doc, pdf , etc) and extract keywords.

While desktop and enterprise file system search is poputhbacoming ubiquitous,
it is not well suited to scale to large-scale file systems fihegicost, performance, or manage-
ability. Reliance on general-purpose index designs makdife system optimizations, do not
efficiently enforce security, and require significant filstgyn CPU, memory, and disk resources
(for example, enterprise appliances ship with their ownicidd hardware resources [65]).
Additionally, crawling the file system and updating the ixdae very slow which causes the
search index and file system to be frequently inconsistemthwtan yield incorrect search re-
sults. Thus, these systems serve to demonstrate the imperéand popularity of file system

search but also demonstrate the challenges in scaling ydarge file systems.

2.5.3 Semantic File Systems

File system search applications, such as desktop and gagegearch tools, do not
address the limitations of hierarchical file systems. kdtiey provide an auxiliary application
that can be searched. However, the limitations of hieraatHile system organizations, which
were identified over two decades ago [113], have promptatfigignt research into how files
systems should present information to users. One of thefifiesstystems to do this was the
Semantic File System (SFS) [63]. SFS points out the linuitettiof traditional file system hier-
archies and proposes an extension to the hierarchy thatsalleers to navigate the file system
by searching file attributes that are automatically exé@détom files. Virtual directories, which
are directories whose contents are dynamically createdduesy, are used to support legacy
applications. These file systems are called “semantic” Usecthe namespace allows files to be
organized based on their attributes and semantic meaeirgg (vith virtual directories) rather
than simply a location. Thus, a user can navigate a dynayicaated hierarchy based on any
file attributes. The SFS design is made to work as a back-enddilver with existing NFS and
AFS protocol, however, it is not distributed across mudtipervers. SFS relies on B-trees to

index and provide search over file attributes.
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SFS introduced the concept of a dynamic, search-based paogetor file systems.
A number of file systems extended the basic concepts dedanb8FS to provide additional
functionality. The Hierarchy and Content (HAC) [69] file s aims to integrate existing
hierarchical file organizations with content-based seafdiies, with the goal of lowering the
barrier to entry to semantic file systems for users. The astamued that a key reason that
SFS never caught on as a popular file system design was thasitae difficult for users to
move from a standard hierarchical file system to a searchebase. Starting with a traditional
hierarchical file system, HAC adds content-based accesHdwirzg new semantic directories
to be created, which are normal directories that are agedoidgth a query and contain symbolic
links to search results and can be scoped to only a part ofitharbhy. They introduced the
notion ofscope consistendy deal with file attribute changes in nested virtual diraeta HAC
was implemented on top of a normaNix file system and uses the GLIMPSE [104] file system
search tool provide search of file contents.

The pStore file system [188] extends traditional file systémnallow complex se-
mantic file metadata and relationships to be defined. Thegdate a new model for defining
the attributes of a file and data schemas that are more flekiatethose offered by traditional
databases. Their data schemas are based on the Resourgptdeaderamework (RDF). These
schema’s are used to construct customized namespacesemaeaningful to specific users or
applications. They also argue that general-purpose dsgatare not the right for storing struc-
tures for semantic file system data.

The Logic File System (LISFS) [124] take a more theoretiggiraach to semantic
file retrieval. LISFS propose a new model where file namesepeesented as Boolean equa-
tions. For example, accessing a file can be done with a Boelgaation in conjunctive normal
form such aga; V a3) A (—ag), whereay, as, andas are file attributes. Using these equations,
file paths can be constructed that allow a large number ofrdifft paths to be used to locate
a file. In addition, traditional file systems hierarchies ta&nconstructed because these equa-
tions exhibit a commutative property. File attributes doeesd in special tables that implement

directed acyclic graphs and file retrievals are translated axiomatic look-ups in these tables.
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The Property List DIRectory system (PLDIR) [113] providestter ways to internally
represent file attributes in a file system. PLDIR defined aig¢mneodel for describing metadata
using property lists, which could be used to represent fdecteabstractions. While its indexing
capabilities were very basic, it did address some indextepaled consistency issues.

Damasc is a file system intended for high-performance camgenvironments [27].
Damasc provides a declarative query interface to files, lwiiceffective for many common
HPC queries. File data is stored in a normal file system witlhiralrer of modules above it
that provide file parsing, indexing, provenance collectiand interface capabilities. Indexes
are constructed based on application query patterns im tvépeed up common searches.

Other semantic file systems provide better file retrieval maatsms by improving
naming rather than adding explicit file search. For examible,Prospero file system [117]
builds a global file system where files are scattered acrodpieumachines and each user
builds there own view of the data on the system, rather thamngito organize a global names-
pace. In that way, no matter how large the file system is, umdyssee and only deal with the
files that they deem relevant to them. The Linking File SysteifRS) [6] is designed to express
semantic links between fileg.(g, provenance and context) through actual links implemented
in the file system. This allows users to use these links farlquaversal of the file system along
axes other than just the hierarchy.

Semantic file systems provide a more scalable way to organiégate, and search
files than traditional file system hierarchies. However, fnas not focus on the underlying
search algorithms and data structures that enable scalebteh performance. Instead, they
focus on the interface and query language and use basicalignepose indexes, such as simple
B-trees or databases. Additionally, most are implemeniteid o of a traditional file system with
a number of separate search applications that are usedew fitelattributes. Thus, while they
provide a more scalable file system interface, they do nefgecscalable search performance or
consistency guarantees that are needed to completelysadsiFarch problems in massive-scale
file systems. At relatively small scales. @, tens of thousands of files), file access performance

can still be3 — 5x slower than in a traditional file system.
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2.5.4 Searchable File Systems

There are other file systems that enable file search witheagfing the traditional
hierarchical file systems. The Be File System (BeFS) [61] s\gsport for file search built
directly into the file system. BeFS stores extended ate#ut hidden file system directories
that are indexed in B+trees, allowing queries to be issuedtbem. These B+trees are stored in
a special directory with each attribute being represengeddirectory entry and the index being
stored as a file pointed to by the entry. Common attributks fiie size, owner and modification
times are automatically indexed by BeFS and the user carifg@ey additional attributes to
be indexed.

The Inversion File Systems [119] takes a different apprahem BeFS. Inversion
implements the file system using a PostgreSQL [163] datadmdlee back-end storage mech-
anism. This provides transactional storage, crash regoaed the ability to issue database
queries over the file system. Each file is represented as aravaible. File metadata and data
are stored in separate tables where the metadata tabls pwiiiie data in the data table. Each
normal file system operation maps to an SQL query.

The Provenance-Aware Storage System (PASS) [114] stom®&mancei( e., lin-
eage) metadata with each file, showing where its data camredral how it was created. This
tackles a specific set of queries users and administrattea bave about their data, such as,
“which source files were used to build this binary?” or “whide was this paragraph copied
from?”. All provenance attributes are stored in Berkeley @¥Babases [120] and a query layer
is added on top of these databases to allow users to seandnprce data. Most of the un-
derlying file system is left unchanged except for the openstithat are annotated to ensure

provenance is kept.

2.5.5 Ranking Search Results

In addition to making search fast and consistent with thesiigtem, another key

challenge is making searches effective. That is, searaiesctually able to help users find the
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data they are looking for. The importance of effective seascevident on the Internet, where
search engines can satisfy searches with only the topdegy (en) ranked search results [151].
Web ranking algorithms, such as Google’'s PageRank [29Efiidfrom the semantic
links between pages, which it can use to infer the importasfce page. As a result, most
file system ranking algorithms attempt to extract semamticrmation from files to improve
ranking. The Eureka [25] ranking algorithm extracts sefadiriks from files, such as name
overlap or shared references, that allows techniguesasirttl PageRank to be used for file
systems. Similarly, Connections [155] extracts tempogttionships from files, such as two
source code files being opened at the same time, that are sisethantic links. Connections
builds a graph of these links that is used to reorder seamtfitsefrom a file system’s search
engine. Shahet al. [149] infer semantic links using file provenance and buildrapf-based
ranking method similar to that of Connections. They conelda user study to validate that
such ranking improvements do enhance the overall usertseaperience. Finally, Gyllstrom,
et al. [73] only consider the data that users have actually seen {nformation displayed on
the screen) as searchable information. This approachlisapaiuind the intuition that users are
only going to search for information that they have seeniptmsly and that if they never saw
it, and therefore likely do not know it exists, it is unliketlgey will want to search for it. This
approach reduces the overall size of the search corpus dsdruue weight on ranking data
that the user has seen before. Additionally, web searchhuagsthat personalized ranking and
views of data can greatly enhance search relevance [839P0[Bis approach has the potential
to be useful on large-scale file systems where search nesdigften the files to search, vary

between users.

2.6 Index Design

Fast search of a file system is achieved by buildingnaiex before hand. The two
fundamental index structures used in file system searchetatonal databases (DBMS) [37]
and inverted indexes [74, 192]. DBMSs are often used to $lermetadata, which is structured

(attribute, value) pairs such as inode fields and extended attributes. Thiststeumaps well
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onto the DBMS relational model. Inverted indexes are usesticiee unstructured file keywords,
which are often text-based. Inverted indexes, which arenofalled text databases, are the
primary method of text indexing. These two search strustheve been researched for decades
and have a considerable number of different designs. We ngiidghht those related to file

system search.

2.6.1 Relational Databases

The traditional relational database architecture is whatethe design of Systems
R [16], which was designed more than 25 years ago. System Rsatebscendants, such as DB2,
MySQL, and PostgreSQL, are designed for business datagmiogeworkloads. At the time,
these systems were designed to provide indexing and stetageures that were disk-oriented,
relied heavily on threading for performance, coarse logkirechanisms for transaction support,
and log-based recovery.

In most DBMSSs, data is stored in a table with a generally fixaahiper columns and
variable number of rows that define relations. For exampiiable for a file system may contain
an inode number, owner, size, file type, and modification @meolumns. As more files are
added, more rows are added to the table. Each row is store@rs|ly on-disk, making it
efficient to read and write an entire row. New rows are appemaleegions of the table, making
it efficient to write a large number of consecutive rows.

These DBMSs are often called row-stores or write-optimidabases since they are
optimized for reading and writing entire rows and are effiti®r writing new rows since they
are appended sequentially to the table. Additionally, #éipisroach is space efficient since only
approximatelyN x M bytes are used, faV rows each with\/ columns. In the simplest case,
querying the table involves a full sequential table scanrd the rows that match the query.
When data is clustered in the table or when most of the tabk& iveiread, this can be quite
efficient. However, when this is not the case, table scandeaxtremely slow as extra data
may be read and a large number of disk seeks may be incurred.

There are a number of optimizations that can improve quarppaance. A common

approach to improving query performance is building B-etiredexes on the columns in the ta-
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ble that need to be quickly searched. Each B+-tree is inderedcolumn’s attribute values and
stores lists of row IDs that match the value. Queries for aifipattribute value or range of val-
ues can quickly identify the specific rows in the table thac be retrieved, avoiding the cost
of a table scan. This approach does not, however, elimihatsdeks that may occur if the rows
are not adjacent in the table. When multiple indexed attedbare queried, such as querying for
files where(owner = Andrew) A (size > 5 M B), aquery plannerchooses which attribute
it believes to be most selective €., the attribute that will yield the fewest search results) an
searches that attribute’s index. TRe&results from that index are then linearly scanned and
filtered to make sure that the final results satisfy both qpeegicates. This pruning will thus
yield between0, N] results. By selecting the index with the fewest likely résuthe fewest
results need to be linearly scanned.

Selecting records from the index likely to have the fewestits is a much faster
approach than searching both indexes and calculating floe i their results since less data
is read from the table and processed. However, doing soresgtiie query planner to be able
to efficiently chose which index will produce the fewest tesuTo do this, query planners use
selectivity estimators to estimate the selectivity of jiwatks in a query. More specifically, it
estimates the number of tuples that will satisfy the pradich uses the statistical information
about the table that the DBMS maintains. Unfortunately, nvattribute value distributions are
skewed, query planners tend to be inaccurate [101]. Thigdéaudse the sampling methods,
which rely on only a subset of the data and must be generag @ificulty adapting to the
variance in highly skewed distributions. Additionally, @iboth values match many records,
extra data will still be read and is processed, even if tha&rsection is small. It should also
be noted that building additional data structures, such-4asr&: indexes, does incur a space
overhead. This overhead grows proportionally with the sizéhe table and increases as more
columns are indexed. Additionally, update performanceetses because, in addition to the
table, each index must also be updated.

Another approach to improving performance is vertical iparting [87]. Vertical
partitioning physically breaks the table up into multipdles, one for each column. Each table

stores an additional position integer that allows rows tabatified across tables. Often tables
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are sorted to provide more efficient scanning. Many quesiesh as in the example above, do
not need to retrieve an entire row’s worth of data. In a noriHpaned table, a scan requires
retrieving the full row for each row scanned, which can beg/\aow. By partitioning the table
along column axes, only columns with data relevant to a quesd to be retrieved. Joins
are then used (often hash joins) to facilitate searchess@olumns. Compared to building
an index on each column in a non-partitioned table, verpeatitioning can be faster in cases
where only a few columns are needed from many rows. This iausecless disk bandwidth
is used as the row data that is not used in the query is not Hewever, vertical partitioning

is a trade-off with computation overhead as join operatimust be used across the tables and
can impede performance [1]. Also, storing an extra positidmith each row in each table to
identify which tuple it belongs to adds a space overhea@mniatly doubling the space required
if all other attributes are integers. Vertical partitiogialso degrades update performance since
writing a row now requires a disk seek between each table.

Column-stores are a more recent DBMS design that are refadingd, rather than
write optimized like traditional DBMSs [164]. A column-s@&DBMS stores a table’s column
data contiguously on-disk instead of row data. Doing sonadlqueries that need to read only a
subset of the columns to perform much faster than if theentiw had to be read. Additionally,
many column-stores use compression and dense packinguwhgcolalues on-disk to reduce
disk bandwidth requirements [56, 164] and lean more heanlzPU performance. Addition-
ally, extra tuple information does not need to be stored w#bh column. Column-stores use
join indexes to provide more efficient queries across cokinttiowever, since column-stores
are read-optimized, their designs comes at a cost to wriferpgance. Writing an entire row
now requires a disk seek between each column, similar t@wakpartitioning, which decreases
performance.

The column-store design stems from significant changescimt#ogy trends and
business processing workloads since the 1970s when thmari§ystem R was designed.
Processor speeds have increased significantly as have ajpskities, while disk bandwidth
has increased at a much slower rate. Additionally, the pr&regigabyte of memory has de-

creased [165]. These trends make the heavily disk-based D&ata structures a bottleneck.
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Similarly, business processing workloads ¢, OLTP, OLAP, and data warehousing) have be-
come more read heavy and their need for heavyweight logdgimgading, and transactional
operations have been decreasing [75].

These continual changes in technology and workload, anchanced reliance on
traditional general-purpose DBMSs, have given rise to &ebébat existing DBMS designs
are not a “one size fits all” solution [28, 162, 165]. That igyemeral-purpose DBMS cannot
simply be tuned and calibrated to properly fit every worklosiéiny in the database community
have argued and shown [75, 161] that using a traditional DBMSa variety of search and
indexing applications is often a poor solution and that aam&ed, application-specific design
that considers the technology and workload requirementhefspecific problem can often
significantly outperform general-purpose DBMSs.

The “one size fits all” concept suggests that general-par@BMSs may not be an
optimal solution for file system search. DBMSs were desidgioedusiness processing in the
1970s, not modern large-scale file system search. Achieemgpnable performance will often
require additional hardware as well as a database adnaittistio constantly “tune” database
knobs. DBMSs also have functionality, such as transact@ns coarse locking, that are not
needed for file system search and can add overhead [165].laBynas evidenced by their
contrasting designs, databases are often optimized fograiead or write workloads and have
difficulty doing both well [1, 76, 78]. File system search mpsovide both fast search perfor-

mance and frequent, real-time updates of the index.

2.6.2 Inverted Indexes

Inverted indexes [74, 192] are designed to be text datalmsdsre the foundation
of content (also known as keyword full-text, or term) seavaithe Internet and in current file
system search. An inverted index, for a given text collegtimilds adictionarythat contains a
mapping for each of th& keywords in the collection to a list of the locations where Key-
words occur in the file system. The basic inverted index &chire is illustrated in Figure 2.3.
Each keyword location is known aspastingand the list of locations for a keyword is called

the keyword'sposting list For a file system, these locations are generally offsetsinwftles
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Figure 2.3:Inverted index architecture. The dictionary is a data structure that maps keywords
to posting lists. Posting lists contain postings that dbsceach occurrence of the keyword in

the file system. Searches require retrieving the postitgfiis each keyword in the query.

where the keyword occurs. In most cases, each posting instheohtains a tuple with the 1D
of the file (such as an inode number) in which the term occhespnimber of times its occurs,
and a list of offset locations within the file for each occage. Thus each posting generally
has the formatdocid, tf, (p1, ..., pts)), Wheredocid is the unique document identifigrf is the
number of term occurrences, apdis the offset within the file where the term occurs.

The dictionary is usually implemented as a hash table oftzaméd data structure that
allows efficient look up using a single term as a key. Dictigrsize can often grow quite large
since it requires close t& x N bytes, wherek is the average keyword length in bytes and
N is the number of keywords. For large-scale file systems widmyrkeywords, even with
compression, the dictionary will be far too large to fit in agée machine’s main memory [30].
Thus, they are often either stored on-disk or distributedseca cluster of machines.

Each posting list is stored sequentially on-disk. Given argusuch asndex A
search A storage, each keyword is looked up in the dictionary and their cquoesling posting
lists are read from disk. The union of the posting lists ardeutated and a result ranking
function is then applied to produce the final search reslitmost cases, search performance is
a function of the amount of data that must be read from diskntimber of disk seeks incurred
to read the data, and the amount of processing( decompression, ranking, file permission

checks) that must be done to produce the final set of results.

37



However, keeping posting lists sequential on-disk can niakepdates very slow, es-
pecially as the posting list grows in size. As a result, pagslist incremental update algorithms
are generally either optimized for search performance.(try and maintain posting list se-
guentiality) or update performance €., sacrifice posting list sequentiality for fast writes) [96]
In-place updatelgorithms are update optimized approaches. When a pdsing created, a
sequential region on disk is allocated that is larger tharrdéiguired size, leaving some unused
space at the end. As new postings are added, they are writtethi over allocated regions of
the posting list, without requiring any extra data readsisk deeks. If the over allocated region
is not used it becomes wasted space. If the posting list gbeysnd the size of the region, a
new sequential region is allocated elsewhere on disk teplaw postings. A disk seek is then
required to read the entire posting list€., all on disk regions). Thus, as posting lists grow in
size, in-place updates can make search performance po@rgsdisk seeks may be required to
read a posting list from diskMerge-basedlgorithms are search optimized approaches. When
a posting list is created, a sequential region of the exaetisiallocated on disk. When the listis
modified, the original list is read from disk, modified in-meiy and then written sequentially
to a new location on disk. Thus, merge-based approaches fiicaxtra space overhead and
ensure that posting lists are sequential on disk. Howeypelate performance can be very slow
since the entire posting list must be read and written foh egdate.

However, there has been additional work to improve the tafftebetween search
and update performance. Hybrid index maintenance [32Hd#/ithe index into two sections,
one that is managed with in-place updates and one that isgadmneith merge-based updates.
This division is based on posting list length where shortipgdists (. e., shorter than some
calculated threshold’) are managed with merge-based updates. Short postingdistmore
easily be read and written with a merge-based update anddwaaste significant disk space
under an in-place approach. Longer posting lists are thamage with an in-place strategy
where merge-based updates would simply be too slow. Howawén-place update mechanism
still requires extra disk seeks to retrieve these long pgdists that are larger than a single
region. Often there is a delay between when file changes dlecteal and when they are

reflected in the index. The JiTI [93] algorithm allows chasigfeat have not yet been applied to
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the index and are buffered in-memory to still be searched.o®ipgs cache prepares posting
lists in-memory prior to being written out to the main indéxseparate query engine then issues
gueries over both the main index and the postings cachayiaticche most recent updates to

also be returned.

Web search engines, such a Google and Yahoo!, maintainbposke largest in-
verted indexes, indexing trillions of web pages [68]. Thesarch engines utilize multi-million
dollar data centers to search for this many pages. The awémtlex is partitioned across the
data center using one of two methods: tbeal inverted file(Z F7) or theglobal inverted file
(IF¢) [15, 132, 133]. Thel Fy, strategy divides posting lists across tReservers in the data
center. Searches are then broadcast t@akrvers and each returns a disjoint set of results.
The I F; strategy partitions the keyword space up amongsiilservers, where each server is
responsible for a part of the space, such @B fraction of the keywords. Each of thé servers
has enough memory and proxy cache nodes to ensure thatgjoende served without going
to disk. The index is re-builbff-line on a close to weekly basis after additional web pages are
crawled [15]. During this re-build process, a large-sc#dgying area (a separate cluster of ma-
chines) is used to modify or re-create posting lists andutatie page rankings. An additional
link index is often used to improve rank calculations.

While inverted indexes are the mainstay of modern textaedt| not all of the designs
are well suited for file system search. Small-scale, digetanverted indexes make significant
trade-offs between search and update performance. As K, reslher updates are too slow
to handle real-time update requirements or search perfarenbecomes unacceptably slow.
Additionally, small-scale designs have few methods forrappately distributing the index.
Large-scale designs, such as web search engines, are fakpgeasive and heavyweight to
be effective for a file system. They require dedicated resmuand re-build the index too
infrequently. These issues suggest that designs thatibmeethto file system search may able

to improve performance.
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2.6.3 File System Optimized Indexing

We are not the first to argue that general-purpose indexihgicns are not the right
approach to file system search. As a result, there are a nuhbkr system specific indexing
techniques that exist. GLIMPSE [104] reduced disk spaceiregents, compared to a normal
full-text inverted index, by maintaining only a partial ened index that does not store the lo-
cation of every term occurrence. They argued that the spagérements for maintaining a full
inverted index were too high for most file systems. GLIMPSHifi@ned the search space, us-
ing fixed size blocks of the file space, which were then refezdrby the partial inverted index.
A tool similar togr ep was used to find exact term locations with each fixed size blbickv-
ever, the GLIMPSE tool is almost two decades old and diskagpis not nearly as significant
a problem today as it was then. As a result, in most cases,fexvéite systems, maintaining a
full inverted index for performance is preferred.

Geometric partitioning [95] aimed to improve inverted irdgodate performance by
breaking up the inverted index’s inverted lists by updateeti The most recently updated in-
verted lists were kept small and sequential, allowing fitupdates to be applied quickly. A
merging algorithm created new partitions as the lists groer dime. Query-based partition-
ing [112] used a similar approach, though it partitioneditiverted index based on file search
frequency, allowing index data for infrequently searchéesfio be offloaded to second-tier
storage to improve cost. The Wumpus desktop search systdimfBduces a number of im-
provements to conventional inverted index design, whicproves full-text search on desktop
file systems. However, its current design targets desktegystems and lacks a number of fea-
tures critical to large-scale file system search. SmamtJ&#0] is a search system that indexes
metadata in a distributed R-tree and uses Latent Semauul@xilmy (LSI) to group correlated
metadata. SmartStore does not handle real-time updattthamse of LSI limits its ability to

perform index updates quickly.
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2.7 Summary

There is a rapid increase in the amount of digital data beroguyred and it is only
expected to increase in the future. In this chapter we desgtrnow this rapid growth in data
volumes has introduced a new challenge for large-scale fidems: effectively organizing,
finding, and managing such a large sea of information. Inarsp to this challenge there has
been an increasing trend towards search-based file acdessigh a discussion of file search
properties and use cases we showed how search addressesf tharimitation and restrictions
of current simple hierarchical file organizations.

We argued that existing file system search solutions aegyilipped to scale to bil-
lions of files. We discussed the search challenges that mxdting solutions to too expensive,
slow, and cumbersome to be effective at such scales. We shthaethese systems rely on
general-purpose index designs that are not designed faylem search and can limit search
and update performance. We also provided a high-level @eref how general-purpose in-
dexes such as DBMSs are used for file system search. Addijionea described how designing
search systems outside of the file system causes consistedafficiency issues that are diffi-
cult to address.

These observations drive the motivation for the followitigaters. Since effective
file system design is driven by an understanding of the kiridiata stored and how it is used,
we begin by looking at the properties of large-scale fileayst. We then explore how the use
of general-purpose index structures can be avoided wigxidgsigns that are designed specif-
ically for file systems and which leverage file system prapsrt We use these new indexing
techniques to explore how search functionality can be fated directly into the file system to

avoid the need to maintain a replication of all file attrilzuile a separate search application.
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Chapter 3

Properties of Large-Scale File Systems

Large-scale network file systems are playing an increagsingbortant role in today’s
data storage. The motivation to centralize data behind orétfile systems has been driven
by the desire to lower management costs and the need tolyetiabess growing amounts of
data from multiple locations and is made possible by impmoeets in processing and network
capabilities. The design of these systems [88, 116, 138liideg by an understanding of the
kinds of data being stored and how data is being used, whioftea obtained by measuring
and analyzing file system traces.

There are two different methods used to understand filersygteperties; measuring
and analyzing workloads, which shows how data is being useded as measuring and analyz-
ing snapshots, which shows the kinds of data being storedkl@éml traces contain data access
requests, such as a file being opened and read. Snapshatdmateain information about the
properties of files stored at a given time, such as their lmgah the namespace and the types
of files (e. g, doc, pdf).

While a number of trace-based file system workload [17, 48,127, 177,178] and
snapshot [5, 22, 39, 43, 145] studies have been conductbd jest, there are factors indicating
that further study is necessary. First, the last major netfile system trace study [48] analyzed
traces from 2001, over half a decade ago; there have bedfiighchanges in the architecture
and use of network storage since then. Second, no publishédoad or snapshot study has

ever analyzed large-scale enterprise network file systigsing instead on research or desk-
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top systems, such as those seen in university settings.eWsdful, their findings likely differ
from those in large enterprise file systems. Third, mostistutbcus on analyzing properties
that are applicable to improving disk performance. Theiétie analysis that focuses on file
organization and workload semantics, which are importandésigning better organization and
indexing strategies.

In this chapter, we collect and analyze tracebathfile system workloads and snap-
shots from real world, large-scale enterprise network fikteans. Our workload traces were
collected over three months from two network file serverdalega in NetApp’s data center.
One server hosts data for the marketing, sales, and finapeetadents, and the other hosts data
for the engineering departments. Combined, these systentaiic over 22 TB of actively used
storage and are used by over 1500 employees. We traced C2F8g@vork traffic, which is
the primary network file protocol used in Windows. Our snapghaces were collected from
three network file servers also deployed at NetApp. One sévsted web and Wiki server
files, another was a build server for the engineering deanrtmvhile another served employee
home directories. Combined, these systems contain alrddsB ®f actively used storage. The
analysis of these traces focused on: (1) changes in file pedi®rns since previous studies, (2)
aspects specific to network systems, such as file sharing(3arbw the namespace impacts
file attributes. All of which are important for better undarsding how we can organize and
manage files.

Our analysis revealed important changes in several aspkfits system workloads.
For example, we found that read-write file access patterhghaare highly random, are much
more common relative to read-only and write-only accestgepat as compared to past stud-
ies. We also found our workloads to be more write-orientech tihose previously studied, with
only about twice as many bytes read as written. Both of theskniys challenge traditionally
held assumptions about access patterns and sequentigditglso found that metadata attribute
values are highly clustered in the namespace and have veweskdistributions. These find-
ings demonstrate important properties about how files ayanized in large-scale network file

systems. A summary of key observations can be found in Takle 3
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Compared to Previous Studies

. Both workloads are more write-oriented. Read to writeelygtios have signifcantly decreased.
. Read-write access patterns have increased 30-foldvestatread-only and write-only access patterns.
. Most bytes are transferred in longer sequential runss& hens are an order of magnitude larger.

. Most bytes transferred are from larger files. File sizesugrto an order of magnitude larger.

a A W N P

. Files live an order of magnitude longer. Fewer than 50%aateted within a day of creation.

New Observations

6. Files are rarely re-opened. Over 66% are re-opened onk85¥% fewer than five times.

7. Files re-opens are temporally related. Over 60% of rex®pecur within a minute of the first.

8. A small fraction of clients account for a large fractionfité activity. Fewer than 1% of clients account for 50%
of file requests.

9. Files are infrequently shared by more than one client.r @6&o of files are never opened by more than one client.
10. File sharing is rarely concurrent and sharing is usuakiyl-only. Only 5% of files opened by multiple clients are
concurrent and 90% of sharing is read-only.

11. Most file types do not have a common access pattern.

12. Specific file metadata attribute values exist in only allsina&tion of directories.

13. A small number of metadata attribute values account farge fraction of the total values.

Table 3.1:Summary of observations.A summary of important file system trace observations
from our trace analysis. Note that we define clients to beusi® addresses, as described in

Section 3.3.1.

The remainder of this chapter is organized as follows. Tkeipus workload studies
are discussed in Section 3.1 and our workload tracing methgd is discussed in Section 3.2.
Our workload analysis is discussed in Section 3.3 with th@itations described in Section 3.4.
Section 3.5 describes the previous snapshot studies. Howollexted the snapshot traces
is detailed in Section 3.6. Our snapshot trace observatodstheir impact are presented in

Section 3.7. In Section 3.8 we summarize this chapter.
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3.1 Previous Workload Studies

File system workload studies have guided file system dedsmndecades. In this
section, we discuss the previous studies, which are surmethin Table 3.2, and outline factors
that we believe motivate the need for new file system analysiaddition, we provide a brief

background of the CIFS protocol.

Study | Date of Traces FS/Protocol Network FS Workload
Ousterhoutet al.[123] 1985 BSD Engineering
Ramakrishnaret al. [131] 1988-89 VAXIVMS X Engineering, HPC, Corporate
Baker,et al.[17] 1991 Sprite X Engineering
Gribble,et al.[71] 1991-97 Sprite, NFS, VXFS X Engineering, Backup
Vogels [177] 1998 FAT, NTFS Engineering, HPC
Zhou and Smith [191] 1999 VFAT PC
Roselli,et al.[137] 1997-00 VXFS, NTFS Engineering, Server
Ellard, et al. [48] 2001 NFS X Engineering, Email
Anderson [10]| 2003 & 2007 NFS X Computer Animation
Leung,et al. 2007 CIFS X Corporate, Engineering

Table 3.2:Summary of major file system workload studies over the past tw decadesFor
each study, we show the date of trace collection, the fileesysir protocol studied, whether it

involved network file systems, and the workloads studied.

Early file system workload studies, such as those of the BEB]|[VAX/VMS [131],
and Sprite [17] file systems, revealed a number of importasérvations and trends that guided
file system design for the last two decades. In particulay tbserved a significant tendency
towards large, sequential read access, limited read-acitess, bursty 1/0O patterns, and very
short file lifetimes. Another study observed workload s#fiilarity during short time periods,
though not for long time periods [71]. A more recent studyhef¥indows NT file system [177]
supported a number of the past observations and trends 0Dy Rbselli,et al. compared four
file system workloads [137]; they noted that block lifetinfesd increased since past studies

and explored the effect on caching strategies. At the timeuofstudy, the most recent study
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was from 2001 and analyzed NFS traffic to network file servégs, identifying a number of
peculiarities with NFS tracing and arguing that pathnanees aid file system layout. Since
we conducted our study, another study that examined NF8grfaom an intensive computer

animation environment was published [10].

3.1.1 The Need for a New Study

Although there have been a number of previous file system leadkstudies, several
factors indicate that a new workload study may aid ongoirtgvokk file system design.
Time since last study. There have been significant changes in computing power,onketw
bandwidth, and network file system usage since the last majdy in 2001 [48]. A new study
will help understand how these changes impact network fagesy workloads.
Few network file system studiesOnly a few studies have explored network file system work-
loads [17, 48, 131], despite their differences from loca §ystems. Local file systems work-
loads include the access patterns of many system files, vaneclgenerally read-only and se-
guential, and are focused on the client’s point of view. \&isilich studies are useful for under-
standing client workload, it is critical for network file ggss to focus on the workload seen at
the server, which often excludes system files or accessekitltiae client cache.
No CIFS protocol studies. The only major network file system study in the past decade ana
lyzed NFSv2 and v3 workloads [48]. Though NFS is common on XJBifstems, most Win-
dows systems use CIFS. Given the widespread Windows clamilagtion and differences be-
tween CIFS and NF&( g, CIFS is a stateful protocol, in contrast to NFSv2 and v3lysis
beyond NFS can add more insight into network file system voaidks.
Limited file system workloads. University [17,48, 71, 123, 137] and personal computer [191
workloads have been the focus of a number of past studiede\WW$eful, these workloads may

differ from the workloads of network file systems deployeaiher environments.
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3.1.2 The CIFS Protocol

The CIFS protocol, which is based on the Server Message B&MIB) protocol that
defines most of the file transfer operations used by CIFSrdifh a number of respects from
oft-studied NFSv2 and v3. Most importantly, CIFS is statefIFS user and file operations
act on stateful session IDs and file handles, making anabfsiccess patterns simpler and
more accurate than in NFSv2 and v3, which require heuristigafer the start and end of an
access [48]. Although CIFS may differ from other protocelg believe our observations are
not tied exclusively to CIFS. Access patterns, file sharing, atiér workload characteristics
observed by the file server are influenced by the file systems,ug®ir applications, and the

behavior of the file system client, which are not closely tethe transfer protocol.

3.2 Workload Tracing Methodology

We collected CIFS network traces from two large-scale, renite-class file servers
deployed in the NetApp corporate headquarters. One is aranige file server with 3 TB of
total storage, with almost 3 TB used, deployed in the coteadata center that hosts data used
by over 1000 marketing, sales, and finance employees. Tlee istha high-end file server with
over 28 TB of total storage, with 19 TB used, deployed in thgimgering data center. It is
used by over 500 engineering employees. Throughout theftdists paper, we refer to these
workloads asorporateandengineering respectively.

All NetApp storage servers support multiple protocols unohg CIFS, NFS, iSCSI,
and Fibre Channel. We tracedly CIFS on each file server. For the corporate server, CIFS was
the primary protocol used, while the engineering serveraamix of CIFS and NFS protocols.
These servers were accessed by desktops and laptops rymmragily Windows for the cor-
porate environment and a mix of Windows and Linux for the eagring environment. A small
number of clients also ran Mac OS X and FreeBSD. Both senamrklde accessed through a
Gigabit Ethernet LAN, a wireless LAN, or via a remote VPN.

The traces were collected from both the corporate and eegitefile servers be-

tween August 10th and December 14th, 2007. For each sereemiwored a port on the
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network switch to which it was connected and attached it toirant workstation running

t cpdunp [169]. Since CIFS often utilizes NetBIOS [3], the workstatirecorded all file server
traffic on the NetBIOS name, datagram, and session servite g®well as traffic on the CIFS
port. The trace data was periodically copied to a separatsdilver. Approximately 750 GB and
1.5TB of uncompressetdcpdunp traces were collected from the corporate and engineering
servers, respectively. All traces were post-processedtweihar k 0. 99. 6 [185], a network
packet analyzer. All filenames, usernames, and IP addressedanonymized.

Our analysis of CIFS presented us with a number of challen@ésS is a stream-
based protocol, so CIFS headers do not always align with T&Rgh boundaries. Instead,
CIFS relies on NetBIOS to define the length of the CIFS commemtl data. This became
a problem during peak traffic periods wherpdunp dropped a few packets, occasionally
causing a NetBIOS session header to be lost. Without théosdssadert shar k was unable
to locate the beginning of the next CIFS packet within the BBBam, though it was able to
recover when it found a new session header aligned with greafta TCP packet. To recover
CIFS requests that fell within this region, we wrote a progta parse thé cpdunp data and
extract complete CIFS packets based on a signature of th8 Gd#ader while ignoring any
NetBIOS session information.

Another issue we encountered was the inability to correteS sessions to user-
names. CIFS is a session based protocol in which a user begssion by connecting to the
file server via an authenticated login process. Howeveneatication in our trace environment
almost always uses Kerberos [118]. Thus, regardless ofctialauser, user authentication cre-
dentials are cryptographically changed with each loginaAssult, we were unable to match a
particular user across multiple sessions. Instead wedrehehe client’s IP address to correlate
users to sessions. While less accurate, it provides a rellgoastimate of users since most

users access the servers via the LAN with the same IP address.
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3.3 Workload Analysis

This section presents the results of our analysis of ourcratp and engineering CIFS
workloads. We first describe the terminology used througtmanalysis. Our analysis begins
with a comparison of our workloads and then a comparison $b gtadies. We then analyze
workload activity with a focus on 1/0 and sharing distritauts. Finally, we examine properties
of file type and user session access patterns. We italicic&eyuobservations following the

section in which they are discussed.

3.3.1 Terminology

Our study relies on several frequently used terms to desariip observations. Thus,

we begin by defining the following terms:

I/O A single CIFS read or write command.

Sequential I/O An I/O that immediately follows the previous I/O to a file wiithen open/close
pair (i.e., its offset equals the sum of the previous I/Ofsetfand length). The first I/O

to an open file is always considered sequential.
Random I/O An I/O that is not sequential.
Sequential Run A series of sequential I/0s. An opened file may have multiptguential runs.

Sequentiality Metric The fraction of bytes transferred sequentially. This neetras derived

from a similar metric described by Ellaret al.[48].

Open RequestAn open request for a file that has at least one subsequennti@oa which
a close request was observed. Some CIFS metadata operedioses files to be opened
without ever being read or written. These open requestsréfacts of the CIFS client

implementation, rather than the workload, and are thusueed.

Client A unique IP address. Since Kerberos authentication prewenfrom correlating user-

names to users, we instead rely on IP address to identifyuardtients.
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3.3.2 Workload Comparison

Table 3.3 shows a summary comparison of overall charattarifor both corporate
and engineering workloads. For each workload we provideesgemeral statistics along with
the frequency of each CIFS request. Table 3.3 shows thahesgng has a greater number
of requests, due to a longer tracing period, though, intieigdg, both workloads have similar
request percentages. For both, about 21% of requests ak©fited about 50% are metadata
operations. There are also a number of CIFS-specific regjuelse I/O percentages differ from
NFS workloads, in which 30-80% of all operations were 1/O, [#0]. This difference can
likely be attributed to both differences in workload andtpool.

The total data transferred in the two traces combined wasopes 1.6 TB of data,
which is less than 10% of the file servers’ active storage @& &2 TB of data. Since the
data transfer summaries in Table 3.3 include files that wenesterred multiple times, our
observations show that somewhat more than 90% of the adtvage on the file servers was
untouched over the three month trace period.

The read/write byte ratios have decreased significantlypeoed to past studies [17,
48,137]. We found only a 2:1 ratio indicating workloads aesdming less read-centric, in
contrast to past studies that found ratios of 4:1 or highee bB&lieve that a key reason for
the decrease in the read-write ratio is that client cachserhla significant percentage of read
requests. It is also interesting that the corporate ancheeging request mix are similar, per-
haps because of similar work being performed on the reygeclients €. g, Windows office
workloads) or because client caching and 1/0 schedulingsuaite the application and end-user
behavior.Observation 1: Both of the workloads are more write-heavy than workloadslisd
previously.

Figures 3.1(a) and 3.1(b) show the distribution of total €EtEquests and I/O requests
for each workload over a one week period and a nine week persgectively. Figure 3.1(a)
groups request counts into hourly intervals and Figureb3.dges daily intervals. Figure 3.1(a)
shows, unsurprisingly, that both workloads have stronglyn@l cycles and that there are very

evident peak and idle periods throughout a day. The cycle périods show there are op-
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Corporate | Engineering
Clients 5261 2654
Days 65 97
Data read (GB) 364.3 723.4
Data written (GB) 177.7 364.4
R:W 1/O ratio 3.2 2.3
R:W byte ratio 2.1 2.0
Total operations | 228 million | 352 million
Operation name % %
Session create 0.4 0.3
Open 12.0 11.9
Close 4.6 5.8
Read 16.2 15.1
Write 5.1 6.5
Flush 0.1 0.04
Lock 1.2 0.6
Delete 0.03 0.006
File stat 36.7 42.5
Set attribute 1.8 1.2
Directory read 10.3 11.8
Rename 0.04 0.02
Pipe transactions 1.4 0.2

Table 3.3: Summary of trace statistics. File system operations broken down by
workload. All operations map to a single CIFS command exdept file stat (com-
posed ofquery_pat h_i nfo andquery_fil el nfo) and directory read (composed of

findfirst2andfind_next 2). Pipe transactions map to remote IPC operations.
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portunities for background processes, such as log-clgaama disk scrubbing to run without
interfering with user requests.

Interestingly, there is a significant amount of variancenreen individual days in
the number and ratio of both requests and 1/O. In days wheradmber of total requests are
increased, the number of read and write requests are natsedg increased. This is also the
case between weeks in Figure 3.1(b). The variation betwetah requests and I/O requests
implies any that single day or week is likely an insufficiembfde of the overall workload,
S0 it is probably inaccurate to extrapolate trace obsematfrom short time periods to longer
periods, as was also noted in past studies [48, 71, 174, 17#.interesting to note that the
overall request mix presented in Table 3.3 is different ftbmmix present in any single day or
week, suggesting that the overall request mix might bereiffeif a different time period were

traced and is influenced more by workload than by behavidnefite system client.

3.3.3 Comparison to Past Studies

We now compare our CIFS network file system workloads witls¢hof past stud-
ies, including those in NFS [48], Sprite [17], VXFS [137] avMindows NT [177] studies. In
particular, we analyze how file access patterns and filértifest have changed. For comparison

purposes, we use tables and figures consistent with thosesb$fudies.

3.3.3.1 File Access Patterns

Table 3.4 provides a summary comparison of file access pattehowing access
patterns in terms of both 1/O requests and bytes transfeAeckss patterns are categorized by
whether a file was accessed read-only, write-only, or reagkwSequential access is divided
into two categoriesentire accesses, which transfer the entire file, padial accesses, which
do not.

Table 3.4 shows a remarkable increase in the percentagadafwste I/O and bytes
transferred. Most previous studies observed less than Atalfbytes transferred to files ac-
cessed read-write. However, both our corporate and engiigeeorkloads have over 20% of

bytes transferred in read-write accesses. Furthermor8%:16f all corporate 1/0s and 32.1%
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Figure 3.1: Request distribution over time. The frequency of all requests, read requests,
and write requests are plotted over time. Figure 3.1(a) shioow the request distribution
changes for a single week in October 2007. Here requess tmtalgrouped in one hour intervals.
The peak one hour request total for corporate is 1.7 milliod 2.1 million for engineering.
Figure 3.1(b) shows the request distribution for a nine weetod between September and
November 2007. Here request totals are grouped into onerdesvals. The peak one day

intervals are 9.4 million for corporate and 19.1 million &gineering.
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File System Type Network Local

Workload Corporate | Engineering || CAMPUS | EECS| Sprite Ins Res NT
Access Pattern I/Os | Bytes | I/Os | Bytes Bytes | Bytes| Bytes || Bytes | Bytes | Bytes
Read-Only (% total) | 39.0| 52.1|50.6| 55.3 53.1| 16.6| 83.5| 98.7| 91.0| 59.0
Entire file sequential | 13.5| 10.5| 35.2| 27.4 47.7| 53.9| 725| 86.3| 53.0| 68.0
Partial sequential 58.4| 69.2| 45.0| 55.0 29.3| 36.8| 254 59| 23.2| 20.0
Random 28.1| 20.3|19.8| 17.6 23.0 9.3 2.1 78| 23.8| 12.0
Write-Only (% total) | 15.1| 25.2| 17.3| 23.6 43.8| 82.3| 154 1.1 29| 26.0
Entire file sequential | 21.2| 36.2| 15.6| 35.2 37.2| 19.6| 67.0| 84.7| 81.0| 78.0
Partial sequential 57.6| 55.1|63.4| 61.0 52.3| 76.2| 28.9 9.3| 165 7.0
Random 21.2 8.7| 21.0 3.8 10.5 4.1 4.0 6.0 25| 15.0
Read-Write (% total) | 45.9| 22.7|32.1| 21.1 3.1 1.1 1.1 0.2 6.1| 15.0
Entire file sequential | 7.4 01| 04 0.1 1.4 4.4 0.1 0.1 0.0| 22.0
Partial sequential 48.1| 78.3|27.5| 50.0 0.9 1.8 0.0 0.2 0.3 3.0
Random 445| 21.6|72.1| 49.9 97.8| 93.9| 99.9| 99.6| 99.7| 74.0

Table 3.4:Comparison of file access patternsFile access patterns for the corporate and en-

gineering workloads are compared with those of previoudissu CAMPUS and EECS [48]

are university NFS mail server and home directory worklpadspectively. Both were mea-

sured in 2001. Sprite [17], Ins and Res [137] are universityouter lab workloads. Sprite
was measured in 1991 and Ins and Res were measured betweeartb2000. NT [177] is a

combination of development and scientific workloads messur 1998.
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of all engineering I/Os are in read-write accesses. Thisvsladiversion from the read-only
oriented access patterns of past workloads. When lookmggeclat read-write access patterns
we find that sequentiality has also changed; 78.3% and 50f0#gt@s are transferred sequen-
tially as compared to roughly 1% of bytes in past studies. &l@x read-write patterns are
still very random relative to read-only and write-only gatts. These changes may suggest that
network file systems store a higher fraction of mutable dstigh as actively changing doc-
uments, which make use of the centralized and shared emvieinand a smaller fraction of
system files, which tend to have more sequential read acze$bese changes may also sug-
gest that the sequential read-oriented patterns which $idergystems are designed [105] for
are less prevalent in network file systems, and write-opgtahifile systems [77, 138] may be
better suitedObservation 2: Read-write access patterns are much more frequent compared
past studies.

Another interesting observation is that few fewer files haytes transferred from the
entire file, that is, the whole file is read or written from begng to end. In past studies, well
over 50% of read-only and write-only files are accessed iir #mirety. However, we found
only 10 and 27.4% of read-only bytes in corporate and engimgdor which this is the case
and only 36.2 and 35.2% of write-only files.

3.3.3.2 Sequentiality Analysis

Next, we compared the sequential access patterns found wauloads with past
studies. A sequential run is defined as a series of sequé@ilto a file. Figure 3.2(a) shows
the distribution of sequential run lengths. We see thateeiipl runs are short for both work-
loads, with almost all runs shorter than 100 KB, which is ¢stest with past studies. This
observation suggests that file systems should continuetitoiap for short sequential common-
case accesses. However, Figure 3.2(b), which shows thidodigin of bytes transferred during
sequential runs, has a very different implication, indimathat many bytes are transferred in
long sequential runs: between 50—-80% of bytes are traesfémrruns of 10 MB or less. In ad-
dition, the distribution of sequential runs for the engimag workload is long-tailed, with 8% of

bytes transferred in runs longer than 400 MB. Interestingdgd-write sequential runs exhibit
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Figure 3.2: Sequential run properties. Sequential access patterns are analyzed for various
sequential run lengths. The X-axes are given in a log-sdatgure 3.2(a) shows the length of

sequential runs, while Figure 3.2(b) shows how many bytesransferred in sequential runs.

very different characteristics from read-only and writdyoruns: Most read-write bytes are
transferred in much smaller runs. This implies that theradtive nature of read-write accesses
is less prone to very large transfers, which tend to be mos#ig-only or write-only. Overall,
we found that most bytes are transferred in much larger runpste- 1000 times longer—when
compared to those observed in past studies, though mosarershort. Our results suggest file
systems must continue to optimize for small sequentialss;dbough they must be prepared to
handle a small number of very large sequential accesses.aldu correlates with the heavy-
tailed distributed of file sizes, which is discussed later;dvery large sequential run there must
be at least one large fil®bservation 3: Bytes are transferred in much longer sequential runs

than in previous studies.
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Figure 3.3:Sequentiality of data transfer. The frequency of sequentiality metrics is plotted
against different data transfer sizes. Darker regiongatdia higher fraction of total transfers.
Lighter regions indicate a lower fraction. Transfer types laroken into read-only, write-only,

and read-write transfers. Sequentiality metrics are gedlyy tenths for clarity.
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We now examine the relationship between request sizes anekisiality. In Fig-
ure 3.3(a) and Figure 3.3(b) we plot the number of bytes tearesl from a file against the
sequentiality of the transfer. This is measured using tl@eatiality metric: The fraction of
bytes transferred sequentially, with values closer to oeanimg higher sequentiality. Fig-
ures 3.3(a) and 3.3(b) show this information in a heat maphickvdarker regions indicate a
higher fraction of transfers with that sequentiality metind lighter regions indicate a lower
fraction. Each region within the heat map represents a 10%eraf the sequentiality met-
ric. We see from Figures 3.3(a) and 3.3(b) that small trassé@d large transfers are more
sequential for read-only and write-only access, which & dhse for both workloads. How-
ever, medium-sized transfers, between 64 KB and 4 MB, are maomdom. For large and small
transfers, file systems may be able to anticipate high séi@lignfor read-only and write-only
access. Read-write accesses, on the other hand, are mueliandom for most transfer sizes.
Even very large read-write transfers are not always veryesetipl, which follows from our pre-
vious observations in Figure 3.2(b), suggesting that fiséesys may have difficulty anticipating
the sequentiality of read-write accesses.

Next, we analyze the relationship between file size and aquattern by examining
the size of files at open time to determine the most frequened file sizes and the file sizes
from which most bytes are transferred. It should be notetidimee we only look at opened
files, it is possible that this does not correlate to the fite slistribution across the file system.
Our results are shown in Figures 3.4(a) and 3.4(b). In Fi§uté) we see that 57.5% of opens
in the corporate workload are to newly-created files or tated files with zero size. However,
this is not the case in the engineering workload, where ofd¥y06f opens are to zero-size files.
Interestingly, both workloads find that most opened filessamall; 75% of opened files are
smaller than 20 KB. However, Figure 3.4(a) shows that mostdhgre transferred from much
larger files. In both workloads we see that only about 60% oédwre transferred from files
smaller than 10 MB. The engineering distribution is alsaglbailed with 12% of bytes being
transferred from files larger than 5 GB. By comparison, alnatisof the bytes transferred in
previous studies came from files smaller than 10 MB. Theservagons suggest that larger

files play a more significant role in network file system wodde than in those previously
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Figure 3.4:File size access patternsThe distribution of open requests and bytes transferred
are analyzed according to file size at open. The X-axes awrsbn a log-scale. Figure 3.4(a)
shows the size of files most frequently opened. Figure 3gHb)vs the size of files from which

most bytes are transferred.
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Figure 3.5:File open durations. The duration of file opens is analyzed. The X-axis is presente
on alog-scale. Most files are opened very briefly, althougjineering files are opened slightly

longer than corporate files.

studied. This may be due to frequent small file requestsigittie local client cache. Thus, file
systems should still optimize small file layout for frequantess and large file layout for large
transfers.Observation 4: Bytes are transferred from much larger files than in previsuslies.
Figure 3.5 shows the distribution of file open durations. \Wd that files are opened
for shorter durations in the corporate workload than in thgireering workload. In the cor-
porate workload, 71.1% of opens are shorter than 100 ms,ubuBj’.1% are similarly short
in the engineering workload. However, for both workloadsstmapen durations are less than
10 seconds, which is similar to observations in past studies is also consistent with our pre-
vious observations that small files, which likely have slopeén durations, are most frequently

accessed.

3.3.3.3 File Lifetime

This section examines how file lifetimes have changed coetpar past studies. In
CIFS, files can be either deleted through an explicit dekxjeest, which frees the entire file and
its name, or through truncation, which only frees the datguié 3.6 shows the distribution of
file lifetimes, broken down by deletion method. We find thatstnoreated files live longer than
24 hours, with 57.0% and 64.9% of corporate and engineetiieg iersisting for more than a
day. Both distributions are long-tailed, meaning many fileswell beyond 24 hours. However,

files thatare deleted usually live less than a day: only 18.7% and 6.9% ehtally deleted
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Figure 3.6:File lifetimes. The distributions of lifetimes for all created and deletddsfiare
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delete request or truncation.

files live maore than 24 hours. Nonetheless, compared to pasies in which almost all deleted
files live less than a minute, deleted files in our workloadsl tiw live much longer. This may
be due to fewer temporary files being created over the netvwtwiwever, we still find that some
files live very short lifetimes. In each workload, 56.4% a@l636 of deleted files are deleted
within 100 ms of creation, indicating that file systems sHoexpect fewer files to be deleted
and files that live beyond a few hundred milliseconds to hawng llifetimes. Observation 5

Files live an order of magnitude longer than in previous #&sd

3.3.4 File I/O Properties

We now take a closer look at the properties of file /O wheredefined in Sec-
tion 3.3.1, an I/O request is defined as any single read oe wpération. We begin by looking at
per-file, per-session 1/O inter-arrival times, which irdéunetwork round-trip latency. Intervals
are categorized by the type of requests (read or write) ttzakiet the interval; the distribution

of interval lengths is shown in Figure 3.7(a). We find that tmoker-arrival times are between
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Figure 3.7:File I/O properties. The burstiness and

size properties of I/0O requests arershow

Figure 3.7(a) shows the I/O inter-arrival times. The X-azipresented on a log-scale. Fig-

ure 3.7(b) shows the sizes of read and write 1/0. The X-axivisled into 8 KB increments.
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100us and 100 ms. In fact, 96.4% and 97.7% of all I/Os have arrivadg longer than 100s
and 91.6% and 92.4% are less than 100 ms for corporate andeenigig, respectively. This
tight window means that file systems may be able to make irddraecisions about when to
prefetch or flush cache data. Interestingly, there is Iditinction between read-read or read-
write and write-read or write-write inter-arrival timeslst, 67.5% and 69.9% of I/O requests
have an inter-arrival time of less than 3 ms, which is shdhtan some measured disk response
times [134]. These observations may indicate cache hitseagdrver or possibly asynchronous
I/O. It is also interesting that both workloads have simitder-arrival time distributions even
though the hardware they use is of different classes, a anida model versus a high-end model.
Next, we examine the distribution of bytes transferred bingle I/O request. As Fig-
ure 3.7(b) shows, most requests transfer less than 8 KBitdesp4 KB maximum request size
in CIFS. This distribution may vary between CIFS and NFSesieach buffers and schedules
I/O differently. The distribution in Figure 3.7(b) incresssfor only a few 1/O sizes, indicat-
ing that clients generally use a few specific request sizdss ITO size information can be
combined with the I/O inter-arrival times from Figure 3.)/{a calculate a distribution of 1/0Os
per-second (IOPS) that may help file systems determine howhrouffer space is required to

support various 1/O rates.

3.3.5 File Re-Opens

In this section, we explore how frequently files are re-opene., opened more than
once during the trace period. Figure 3.8(a), shows theildision of the number of times a
file is opened. For both workloads, we find that the majorityfiles, 65%, are opened only
once during the entire trace period. The infrequent resscoé many files suggests there are
opportunities for files to be archived or moved to lower-starage. Further, we find that about
94% of files are accessed fewer than five times. However, ddtiese distributions are long-
tailed—some files are opened well over 100,000 times. Thegaéntly re-opened files account
for about 7% of total opens in both workload®bservation 6: Most files are not re-opened

once they are closed.
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Figure 3.8: File open properties The frequency of and duration between file re-opens is
shown. Figure 3.8(a) shows how often files are opened moredhee. Figure 3.8(b) shows

the time between re-opens and time intervals on the X-agigi@en in a log-scale.

We now look at inter-arrival times between re-opens of a fte-open inter-arrival
time is defined as the duration between the last close of arfielze time it is re-opened. A
re-open is consideredoncurrentif a re-open occurs while the file is still open €., it has
not yet been closed). The distribution of re-open intelvaltimes is shown in Figure 3.8(b).
We see that few re-opens are concurrent, with only 4.7% qiarate re-opens and 0.7% of
engineering re-opens occurring on a currently-open filewéi@r, re-opensre temporally
related to the previous close; 71.1% and 58.8% of re-opens ¢ess than one minute after the
file is closed. Using this information, file systems may beedbldecide when a file should be
removed from the buffer cache or when it should be schedwalenhigration to another storage

tier. Observation 7: If a file is re-opened, it is temporally related to the presailose.
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Figure 3.9:Client activity distribution The fraction of clients responsible for certain activities

is plotted.

3.3.6 Client Request Distribution

We next examine the distribution of file open and data reguesbngst clients; recall
from Section 3.3.1 that “client” refers to a unique IP addresther than an individual user.
We use Lorenz curves [100]—cumulative distribution fuoies of probability distributions—
rather than random variables to show the distribution otiests across clients. Our results,
shown in Figure 3.9, find that a tiny fraction of clients arspensible for a significant fraction
of open requests and bytes transferred. In corporate anidesmming, 0.02% and 0.04% of
clients make 11.9% and 22.5% of open requests and accoutiDf®® and 24.6% of bytes
transferred, respectively. Interestingly, 0.02% of cogp® clients and 0.04% of engineering
clients correspond to approximately 1 client for each waakl Additionally, we find that
about 35 corporate clients and 5 engineering clients a¢dourtlose to 50% of the opens in
each workload. This suggests that the distribution of agtig highly skewed and that file
systems may be able to take advantage of this informationolygdinformed allocation of
resources or quality of service plannir@bservation 8: A small fraction of clients account for

a large fraction of file activity.

3.3.7 File Sharing

This section looks at the extent of file sharing in our workiaA file is shared when

two or more clients open the same fieme timeluring the trace period; the sharing need not

65



0.9

0.7

Fraction of Filess

0.5 T T T

Number of Clients
Corporate ~ ~~""""-°" Engineering

(a) File sharing frequencies.

1 4
0.8
0.6
0.4 /r//
0.2

0 T T === T
Concurrent ims 1s im 1hr 24hr

Fraction of Files

Open Inter-Arrival Times
Corporate ~ =====""°C Engineering

(b) Sharing inter-arrival times.

Figure 3.10:File sharing properties. We analyze the frequency and temporal properties of file
sharing. Figure 3.10(a) shows the distribution of files @ukiny multiple clients. Figure 3.10(b)

shows the duration between shared opens. The duration® ofrdltis are in a log-scale.

be concurrent. Since we can only distinguish IP addressgsia@nactual users, it is possible
that two IP addresses may represent a single (human) useicgadersa. However, the drastic
skew of our results indicates this likely has little impaat @ur observations. Also, we only

consider opened files; files which have only had their mesedetessed by multiple clients are
not included in the these results.

Figure 3.10(a) shows the distribution of the frequency witiich files are opened by
multiple clients. We find that most files are only opened bynglsi client. In fact, 76.1% and
97.1% of files are only opened by one client in corporate amgherring, respectively. Also,
92.7% and 99.7% of files are ever opened by two or fewer clifiis suggests that the shared
environment offered by network file systems is not often makévantage of. Other methods of

sharing files, such as email, web and Wiki pages, and corgpositories€. g, svn andgi t ),
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Figure 3.11File sharing access patternsThe fraction of read-only, write-only, and read-write
accesses are shown for differing numbers of sharing clié#ps are seen where no files were

shared with that number of clients.

may reduce the need for clients to share files via the file sygtowever, both distributions are
long-tailed, and a few files are opened by many clients. Irctinporate workload, four files are
opened by over 2,000 clients and in the engineering workload file is opened by over 1,500
clients. This shows that, while not common, sharing filesulgh the file system can be heavily
used on occasiorDbservation 9: Files are infrequently accessed by more than one client.
In Figure 3.10(b) we examine inter-arrival times betwedfedint clients opening a
file. We find that concurrent (simultaneous) file sharing ise.r®nly 11.4% and 0.2% of shared
opens from different clients were concurrent in corporaig engineering, respectively. When
combined with the observation that most files are only opdnyed single client, this suggests
that synchronization for shared file access is not oftenireduindicating that file systems may
benefit from looser locking semantics. However, when exargithe duration between shared
opens we find that sharing does have a temporal relationshigicorporate workload; 55.2%
of shared opens occur within one minute of each other. Homvthis is not true for engineering,

where only 4.9% of shared opens occur within one minute.
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share opens to a file.

We now look at the manner (read-only, write-only, or readaywith which shared
files are accessed. Figure 3.11 shows the usage patternte$oofiened by multiple clients.
Gaps are present where no files were opened by that numbeemiclWe see that shared files
are accessed read-only the majority of the time. These magtances of reference documents
or web pages that are rarely re-written. The number of redyl-accesses slightly decreases
as more clients access a file and a read-write pattern begeraerge. This suggests that files
accessed by many clients are more mutable. These may beg&sisiocuments, source code, or
web pages. Since synchronization is often only requiredrfoltiple concurrent writers, these
results further argue for loose file system synchronizat@thanismsObservation 10: File
sharing is rarely concurrent and mostly read-only.

Finally, we analyze which clients account for the most ogershared files. Equality
measures how open requests are distributed amongst diestisig a file. Equal file sharing
implies all sharing clients open the shared file an equal rurabtimes. To analyze equality,

we use the Gini coefficient [64], which measures statistiighersion, such as the inequality
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of income in economic analysis. We apply the equality cohtepow frequently a shared file

is opened by a client. Lower coefficients mean sharing diepen the file more equally (the
same number of times), and higher coefficients mean a fewtslgccount for the majority of

opens. Figure 3.12 shows Gini coefficients for various nusibéshared clients. We see that
as more clients open a file, the level of equality decreaseanmg that fewer clients begin to
dominate the number of open requests. Gini coefficientoarer| less than 0.4, for files opened
by fewer than 20 clients, meaning that when a few clientssxadile, they each open the file an
almost equal number of times. As more clients access theafgeall number of clients begin

to account for most of the opens. This may indicate that agmlants share a file, it becomes
less reasonable for all sharing clients to access the fildyg\end a few dominant clients begin

to emerge.

3.3.8 File Type and User Session Patterns

There have been a number of attempts to make layout, cacaimd) prefetching
decisions based on how specific file types are accessed aractless patterns of certain
users [50,107]. In this section, we take a closer look at hewtain file types are accessed
and the access patterns that occur between when a user BeQIRS “user session” by log-
ging on and when they log-off. Our emphasis is on whether fijes or users have common
access patterns that can be exploited by the file system. @i bg breaking down file type
frequencies for both workloads. Figures 3.13(a) and 3)18{bw the most frequently opened
and most frequently read and written file types. For fredyereiad and written file types, we
show the fraction of bytes read for that type. Files with recdrnible file extension are labeled
as “unknown”.

We find that the corporate workload has no file type, other thdmown types, that
dominates open requests. However, 37.4% of all opens inrthimexering workload are for C
header files. Both workloads have a single file type that amesuclose to 20% of all read and
write 1/0. Not surprisingly, these types correspond to galhelarge filese. g, mdb (Microsoft
Access Database) files anddk (VMWare Virtual Disk) files. However, we find that most file

types do not consume a significantly large fraction of opeli@requests. This shows that file
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Figure 3.14:File type access patterng he frequency of access patterns are plotted for various
file types. Access patterns are categorized into 18 groupseasingly dark regions indicate

higher fractions of accesses with that pattern.

systems likely can be optimized for the small subset of featjy accessed file types. Inter-
estingly, there appears to be little correlation betweem fiequently a file is opened and how
frequently it is read or written. Only three corporate an® engineering file types appear as
both frequently opened and frequently read or written;tfib andv nuk types only constitute
0.5% and 0.08% of opens. Also, it appears file types that aguéntly read or written are
mostly read.

We now analyze the hypothesis that file systems can use fieedpgd user access
patterns to improve layout and prefetching [48, 50, 107]. défeso by examiningccess sig-
natures a vector containing the number of bytes read, bytes writied sequentiality metric
of a file access. We start by defining an access signature &br @aen/close pair for each
file type above, we then apply K-means clustering [103] toabeess signatures of each file
type. K-means groups access signatures with similar patiato unique clusters with varying
densities. Our results are shown in Figure 3.14. For clavéyhave categorized access signa-
tures by the access type: read-only, write-only, or reaitewiVe further group signatures by
their sequentiality metric ranges: 1-0.81 is considergtifiisequential, 0.8—-0.2 is considered

mixed sequentiality, and 0.19-0 is considered highly ramdd-inally, access signatures are
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categorized by the number of bytes transferred; accesatsigs are considered small if they
transfer no more than 100 KB and large otherwise. Darkeorsgindicate the file type has
a higher fraction of access signatures with those propesiimwn on theyj-axis, and lighter
regions indicate fewer signatures with those characiesist

Figure 3.14 shows that most file types have several distinciskof access patterns,
rather than one as previously presumed. Also, each type h#mpla patterns that are more
frequent than others, suggesting that file systems may nableeto properly predict file type
access patterns using only a single pattern. Interestisgigll sequential read patterns occur
frequently across most of the file types, implying that filsteyns should be optimized for this
pattern, as is often already dor@bservation 11: Most file types do not have a single pattern
of access.

Surprisingly, file types such aardk that consume a large fraction of total 1/Os are
frequently accessed with small sequential reads. In fd&p 8f all vhdk accesses are this
pattern, contradicting the intuition derived from Figuré3&b) thatvnuk files have large ac-
cesses. However, a much smaller fractionvailk accesses transfer huge numbers of bytes
in highly random read-write patterns. Several patternd ezl write over 10 GB of data with
a sequentiality metric less than 0.5, showing that freqpatterns may not be representative
of the significant patterns in terms of bytes transferredegusntiality. This argues that file
systems should anticipate several patterns of access ydiilartype if layout or prefetching
benefits are to be gained. Also, it is critical that they idfgritansitions between patterns. For
example, a file system may, by default, prefetch datavfailk files in small chunks: 100 KB
or less. However, when over 100 KB olvardk file is accessed this signals the likely start of a
very large transfer. In this case, the file system must ptppeljust its prefetching.

Our observation that many file types exhibit several accaeienms of varying fre-
guency and significance draws an interesting comparisonetoeisults in Table 3.4. Table 3.4
shows significant read-write 1/0 and byte transfer activiyowever, file types in Figure 3.14
rarely have read-write patterns. This implies that reaitleviile accesses are in general uncom-

mon however, when they do occur, a large number of bytes asssed.

72



Next, we apply the same K-means clustering approach to sasagsatures of access
patterns that occur within a CIFS user session. Recall ti&$ Gsers begin a connection to the
file server by creating an authenticated user session anayenantually logging off. We define
signatures for all accesses performed while the user ietbgg. However, we only consider
sessions in which bytes are transferred. The CIFS cliemsphort, temporary sessions for
various auxiliary functions, which we exclude from thisatas they do not represent a normal
user log-in. Like file types, user sessions have several acompatterns and no single pattern
can summarize all of a user’s accesses. The majority of essiags have read-write patterns
with less than 30 MB read and 10 MB written with a sequentiatietric close to 0.5, while a

few patterns have much more significant data transfers ¢laat and write gigabytes of data.

3.4 Design Implications

We now explore some of the possible implications of our waekl analysis on net-
work file system designs. We found that read-write accegerpathave significantly increased
relative to previous studies (see Section 3.3.3.1). Thouglobserved higher sequentiality in
read-write patterns than past studies, they are still igihdom compared to read-only or
write-only access patterns (see Section 3.3.3.1). In asfita number of past studies found
that most I/Os and bytes are transferred in read-only seéigli@ccess patterns [17, 123, 177],
which has impacted the designs of several file systems [1®}, The observed shift towards
read-write access patterns suggests file systems sholldowards improving random access
performance, perhaps through alternative media, such &% fla addition, we observed that
the ratio of data read to data written is decreasing comparg@ast studies [17, 48, 137] (see
Section 3.3.2). This decrease is likely due to increasifectfeness of client caches and fewer
read-heavy system files on network storage. When couplddimgteasing read-write access
patterns, write-optimized file systems, such as LFS [138]\WAFL [77], or NVRAM write
caching appear to be good designs for network file systems.

We observed that files are infrequently re-opened (seedpe8iB.5) and are usually

accessed by only one client (see Section 3.3.7). This stgyfjest caching strategies which
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exploit this, such as exclusive caching [186], may have tmacbenefits. Also, the limited
reuse of files indicates that increasing the size of serviexr cdaches may add only marginal
benefits. Rather, file servers may find larger metadata cambes valuable because metadata
requests made up roughly 50% of all operations in both waddpas Section 3.3.2 detalils.
The finding that most created files are not deleted (see 8€®i83.3) and few files
are accessed more than once (see Section 3.3.5) suggéstatlydiles may be good candidates
for migration to lower-tier storage or archives. This iglfier motivated by our observation that
only 1.6 TB were transferred from 22 TB of in-use storage dlieee months. While access
to file metadata should be fast, this indicates much file databe compressed, de-duplicated,
or placed on low power storage, improving utilization ansvpoconsumption, without signifi-
cantly impacting performance. In addition, our observatitat file re-accesses are temporally
correlated (see Section 3.3.5) means there are oppoesifiti intelligent migration scheduling

decisions.

3.5 Previous Snapshot Studies

Like workload trace studies, snapshot studies have grgdhlyenced file system de-
sign [2,57, 144]. Unlike workloads, snapshot studies areathe properties of files at rest that
make up the contents of the file system. In most cases, filedagig. g, inode fields and
extended attributes) attributes are studied. These stad@called snapshots because they rep-
resent a snapshot of the contents of the file system at a goiahip time.

Table 3.5 summarizes the previous snapshot studies. BarkyStem snapshot stud-
ies focused on two key areas: file size and file lifetime. The&easpects were particularly
important in early file system design because block allooatind space management algo-
rithms were still in nascent stages. Two early studies ooa DEC machine [145] and NFS file
servers [22] found that most files were less than several kKBekample, Satyanarayanan [145]
found that 50% of files had fewer than 5 blocks (about 20 KB w&ithKB block size), 95% had
fewer than 100 blocks (about 400 KB), and 99% had less thafl hlaeks (about 4 MB). This

distributions show a high skew towards small files. Addidilbyy functional lifetime, which is
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Study | Date of Traces FS/Protocol Network FS Environment

Satyanarayanan [145] 1981 DEC PDP-10 Academic lab
Bennettet al. [22] 1991 NFS X Academic lab
Sienknechtet al.[150] 1991-92 BSD Corporate
Smith and Seltzer [153 1994 FFS X Academic lab
Douceur and Bolosky [43 1998 FAT, FAT32, NTFS Engineering/PC
Agrawal, et al. [5] 2000-2004 FAT, FAT32, NTFS Engineering/PC
Dayal [39] 2006 Various X HPC
Leung,et al. 2007 WAFL X Web, Engineering, Home

Table 3.5:Summary of major file system snapshot studies over the past twdecades.For
each study, the date of trace collection, the file systematopol studied, whether it involved

network file systems, and the kinds of workloads it hostedshosvn.

the time between a file’s last modification time and last extiese, is generally short. Satya-
narayanan found that 32% of files had a functional lifetings lthan a day. However, Ben-
nett, et al. [22] found that functional lifetimes were longer on their 8lfile servers. A study
of BSD file systems in a corporate setting [150] had similadifigs which supported these ob-
servations. Another study [153] looked at snapshots to favd dffectively FFS [105] allocates
and organizes data on disk. Interestingly, they found tivelisfiles tend to more fragmented
that larger files: Fewer than 35% of files with 2 blocks weréroplly allocated though 85% of
blocks in files larger than 64 blocks were allocated optiynall

More recently, two studies [5, 43] have examined five andhentand Windows per-
sonal computer file systems, respectively. These studies significantly larger than previous
studies and were the first to look at many snapshots from wanjas environments, Windows
desktop machines at Microsoft; 85% of theses systems us&&Mind the others used FAT and
FAT32 systems. These studies have confirmed that many @ltesms from older studies still
hold true. For example, most files were still very small, ldssr 189 KB. However, they also
observed changing trends since the previous studies, siitheamean file size had increased
from 108 KB to 189 KB. This finding corresponds with their ohsdion that median file system
capacities had increased from 5GB to 40 GB. They also notdditectory size distributions
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Data Set Description # of Files | Capacity
Web | web & Wiki server| 15million | 1.28TB
Eng build space 60 million 30GB
Home home directories | 300 million | 76.78 TB

Table 3.6:Metadata traces collected.The small server capacity of the Eng trace is due to the

majority of the files being small source code files: 99% of fdesless than 1 KB.

Attribute Description Attribute | Description
inumber inode number owner file owner
path full path name size file size
ext file extension ctime change time
type file or directory atime access time
mtime | modification time hlink hard link #

Table 3.7: Attributes used. We analyzed the fields in the inode structure and extraexed

values frompath.

had changed very little. They found that 90% directoriel Istid two or fewer sub-directories

and 20 or fewer entries.

3.6 Snapshot Tracing Methodology

Our file metadata snapshot traces were collected from thrge-scale, enterprise-
class file servers in the NetApp corporate headquarters. hosis web and Wiki server files,
another is a engineering build server, and another storgfogae home directories. The size
of these traces, which we refer to as Web, Eng, and Home, atdsglg, are described in Ta-
ble 3.6. They represent over a quarter of a billions files aredl 80 TB of actively used storage.
The traces were collected using a program we wrote that ipesfa parallelized crawl of the

namespace and collects metadata usingsthet () system call. The crawls were performed
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during the summer of 2007. The attributes that we collectedshow in Table 3.7. NetApp
servers support extended attributes, though they werly nased in these traces and were thus

ignored.

3.7 Snapshot Analysis

Our analysis revealed two key properties that we focus ontatiéa haspatial lo-

cality and highlyskewed distributionsf values.

3.7.1 Spatial Locality

Spatial locality means that metadata attribute values lastered in the namespace
(i. e, occurring in relatively few directories). For examphndr ews files reside mostly in
directories in thé honme/ andr ewsub-tree, not scattered evenly across the namespace. Thus,
files with owner equal toandr ewlikely occur in only a small fraction of the total directasie
in the file system. Spatial locality comes from the way thatrsisnd applications organize files
in the namespace, and has been noted in other file systeras{bd#3]. Users and applications
group files into locations in the namespace that correspotideir semantic meaning(g, a
common project, such as a source code tree, or similar filestyguch as a directory of binary
executable files). We earlier found that the workload is meinéy distributed which causes a
similar property to exist for timestamps.

To measure spatial locality, we use an attribute vallgeality ratio: the percent of
directories that recursively contain the value, as illaistd in Figure 3.15. A directory recur-
sively contains an attribute value if it or any of its subediiories contains the value. The figure
on the right has a lower locality ratio because &xéattribute valueht ml is recursively con-
tained in fewer directories. Using recursive accountirigvas our analysis to be more broad
since it looks an entire sub-trees rather than individuedadories. The root directorye(g, /)
recursively contains all of the attributes that occur in fite system. Thus, by definition the

locality ratio is a super set of the percent of directoriext thirectly contain an attribute value.
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Figure 3.15:Examples of Locality Ratio. Directories that recursively contain tle&t attribute
valueht m are black and gray. The black directories contain the valle. Locality Ratio of
ext valueht m is 54% & 7/13) in the first tree and 38%= 5/13) in the second tree. The

value ofht ml has better spatial locality in the second tree than in thedirs.

Table 3.8 shows the locality ratios for the 32 most freqyentcurring values for
various attributesekxt, size, owner, ctime, mtime) in each of the traces. Locality ratios are
less than 1% for all attributes, meaning that over 99% ofctiimées do not recursively contain
the value. We expect extended attributes to exhibit sirpileperties since they are often tied to
file type and owner attribute©bservation 12: Metadata attribute values are heavily clustered
in the namespace.

Utilizing spatial locality can help prune a query’s searplace by identifying only
the parts of the namespace that contain a metadata valug appioach will eliminate a large
number of files from the search space. Unfortunately, mastigd-purpose DBMSs treat path-
names as flat string attributes. As a result, they do notprééithe hierarchical layout of file
attributes, making it difficult for them to utilize this infimation. Instead DBMSs typically must

considerall files for a search no matter its locality.

3.7.2 Frequency Distribution

Metadata values also have highly skewed frequencies—loginlarity distributions
are asymmetric, causing a few very popular metadata vatuesdount for a large fraction
of all total values. This distribution has also been obsgiveother metadata studies [5, 43].
Figures 3.16(a) and 3.16(b) show the distributiorextf andsize values from our Home trace

on alog-log scale. The linear appearance indicates thaistrédbutions are Zipf-like and follow
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ext size uid ctime mtime
Web | 0.000162% —0.120% 0.0579% —0.177%]| 0.000194% — 0.0558% 0.000291% — 0.0105% 0.000388% — 0.00720%
Eng | 0.00101% — 0.264%| 0.00194% —0.462% 0.000578% — 0.137%| 0.000453% —0.0103% 0.000528% — 0.0578%
Home | 0.000201% —0.491% 0.0259% — 0.923%| 0.000417% — 0.623% 0.000370% —0.128% 0.000911% —0.0103%

Table 3.8:Locality Ratios of the 32 most frequently occurring attribute values.All Locality
Ratios are well below 1%, which means that files with thesgbate values are recursively

contained in less than 1% of directories.

the power law distribution [152]. In these distribution€98 of files have one of the 20 most
popularext or size values, while the remaining 20% of the files have thousandshafr values.
Figure 3.16(c) shows the distribution of the Cartesian pebd. e., the intersection) of the top
20 ext andsize values. The curve is much flatter, which indicates a more ei&nbution of
values. Only 33% of files have one of the top&@ andsize combinations. In Figure 3.16(c),
file percentages for corresponding ranks are at least am ofdeagnitude lower than in the
other two graphs. This means, for example, that there arey riil@s with owner andr ew
and many files witlext pdf , but often there are over an order of magnitude fewer fileh wit
bothowner andr ewandext pdf attributes.Observation 13: Metadata attribute values have
highly skewed frequency distributions.

These distribution properties show that multi-attributarshes will significantly re-
duce the number of query results as Boolean queries retarintbrsection of the results for
each query predicate. Unfortunately, most DBMSs rely onbaitie value distributions (also
known as selectivity) to choose a query plan. When distiobgtare skewed, query plans often
require extra data processing [101]; for example, they rateve all ofandr ews files to find
the few that areindr ews pdf files or vice-versa. Our analysis shows that query execution
should utilize attribute values’ spatial locality rathban their frequency distributions. Spatial
locality provides a more effective way to execute a queryabse it is more selective and can
better reduce a query’s search space. Additionally, iffesgy distribution is to be used, the
frequency of the Cartesian products of the query predicdiesld be used rather than a single

predicate.
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Figure 3.16:Attribute value distribution examples. A rank of 1 represents the attribute value
with the highest file count. The linear curves on the log-logjss in Figures 3.16(a) and 3.16(b)
indicate a Zipf-like distribution, while the flatter curve Figure 3.16(c) indicates a more even
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3.8 Summary

In order to design better file system organization and imdgxechniques it is im-
portant to understand the kinds of data that file systemgstand how they are used. In this
chapter we presented an analysisboth file system workload and snapshot traces. We ana-
lyzed two large-scale CIFS network file system workloads tnele metadata snapshots from
enterprise-class file servers.

We compared these workloads to previous file system studiesderstand how file
access patterns have changed and conducted a number okergegiments. We found that
read-write file access patterns and random file access araedisa@ common than previously
thought and that most file storage remains unused, even dhiegeamonth period. Our obser-
vations on sequentiality, file lifetime, file reuse and shgyiand request type distribution also
differ from those in earlier studies. Based on these obiens we made several recommenda-
tions for improving network file server design to handle tharkioad of modern corporate and
engineering environments. Additionally, we found that adetta attribute values are heavily
clustered in the namespace and that attribute values hghy tlskewed distributions. We then
discussed how these attributes impact DBMS performancehandthey can be exploited to
improve search performance. While our analysis is a firgt atelesigning better organization
and indexing strategies there are a number of other imgogtgreriments that have yet to be

studied. We detail some of these in Section 6.1.
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Chapter 4

New Approaches to File Indexing

Achieving effective search in large-scale file systemsffgcdit because these systems
contain petabytes of data and billions of files. Index strtet must index up t@0'° — 10!
metadata attributes and even more content keywords. Iti@adhey must handle frequent file
updates. Thus, proper index design is critical to achieeiifigctive file system search.

Unfortunately, current file system search solutions relygemeral-purpose index
structures that are not designed for file system search amihaidperformance at large-scales.
As discussed in Section 2.5, metadata attributes are aftlgxed in a relational DBMS and
content keywords are usually indexed in a traditional iteeétindex. General-purpose index
solutions are appealing as off-of-the-shelf solutiong tfzen provide the needed search func-
tionality and are widely available. For example, Microsoéinterprise search indexes metadata
in their Extensible Storage Engine (ESE) DBMS [109]. Aldwe tinux desktop search tool,
Beagle [18], relies on the standard Lucene inverted ind&kffdr content search.

While general-purpose index solutions are quick to deplogy lack the optimized
designs required to effectively search billions of files. &fective indexing system must meet
several requirements. Search performance must be fastatabke enough to make it a com-
mon method of file access. General-purpose solutions aimiaptl for other workloads. For
example, DBMS are optimized for OLTP workloads, which canseaneedless disk accesses,
poor cache utilization, and extra processing when used lfoisfistem search [162]. Addi-

tionally, index update performance must be fast enough itkiyuindex frequent file changes.
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Unfortunately, most general-purpose index structuresoptemized for search performance,
meaning that updates can be very slow [1, 96]. The index msstreave limited resource re-
guirements to ensure that a scalable solution is costteffeand possible to integrate within
an existing storage system. General-purpose indexes o&peand on dedicated hardware to
ensure performance [15, 75], which makes them expensieega-scales. While not part of the
index itself, it is also critical that file metadata and keydscan be effectively gathered from
the file system. It must be possible to quickly collect chanfyjem billions of files without
impacting normal file system performance.

In this chapter, we examine the hypothesis that file systearckaequirements can
be better meet through new index designs that are spegifioptimized for file systems. To
do this we present the design of a file metadata index and eofifeist index that leverage file
system specific properties discussed in the previous ahtapigiide their designs and improve

performance.

Metadata index: We present the design of Spyglass, a novel metadata seatemsthat ex-
ploits file metadata properties to enable fast, scalablelsd¢hat can be embedded within
the storage system. Our design introduces several new atetautexing techniques.
Hierarchical partitioningis a new method of namespace-based index partitioning that
exploits namespace locality to provide flexible control led index. Signature filesare
compact descriptions of a partition’s contents, helpingotate queries only to relevant
partitions and prune the search space to improve perforenand scalability. A new
shapshot-basethetadata collection method provides scalable collectipnebcrawling
only the files that have changed. Finalpartition versioning a novel index versioning
mechanism, enables fast update performance while allofdagk-in-time” search of

past metadata.

Inverted content index: We present an inverted index design that leverages hiecatqiarti-
tioning to decompose posting lists into many smaller, disjpegments based on the file
system’s namespace. Through the use ahdirect indexthat manages these segments,

our approach provides flexible, fine-grained index contnalt ttan enhance scalability
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and improve both search and update performance. In additierdiscuss how to lever-
age partitioning to enforce file security permissions, mepersonalized search result

rankings, and distribute the index across a cluster.

An evaluation of our Spyglass prototype, using our realldydarge-scale metadata
traces, shows that search performance is improved 1-4sooflenagnitude compared to basic
DBMS setups. Additionally, search performance is scalabig capable of searching hundreds
of millions of files in less than a second. Index update perforce is up tel0x faster than
basic DBMS setups and scales linearly with system size. mtexiitself typically requires
less than 0.1% of total disk space. Index versioning allobeck-in-time” metadata search
while adding only a tiny overhead to most queries. Finally, snapshot-based metadata collec-
tion mechanism performB) x faster than a straw-man approach. Our evaluation demdesstra
that file system-specific designs can greatly improve perémce compared to general-purpose
solutions.

This remainder of this chapter is organized as follows. iBeet.1 presents the design
of our Spyglass metadata index and Section 4.2 presentsf#figndof our content index. We
evaluate performance using our Spyglass prototype in@eétB and summarize our findings

in Section 4.4.

4.1 Metadata Indexing

In addition to the file system properties presented in Cheteve wanted to better
understand user and administrator metadata search needs.tfis we surveyed over 30 large
scale storage system users and administrators. We askjedtsub rank the perceived useful-
ness of various queries that we supplied, as well as, to gupelkinds of queries they would
like to run and why. We found subjects using metadata search Wide variety of purposes.
Use cases included managing storage tiers, tracking lemaplance data, searching large
scientific data output files, finding files with incorrect setyuACLs, and resource/capacity
planning. Table 4.1 provides examples of some popular usescand the metadata attributes

searched.
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File Management Question Metadata Search Query

Which files can be migrated to tape? size > 50 GB, atime > 6 nont hs.

How many duplicates of this file are in my home directory?owner = andr ew, datahash = 0xE431, path =/ hore/ andr ew.

Where are my recently modified presentations? owner = andr ew, type = (ppt | keynot e), mtime < 2 days.
Which legal compliance files can be expired? retention time = expi r ed, mtime > 7 years
Which of my files grew the most in the past week? Top 100 wheresize(today) > size(1 week ago)pwner = andr ew.

How much storage do these users and applications consuime? Sumsize whereowner = andr ew, type = dat abase

Table 4.1:Use case exampledMetadata search use cases collected from our user survey. Th
high-level questions being addressed are on the left. Omighe are the metadata attributes
that are being searched and example values. Users usednoasenetadata as well as special-
ized extended attributes, such as legal retention timemn@n search characteristics include

multiple attributes, localization to part of the namespacel “back-in-time” search.

From our survey we observed three important metadata sebechcteristics. First,
over 95% of searches includedultiple metadata attributeto refine search results; a search
on a single attribute over a large file system can return @ailss or even millions of results,
which users do not want to sift through. The more specifiartheeries the more narrow the
scope of the results. Second, about 33%exdrches were localized part of the namespace,
such as a home or project directory. Users often have soraeoidehere their files are and a
strong idea of where they are not; localizing the searchdesuesults on only relevant parts of
the namespace. Third, about 25% of the searches that ussredenost importargearched
multiple version®f metadata. Users use “back-in-time” searches to undhetdiie trends and

how files are accessed.

4.1.1 Spyglass Design

We designed Spyglass to address the file system searchamgumits discussed ear-
lier. Spyglass is specially designed to exploit metadadackeproperties to achieve scale and
performance while being embedded within the storage sys&pyglass focuses on crawling,

updating, and searching metadata.
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Figure 4.1: Spyglass overview.Spyglass resides within the storage system. The crawler ex-
tracts file metadata, which gets stored in the index. Thexiedasists of a number of partitions

and versions, all of which are managed by a caching system.

Spyglass uses several novel techniques that exploit they#tem properties dis-
cussed in Chapter 3 to provide fast, scalable search in-kugle storage systems. Firkt;
erarchical partitioningpartitions the index based on the namespace, preservitigldpaality
in the index and allowing fine-grained index control. Secaighature filed53] are used im-
prove search performance by leveraging locality to idgriily the partitions that are relevant
to a query. Thirdpartition versioningversions index updates, which improves update perfor-
mance and allows “back-in-time” search of past metadatsioes. Finally, Spyglass utilizes
storage systems snapshots to crawl only the files whose atathes changed, providing fast
collection of metadata changes. Spyglass resides withisttirage system and consists of two
major components, shown in Figure 4.1: the Spyglass indbichastores metadata and serves

queries, and a crawler that extracts metadata from thega@ygstem.

4.1.2 Hierarchical Partitioning

To exploit metadata locality and improve scalability, thiy§ass index is partitioned

into a collection of separate, smaller indexes, with a teghswe call hierarchical partitioning.
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Figure 4.2:Hierarchical partitioning example. Sub-tree partitions, shown in different colors,
index different storage system sub-trees. Each partisostared sequentially on disk. The

Spyglass index is a tree of sub-tree partitions.

Hierarchical partitioning is based on the storage syster@rsespace and encapsulates separate
parts of the namespace into separate partitions, thusiatiawore flexible, fine grained control
of the index. Similar partitioning strategies are oftencugg file systems to distribute the
namespace across multiple machines [122, 180].

Each of the Spyglass partitions is stored sequentially sk, dis shown in Figure 4.2.
Thus, unlike a DBMS, which stores records adjacently on d&kg their row or column or-
der, Spyglass groups records nearby in the namespacedogettisk. This approach improves
performance since the files that satisfy a query are oftesterled in only a portion of the names-
pace, as shown by our observations in Section 3.7. For examgkarch of the storage system
for andr ews ppt files likely does not require searching sub-trees such as otter's home
directories or system file directories. Hierarchical piming allows only the sub-trees rele-
vant to a search to be considered, thereby enabling redustithe search space and improving
scalability. Also, a user may choose to localize the searanly a portion of the namespace.
Hierarchical partitioning allows users to control the seayd the files that are searched. A

DBMS-based solution usually encodes pathnames as flagstmmaking it oblivious to the hi-
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erarchical nature of file organization and requiring it tosider the entire namespace for each
search. If the DBMS stores the files sorted by file name, it ogprove locality and reduce
the fraction of the index table that must be scanned; howdvisrapproach can still result in
performance problems for index updates, and does not enles@she hierarchical relationship
between files.

Spyglass partitions are kept small, on the order of 100,069, fio maintain locality
in the partition and to ensure that each can be read and selavehy quickly. We discuss the
reason for choosing this size in Section 4.3. Since panttiare stored sequentially on disk,
searches can usually be satisfied with only a few small séiqlatisk reads to retrieve the
partitions that are needed to satisfy a query. Also, substodten grow at a slower rate than the
system as a whole [5, 43], which provides scalability beedhis number of partitions to search
will often grow slower than the size of the system.

We refer to each partition assaib-tree partitionthe Spyglass index is a tree of sub-
tree partitions that reflects the hierarchical orderinghef $torage namespace. Each partition
has a mairpartition index in which file metadata for the partition is storg@irtition metadata
which keeps information about the partition; and pointershild partitions. Partition metadata
includes information used to determine if a partition i®vant to a search and information used
to support partition versioning.

The Spyglass index is stored persistently on disk; howelkpartition metadata,
which is small, is cached in-memory. gartition cachemanages the movement of entire parti-
tion indexes to and from disk as needed. When a file is accegseatkighbor files will likely
need to be accessed as well, due to spatial locality. Pagiirg @artition indexes allows meta-
data for all of these files to be fetched in a single, small satjal read. This concept is similar
to the use of embedded inodes [57], to store inodes adjaaéimeit parent directory on disk.

In general, Spyglass search performance is a function afuheber of partitions that
must be read from disk. Thus, the partition cache’s goal redoice disk accesses by ensuring
that most partitions searched are already in-memory. Wirel&now of no studies of file system
query patterns we believe that a simple LRU algorithm isatiffe. Both web queries [19] and

file system access patterns (see Section 3.3) exhibit skedijgfelike popularity distributions,
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suggesting that file metadata queriaay exhibit similar popularity distributions; this would
mean that only a small subset of partitions will be frequenitcessed. An LRU algorithm
keeps these recently accessed partitions in-memory, ingshigh performance for common

queries and efficient cache utilization.

4.1.2.1 Partition Indexes

Each partition index must provide fast, multi-dimensiosehrch of the metadata it
indexes. To do this we use a K-D tree [24], which fs-dimensional binary tree, because it pro-
vides lightweight, logarithmic point, range, and nearesghbor search oveér dimensions and
allows multi-dimensional search of a partition in tens tadieds of microseconds. However,
other index structures can provide additional functiagakor example, FastBit [187] provides
high index compression, Berkeley DB [121] provides tratieaal storage, cache-oblivious
B-trees [21] improve B-tree update time, and K-D-B-treedg]lallow partially in-memory K-

D trees. However, in most cases, the fast, lightweight eatdirkK-D trees is preferred. The
drawback is that K-D trees are difficult to update; Sectidn3tdescribes techniques to avoid

continuous K-D tree updates.

4.1.2.2 Partition Metadata

Partition metadata contains information about the filebéyartition, including paths
of indexed sub-trees, file statistics, signature files, ardion information. File statistics, such
as file counts and minimum and maximum values, are kept to @naggregation and trend
gueries without having to process the entire partition xndehese statistics are computed as
files are being indexed. ®ersion vectarwhich is described in Section 4.1.3, manages partition
versions. Signature files are used to determine if the jmartitontains files relevant to a query.

Signature files [53] are bit arrays that serve as compact suramof a partition’s
contents and exploit metadata locality to prune a querygscéespace. A common example of
a signature file is the Bloom Filter [26]. Spyglass can deteemvhether a partitiomayindex
any files that match a query simply by testing bits in the digmafiles. A signature file and

an associated hashing function are created for each &tiiiidiexed in the partition. All bits in
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Figure 4.3:Signature file example.Signature files for thext andsize metadata attributes are
shown. Each bit corresponds to a value or set of values intthbute value space. One bits
indicate that the partitiomay contain files with that attribute value while zero bits thiayt

definitely do not. In the top figure, each bit corresponds texdansion. False-positives occur
in cases where multiple extensions hash to the same bifqrosih the bottom figure, each bit

corresponds to a range of file sizes.

the signature file are initially set to zero. As files are ir@tgxtheir attribute values are hashed
to a bit position in the attribute’s signature file, which & o one. We illustrate the design of
two signature files in Figure 4.3. To determine if the pantitindexes files relevant to a query,
each attribute value being searched is hashed and its hiiopois tested. The partition needs
to be searchednly if all bits tested are set to one. Thus, this approach does notdiepen
the frequency distribution of a single attribute value, efihive showed in Section 3.7 is a poor
query execution metric. Due to spatial locality, most skeasccan eliminate many partitions,
reducing the number of disk accesses and processing a qustyperform.

As a result of collisions in the hashing function that cawsef positives, a signature
file determines only if a partitiomay contain files relevant to a query, potentially causing a
partition to be searched when it does not contain any filevaek to a search. A false positive
is shown in the top part of Figure 4.3 where we see bottcthadpdf extensions hash to the
same bit location. The one bit at that location can only fedhie of those attributes are stored

in the partition, but not which one. However, signature fdasnot produce false negatives,
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so partitions with relevant files will never be missed. Faissitive rates can be reduced by
varying the size of the signature or changing the hashingtimm Increasing signature file
sizes, which are initially around 2 KB, decreases the chanta collision by increasing the
total number of bits. This trades off increased memory meguents and lower false positive
rates. Changing the hashing function allow a bit's meanimdfzow it is used to be improved.
For example, consider a signature file for file size attriputes shown in the bottom part of
Figure 4.3. Rather than have each bit represent a singlesaize €. g, 522 bytes), we can
reduce false positives for common small files by mapping da€B range to a single bit for
sizes under 1 MB. The ranges for less common large files candde more coarse, perhaps
using a single bit for sizes between 25 and 50 MB.

While Spyglass stores signature files in memory, it is pdssiostore them efficiently
on disk. Signature files can be written to disk ibiasliced [54] fashion, which allows only
the data for the few bits being tested to be read from disk:sBiing is done by groupingv
signature files together, such as the signature files dasgribeext attribute for/V partitions.
These signature files are stored on disk\irbit slices, where the’ slice contains theé!” bit
from each of theV signature files. Thus, retrieving sliéeduring query execution for aext
attribute value will read bit for the IV different signature files from disk. This approach allows
the bit in question to be accessed sequentiallyNosignature files and eliminates the need to
read untested bit positions.

When Spyglass contains many partitions, the number of signdiles that must be
tested can become large. The number of signature files thattbebe tested can be reduced
by utilizing the tree structure of the Spyglass index to wrdaerarchically defined signature
files. Hierarchical signature files are smaller signaturesghly 100 bytes) that summarize the
contents of its partition and the partitions below it in theet Hierarchical signature files are
the logical OR of a partition’s signature files and the sigmaffiles of its children. A single
failed test of a hierarchical signature file can eliminatgénparts of the index from the search
space, preventing every partition’s signature files fromdpéested. Hierarchical signature files

are kept small to save memory at the cost of increased fakitves.
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4.1.3 Partition Versioning

Spyglass improves update performance and enables “baakéfi search using a
technique called partition versioning that batches indedates, treating each batch as a new
incremental index version. The motivation for partitiorrsiening is two-fold. First, we wish
to improve index update performance by not having to modkigtang index structures. In-
place modification of existing indexes can generate largebaus of disk seeks and can cause
partition’s K-D tree index structure to become unbalanc8dcond, back-in-time search can
help answer many important storage management questiansah track file trends and how
they change.

Spyglass batches updates before they are applied as neongeisthe index, mean-
ing that the index may be stale because file modifications @rémmediately reflected in the
index. However, batching updates improves index updatmeance by eliminating many
small, random, and frequent updates that can thrash the stk cache. Additionally, from
our user survey, most queries can be satisfied with a sligidlle index. It should be noted
that partition versioning does not require updates to beheat The index can be updated
in real time by versioning each individual file modificatias is done in most versioning file

systems [144, 156], however this will increase space rements and decrease performance.

4.1.3.1 Creating Versions

Spyglass versions each sub-tree partition individuallgeiathan the entire index as a
whole in order to maintain locality. A versioned sub-treetipian consists of two components: a
baseline indexandincremental indexesvhich are illustrated in Figure 4.4. A baseline index is a
normal partition index that represents the state of thegsystem at tim&,, or the time of the
initial update. An incremental index is an index of metaddtangedetween two points in time
T,_1 andT,,. These changes are indexed in K-D trees, and smaller sigrfilas are created for
each incremental index. Storing changes differs from theageh used in some versioning file
systems [144], which maintain full copies for each versidarsionFS [115] provides similar

semantics to our method by versioning only the deltas batviecks. Changes consist of
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sions. A baseline index is a normal partition index from samitéal time 7;,. Each incremental
index contains the changes required to roll query reswidod to a new point in time. Each

sub-tree partition manages its version in a version vector.

metadata creations, deletions, and modifications. Maimigionly changes requires a minimal
amount of storage overhead, resulting in a smaller fodtpriil less data to read from disk.
Each sub-tree partition starts with a baseline index, awsho Figure 4.4. When
a batch of metadata changes is received)atit is used to build incremental indexes. Each
partition manages its incremental indexes usingeesion vectar similar in concept to inode
logs in the Elephant File System [144]. Since file metadatdifierent parts of the file sys-
tem change at different rates, as was shown in Section 3.3aotther studies [5], partitions
may have different numbers and sizes of incremental indexesemental indexes are stored
sequentially on disk adjacent to their baseline index. Assalt, updates are fast because each
partition writes its changes in a single, sequential disteas. Incremental indexes are paged
into memory whenever the baseline index is accessed, singethe amount of data that must
be read when paging in a partition, though not typically éasing the number of disk seeks.

As a result, the overhead of versioning on overall searcfopeance is usually small.

93



Performing a “back-in-time” search that is accurate asmoéti;,, works as follows.
First, the baseline index is searched, producing quenitsethat are accurate as @f. The
incremental indexe®) throughT,, are then searched in chronological order. Each incremental
index searched produces metadata changes that modifyaiahsesults, rolling them forward
in time, and eventually generating results that are acewsatof7;,. For example, consider
a query for files withowner andr ew that matches two filesF, and F;,, at T,. A search
of incremental indexes dt; may yield changes that caug¢ to no longer match the query
(e. g, no longer owned bgndr ew), and a later search of incremental indexe$,amay yield
changes that cause file. to match the queryi(e., now owned byandr ew). The results of
the query areF, and F., which is accurate as @f,,. Because this process is done in memory
and each version is relatively small, searching throughemental indexes is often very fast.
In rolling results forward, a small penalty is paid to seatfoé most recent changes; however,
updates are much faster because no data needs to be copgttheasase in CVFS [156], which

rolls version changes backwards rather than forwards.

4.1.3.2 Managing Versions

Over time, older versions tends to decrease in value anddgbheuemoved to reduce
search overhead and save space. Spyglass provides twergftethniques for managing par-
tition versions:version collapsingandversion checkpointingVersion collapsing applies each
partition’s incremental index changes to its baselinexndehe result is a single baseline for
each partition that is accurate as of the most recent inarerhmdex. Collapsing is efficient
because all original index data is read sequentially andéebaseline is written sequentially.
During collapsing the signature files are re-computed tookermone bits that may correspond
to attribute values that no longer exist. An extensible s8] method may be used to in-
crementally grow or shrink the signature files if needed sier checkpointing allows an index
to be saved to disk as a new copy to preserve an important Emkdrarsion of the index and is
similar to file landmarks in Elephant [144].

We describe how collapsing and checkpointing can be usddamiexample. During

the day, Spyglass is updated hourly, creating new versiomy dour, thus allowing “back-in-
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Figure 4.5: Snapshot-based metadata collectionln snapshot 2, block 7 has changed since
snapshot 1. This change is propagated up the tree. BecaacdeZdhas not changed, we do not

need to examine it or any blocks below it.

time” searches to be performed at per-hour granularity dvwerday. At the end of each day,
incremental versions are collapsed, reducing space agraethe cost of prohibiting hour-
by-hour searching over the last day. Also, at the end of eagh @ copy of the collapsed
index is checkpointed to disk, representing the storageisystate at the end of each day. At
the end of each week, all but the latest daily checkpointdeleted; and at the end of each
month, all but the latest weekly checkpoints are deleteds fsults in versions of varying time
scales. For example, over the past day any hour can be sdamfer the past week any day
can be searched, and over the past month any week can beeskarftte frequency for index

collapsing and checkpointing can be configured based omesels and space constraints.

4.1.4 Collecting Metadata Changes

The Spyglass crawler takes advantage of NetApp SnanMshethnoIogy in the NetApp
WAFL ® file system [77] on which it was developed to quickly collecétadata changes.
Given two snapshotd,,_; and7,,, Spyglass calculates the difference between them. This dif
ference represents all of the file metadata changes betiegnand;,. Because of the way
snapshots are created, only the metadatzhahgedfles is re-crawled. This approach is faster

than current approaches which often re-crawl all or mosheffile system.
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All metadata in WAFL resides in a single file called thede file which is a collection
of fixed length inodes. Extended attributes are includechiihodes. Performing an initial
crawl of the storage system is fast because it simply ingbexuentially reading the inode
file. Snapshots are created by making a copy-on-write clénieecinode file. Calculating the
difference between two snapshots leverages this mecharfiikis is shown in Figure 4.5. By
looking at the block numbers of the inode file’s indirect aradadblocks, we can determine
exactly which blocks have changed. If a block’s number hashanged, then it does not need
to be crawled. If this block is an indirect block, then no edhat it points to need to be
crawled either because block changes will propagate alvtheback up to the inode file's root
block. As a result, the Spyglass crawler can identify justdata blocks that have changed and
crawl only their data. This approach greatly enhances iti&fabecause crawl performance is
a function of the number of files that have changed rather tiiaitotal number of files.

Spyglass is not dependent on snapshot-based crawlingghthibprovides benefits
compared to alternative approaches. Periodically walkirggfile system can be extremely
slow because each file must be traversed. Moreover, trdavaanautilize significant system
resources and alter file access times on which file cachesdepeother approach, file system
event notificationsd. g, i noti fy [86]), requires hooks into critical code paths, potentiall
impacting performance. A change log, such as the one used ¥SNis another alternative;
however, since we are not interested in every system evema@shot-based scheme is more

efficient.

4.1.5 Distributed Design

Our discussion thus far has focused on indexing and cravding single storage
server. However, large-scale storage systems are oftepagad of tens or hundreds of servers.
While we do not currently address how to distribute the indeg believe that hierarchical
partitioning lends itself well to a distributed environnidrecause the Spyglass index is a tree
of partitions. A distributed file system with a single namespcan view Spyglass as a larger
tree composed of partitions placed on multiple servers. fesalt, distributing the index is a

matter of effectively scaling the Spyglass index tree. Atbe use of signature files may be
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effective at routing distributed queries to relevant sesnand their sub-trees. Obviously, there
are many challenges to actually implementing this. A comepdiestributed design is one of the

future directions for this work that we discuss in Sectioh 6.

4.2 Content Indexing

In this section we look at how similar file system specific kidg techniques can
be applied to file content search. As mentioned previouséyjriverted index is the chief data
structure for keyword search. We outline how these index@upniques can be applied to
an inverted index. In particular, our inverted index desidgifizes hierarchical partitioning
which we introduced in Section 4.1 and which exploits naraespocality. Namespace locality
implies that a file’s location within the namespace influenite properties. Part of our design
is based upon the assumption that keyword distributiongbx similar namespace locality
property as metadata. That is, the content keywords arechlstered in the namespace. For
example, file's containing the keyword “financial”, “budyeind “shareholder” are more likely
to be contained in directories pertaining to a company’steds financial documents rather
than a developer source code tree or a directory of systesn file

While most evidence for file system content keywords exiniginamespace locality
is anecdotal, a previous study did find a variety of keywolhdd tvere more common in some
file system data sets than others [167]. A more complete fieay keyword analysis is future
work discussed in Section 6.2. However, even in the abseihkeyword namespace locality,
our approach provides a method for fine grained control oirtiex and posting lists that users
can use to localize their searches, improve update perfarepaand which can utilize other

partitioning strategies, such as partitioning along fileusity permissions.

4.2.1 Index Design

Recall from Section 2.6.2 that an inverted index containgctothary of keywords
that map to posting lists, which specify the locations in fitee system where the keywords

occur. Our new index design consists of two-levels. At the fevel is a single inverted index,
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Figure 4.6:Indirect Index Design. The indirect index stores the dictionary for the entire file

system and each keyword’s posting lists contain locatidq&dition segments. Each partition

segment is kept sequential on-disk.

called theindirect index that points to the locations of posting lisegmentsather than the
entire posting list itself and is illustrated in Figure 4.®he indirect index is similar to the
inverted index used in GLIMPSE [104]. At the second level iarge collection of posting
list segments. A posting list segment is a region of a podi#tghat is stored sequentially on-
disk. Posting lists are partitioned into segments usingahidical partitioning. Thus, a segment
represents the postings for a keyword that occurs withinegiip sub-tree in the namespace.
An illustration of how a posting list is partitioning into @@ents is shown in Figure 4.7. The
namespace is partitioned so that each sub-tree’s partgtioslatively small, on the order of
100,000 files, similar to our design in Spyglass. By paurtitig the posting lists into segments
we ensure fast performance for searching or updating anpami¢ion, as posting lists are small
enough to efficiently read, write, and cache in-memory. sease, partitioning makes the index
namespace locality-aware and allow the index to be coetidk the granularity of sub-trees.

However, it should be pointed out the partition does not niedxd based on namespace location

and other metrics, such as security or owner, may also beppate.
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Figure 4.7: Segment Partitioning. The namespace is broken into partitions that represent
disjoint sub-trees. Each partition maintains postingségments for keywords that occur within
its sub-trees. Since each partition is relatively smalisthsegments can be kept sequential on-

disk.

The purpose of the indirect index is to identify which subetpartitions contain any
postings for a given keyword. Doing so allows search, updageurity, and ranking to operate
at the granularity of sub-trees. The indirect index mairgahe dictionary for the entire file
system. The reason to maintain a single dictionary is thapikg a dictionary per-partition
would simply require too much space overhead since manydegwvill be replicated in many
dictionaries. Each keyword’s dictionary entry points toasiing list that contains the on-disk
address of segments that contain actual postings, whichowrsin Figure 4.6. Since the
indirect index only maintains a dictionary and postingslisbntaining segment pointers, it can
be kept in-memory if properly distributed across the nodethe file system, which we will

discuss later in this chapter.
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4.2.2 Query Execution

All search queries go through the indirect index. The indifedex identifies which
segments contain the posting data relevant to the seancbe 8ach segment is sequential on-
disk, retrieving a single segment is fast. A disk seek wikkofbe required between segments.

While retrieving a keyword’s full posting listi.(e., all segments for the keyword)
requires a disk seek between each segment, our use of hieadrpartitioning allows us to
exploit namespace locality to retrieve fewer segments. A&stmoned earlier, it is assumed
that keywords and phrases have namespace locality and ocly o a fraction of the parti-
tions (which we plan to quantify in future our future work)orrexample, the Boolean query
storage N research A santa A cruz requires (depending on the ranking algorithm) that a par-
tition contain files with all four terms before it should beasghed. If it does not contain all
four terms, often it does not need to be searched at all. Uem@ndirect index, we can easily
identify the partitions that contain the futitersectionof the query terms. By taking the inter-
section of the partitions returned, we can identify justgbgments that contain files matching
the query. Reading only these small segments can signiffa@utuce the amount of data read
compared to fetching postings from across the entire fileegys. Likewise, by reducing the
search space to a few small partitions, with disk seeks dogualong partition boundaries, the
total number of disk seeks can be significantly reduced.

The search space can also be reduced when a search quelizebto part of the
namespace. For example, a user may want to search only tmag Hirectory or the sub-tree
containing files for a certain project. In existing systeths, entire file system is searched and
then results are pruned to ensure they fall within the seb-tHowever, through the use of a
look up table that maps directory pathnames to their pamsti our approach reduces the scope
of the search space to only the scope specified in the queryexample, a query scoped to a
user’s home directory eliminates all segments not with@rthome directory from the search
space. Thus, users can control the scope and performankeio§tieries, which is critical in

large-scale file systems. Often as the file system grows, l#®ediuser cares about searching
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and accessing grows at a much slower rate. Our approachsadlearch to scale with what the
user wants to search, rather than the total size of the fitersys
Once in-memory, segments are managed by an LRU cache. Agomexhpreviously,

there have been no studies of file system query patterns lthwat searches [19, 94] and file
access patterns(see Section 3.3) both exhibit Zipf-lis&ributions. This implies skewed pop-
ularity distributions are likely for partitions and that &RU algorithm will be able to keep
popular partitions in-memory, greatly improving performae for common-case searches. Ad-
ditionally, this enables better cache utilization sinclyamdex data related to popular partitions
is kept in-memory, rather than data from all over the file exyst Efficient cache utilization is
important for direct integration with the file system sintwiill often share the same hardware

with the file system.

4.2.3 Index Updates

One of the key challenges with file system search is balarsgagch and update per-
formance. As discussed in Section 2.6.2, inverted indeneghitipnally use either an in-place
or merge-based update strategy [96]. An in-place updat¢egly is an update-optimized ap-
proach. When postings lists are written to disk, a sequemgaon on-disk is allocated that is
larger than the required amount. When new postings are addie list they are written to
the empty region. However, when the region fills and new pgstieeds to be written, a new
sequential region is allocated elsewhere on-disk and twepnstings are written to it. Thus, in-
place updates are fast to write since they can usually b&ewsiequentially and do not require
much pre-processing. However, as posting lists grow thegpie very fragmented which de-
grades search performance. Alternatively, a merge-bgseatel strategy is a search-optimized
approach. When a posting list is modified it is read from dms&dified in-memory, and written
out sequentially to a new location. This strategy ensurasghsting lists are sequential on-
disk, though requires the entire posting to be read andenritt order to update it, which can
be extremely slow for large posting lists.

Our approach achieves a better balance in two ways. Finge giosting list segments

only contain postings from partitions, they are small erotm make merge-based updates
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efficient. When modifying a posting list, we are able to giyalead the entire list, modify it in
memory, and quickly write it out sequentially to disk. Dosmgkeeps segment updates relatively
fast and ensures that segments are sequential on-disk. -plada approach is also feasible
since small segments often will not need to allocate mone ¢ime disk block though the space
overhead from over-allocating disk blocks for many segmean become quite high. Second,
our approach can exploit locality in file access patterngtiuce overall disk 1/0s. Often only
a subset of file system sub-trees are frequently modified ahaweed in Section 3.3.6 and was
shown in others studies [5,43]. As a result, queries oftdy need to read segments from a
small number of partitions. By reading fewer segments dss bata needs to read for an update
compared to retrieving an entire posting list, cache spabetiter utilized, and updates can be

coalesced in-memory before being written back to disk.

4.2.4 Additional Functionality

In addition to improving scalability, hierarchical paiditing can potentially improve
how file permissions are enforced, aid result ranking, anatéve space utilization.

Secure file search is difficult because either an index is faegach user, which re-
quires a huge amount of disk space, or permissions for altlseasults need to be checked,
which can be very slow [33]. However, most users only havesgprivileges to a limited num-
ber of sub-trees in the namespace [125]. Hierarchicaltjwanithg, through the use of additional
security metadata stored in the indirect index, can eliteisab-trees a user cannot access from
the search space. Doing so prevents users from searchiaghi@g cannot access without re-
quiring any additional indexes and reduces the total numbsearch results returned, which
limits the number of files whose permissions must be checked.

Ranking file system search results is difficult because mlestdre unstructured doc-
uments with little semantic information. However, subezén the namespace often have dis-
tinct, unique purposes, such as a user’'s home directoryarae code tree. Using hierarchical
partitioning, we can leverage this information to improweisearch results are ranked in two
ways. First, files in the same partition may have a semariatioaship (. e, files for the same

project) that can be used when calculating rankings. Sedtiffdrent ranking requirements
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may be set for different partitions. Rather than use a “ope &is all” ranking function for all
billion files in the file system, we can potentially use difiet ranking functions for different
parts of the namespace. For example, files from a source oegledn be ranked differently
than files in a scientist’s test data, potentially improvésgrch relevance for users.

Both file system access patterns and web searches havekéimfidtributions. As-
suming these distributions hold true for file system seadarge set of index partitions will be
cold (. e, not frequently searched). Our approach can allow us tdifgiehese cold partitions
and either heavily compress them or migrate them to lovegrstiorage (low-end disk or tape)
to improve cost and space utilization. A similar concept iesn applied to legal compliance

data in file systems and has shown the potential for signifisgace savings [112].

4.2.5 Distributing the Index

Large-scale inverted indexes are usually distributed Ekbhre large-scale file sys-
tems. A distributed design enables better scalability eardlfel processing capabilities. It is
important that the index is aware of how the file system igitisted so that it can place index
components near the data that they index and can effectiaddyrce load across the nodes. We
now discuss how our index can be distributed across the no@esle system. We use parallel
file systems, such as Ceph [180], as the context for our dismudbecause they are intended
for large-scale environments and are highly distributada lparallel file system, a cluster of
metadata servers (MDSs) handles metadata operationsawtiilister of object storage devices
(OSDs) handles data operations. The MDS cluster managesathespace and stores all file
metadata persistently on the OSD cluster. A more in-detudsion of parallel file systems is
provided in Section 2.2.

We intend for the indirect index to be distributed acrossNH2S cluster and across
enough nodes so that it can be kept in-memory. Since a signifiamount of query pre-
processing takes place in the indirect indexd, determining which partitions to search), keep-
ing it in-memory will significantly improve performance, Wever is not required. Posting list

segments will be stored on the OSD cluster and since theynaaél they can map directly to
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physical objects. Storing segments on the OSD cluster atsades parallel access to many
segments at a time.

The indirect index will be partitioned across the MDS clustsing aglobal inverted
file (1 F;) partitioning approach [15]. In this approach keywordsused to partition the index
such that each MDS stores only a subset of the keywords inléhgytem. For example, with
two MDS nodesA and B, A may index and store all keywords in the rarige- ¢| and B may
index and store all remaining keywords. Along with a goodvikerd partitioning strategyl Fi;
can provide good load balancing and limit network bandwidttiuirements as messages are
sent only to the MDS nodes responsible for keywords in theyque

In our design, the example Boolean quetyrage A santa A cruz will be evaluated
as follows. A user will issue the query through a single MDS8ed@possibly of their choos-
ing) which will shepherd the query execution. This shephreyde will query the MDS nodes
responsible for the keywords “storage”, “santa”, and “€rbased on thel F; partitioning.
These nodes will return their indirect index posting listbiich are stored in-memory, and the
shepherd will compute the intersection of these to detegmihich partitions contain all three
terms and are thus relevant to the query. The shepherd wilechese posting lists (to improve
subsequent query performance) and then query the other MD&srior the segments that cor-
respond to the relevant partitions. These segments wikkae from the OSD cluster, cached at
the three MDS nodes, and returned to the shepherd. The shapitleaggregate the results list

from the segments and rank them before returning them tostée u

4.3 Experimental Evaluation

In this section we evaluate how well the new indexing techeggwe presented ad-
dress the file system search challenges described in thenegiof the chapter and how our
designs compare to general-purpose solutions. To do teisvaluate a Spyglass prototype im-
plementation. Due to the lack of a representative file systemtent keyword data set and the
need to first examine whether namespace locality impactsdws in large-scale file systems,

we do not evaluate our inverted index design. However, sicanetadata and content index
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designs share many features, the results of our Spyglaksagwa are still very relevant. To
evaluate Spyglass we first measured metadata collecti@d sipelex update performance, and
disk space usage. We then analyzed search performance areffeotively index locality is

utilized. Finally, we measured partition versioning oeat.

4.3.1 Implementation Details

Our Spyglass prototype was implemented as a user-spacesgroc Linux. An RPC-
based interface to WAFL gathers metadata changes usingnapsisot-based crawler. Our
prototype dynamically partitions the index as it is beinglaed. As files and directories are
inserted into the index, they are placed into the partitidth tihe longest pathname matdhd.,
the pathname match farthest down the tree). New partitioareeated when a directory is
inserted and all matching partitions are full. A partiti@cbnsidered full when it contains over
100,000 files. We use 100,000 as the soft partition limit ideorto ensure that partitions are
small enough to be efficiently read and written to disk. Usangnuch smaller partition size
will often increase the number of partitions that must beeased for a query; this incurs extra
expensive disk seeks. Using a much larger partition sizeedses the number of partitions that
must be accessed for a query; however it poorly encapsidpsil locality, causing extra data
to be read from disk. In the case of symbolic and hard linkdfiple index entries are used for
the file.

During the update process, partitions are buffered in-nmgraod written sequen-
tially to disk when full; each is stored in a separate file. KrBes were implemented using
I i bkdtr ee++[97]. Signature file bit-arrays are about 2 KB, Ii€rarchical signature files
are only 100 bytes, ensuring that signature files can fit withir memory constraints. Hashing
functions that allowed each signature file’s bit to correspto a range of values were used for
file size and time attributes to reduce false positive ratéisen incremental indexes are created,
they are appended to their partition on disk. Finally, welemgent a simple search API that
allows point, range, tog; and aggregation searches. We plan to extend this inteafabgure

work.
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4.3.2 Experimental Setup

We evaluated performance using our metadata snapshas ttaseribed in Table 3.6.
These traces have varying sizes, allowing us to examinatstgl. Our Web and Eng traces
also have incremental snapshot traces of daily metadatagebdaor several days. Since no
standard metadata search benchmarks exist, we consteyatdgbtic sets of queries, discussed
later in this section, from our metadata traces to evalusdiech performance. All experiments
were performed on a dual core AMD Opteron machine with 8 GB afmmmemory running
Ubuntu Linux 7.10. All index files were stored on a networktji@n that accessed a high-end
NetApp file server over NFS.

We also evaluated the performance of two popular relati@®i1Ss, PostgreSQL
and MySQL, which serve as relative comparison points to DBMSed solutions used in other
metadata search systems. The goal of our comparison isva@preome context to frame our
Spyglass evaluation, not to compare performance to thepossible DBMS setup. We com-
pared Spyglass to an index-only DBMS setup, which is use@weral commercial metadata
search systems, and also tuned various options, such assizagdo the best of our ability.
This setup is effective at pointing out several basic DBMB8gsenance problems. DBMS per-
formancecan be improved through the techniques discussed in ChaptenvZever, as stated
earlier, they do not completely match metadata search ocdgp@formance requirements.

Our Spyglass prototype indexes the metadata attributes lis Table 3.7. Our index-
only DBMSs include a base relation with the same metadatibutts and a B+-tree index for
each. Each B+-tree indexes table row ID. An index-only desggluces space usage compared
to some more advanced setups, though it has slower searfchinpance. In all three traces,
cache sizes were configured to 128 MB, 512 MB, and 2.5 GB fo\ted, Eng, and Home
traces, respectively. These sizes are small relative tgilgeof their trace and correspond to

about 1 MB for every 125,000 files, which provides linear isgpbf cache sizes.
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Figure 4.8: Metadata collection performance. We compare Spyglass’s snapshot-based
crawler (SB) to a straw-man design (SM). Our crawler has garadability; performance is

a function of the number of changed files rather than systeen si

4.3.3 Metadata Collection Performance

We first evaluated our snapshot-based metadata crawlercamplaced it to a straw-
man approach. Fast collection performance impacts hown afpelates occur and system re-
source utilization. Our straw-man approach performs allgtized walk of the file system
usingst at () to extract metadata. Figure 4.8(a) shows the performanadaseline crawl of
all file metadata. Our snapshot based crawler is uto faster than our straw-man for 100
million files because our approach simply scans the inode Aikea result, a 100 million file
system is crawled in less than 20 minutes.

Figure 4.8(b) shows the time required to collect incremlemtetadata changes. We
examine systems with 2%, 5%, and 10% of their files changed.efample, a baseline of
40 million files and 5% change has 2 million changed files. Rer00 million file tests, each
of our crawls finishes in under 45 minutes, while our strawtiakes up to 5 hours. Our crawler

is able to crawl the inode file at about 70,000 files per sec@ut. crawler effectively scales

107



2d

18h 11h
14h 31m

250000 — 50m m
2h s 225 33s
| 44m

= 25000 s 435 38m

w 45m som 26s
2s g

GEJ 2500 - 25 12s |

[= 3m I

L 250 22

© I

e)

o

D 25 —

0 T T T

Web Eng Home

M spyglass PostgreSQL Table MySQL Table
PostgreSQL Index MySQL Index
Figure 4.9:Update performance. The time required to build an initial baseline index shown

on a log-scale. Spyglass updates quickly and scales ineaechuse updates are written to disk

mostly sequentially.

because we incur only a fractional overhead as more fileganded; this is due to our crawling

only changed blocks of the inode file.

4.3.4 Update Performance

Figure 4.9 shows the time required to build the initial indexeach of our metadata
traces. Spyglass requires about 4 minutes, 20 minutes, @hdninutes for the three traces,
respectively. These times correspond to a rate of abou083iles per second, indicating that
update performance scales linearly. Linear scaling odoecause updates to each partition are
written sequentially, with seeks occurring only betweertipans. Incremental index updates
have a similar performance profile because metadata chamngegritten in the same fashion
and few disk seeks are added. Our reference DBMSs take be8xeand44 x longer to update
because DBMSs require loading their base table and updatiley structures. While loading

the table is fast, updating index structures often requeeeks back to the base table or extra
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Figure 4.10:Space overheadThe index disk space requirements shown on a log-scale. Spy-
glass requires just 0.1% of the Web and Home traces and 10%edEng trace to store the

index.

data copies. As a result, DBMS updates with our Home traceéatena day or more; however,

approaches such as cache-oblivious B-trees [21] may beé@l@euce this gap.

4.3.5 Space Overhead

Figure 4.10 shows the disk space usage for all three of ocegraEfficient space
usage has two primary benefits: less disk space taken frosidrege system and the ability to
cache a higher fraction of the index. Spyglass requiresthess0.1% of the total disk space for
the Web and Home traces. However, it requires about 10% &Etiy trace because the total
system size is low due to very small files. Spyglass requibesie50 bytes per file across all
traces, resulting in space usage that scales linearly ystie size. Space usage in Spyglass is
5x—8x lower than in our references DBMSs because they requireedpastore the base table
and index structures. Figure 4.10 shows that building irstexctures can more the double the

total space requirements.
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Figure 4.11:Comparison of Selectivity Impact. The selectivity of queries in our query set is
plotted against the execution time for that query. We find theery performance in Spyglass
is much less correlated to the selectivity of the query mageés than the DBMSs, which are

closely correlated with selectivity.

4.3.6 Selectivity Impact

We evaluated the effect of metadata selectivity on the paidioce of Spyglass and
the DBMSs. We again generated query setexbfandowner from the Web trace with varying
selectivity—the ratio of the number of results to all records. Figurel4qlbts query selectivity
against query execution time. We found that the performarfid@ostgreSQL and MySQL is
highly correlated with query selectivity. However, thigmation is much weaker in Spyglass,
which exhibits much more variance. For example, a Spyglassyqwith selectivity7 x 1076
runs in 161 ms while another with selectivigyx 10~% requires 3 ms. This variance is caused
by the higher sensitivity of Spyglass to hierarchical ldgahnd query locality, as opposed to
simple query selectivity. This behavior is unlike that of BNAS, which accesses records from
disk based on the predicate it thinks is the most selectilie.Weak correlation with selectivity
in Spyglass means itis less affected by the highly skewedlliion of storage metadata which

makes determining selectivity difficult.
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Set Search Metadata Attributes

Setl Which user and application files consume the most space? Sumsizes for files usingowner andext.

Set 2| How much space, in this part of the system, do files from quergrisume? Use query 1 with an additional directopath.

Set3 What are the recently modified application files in my homedatory? Retrieve all files usingntime, owner, ext, andpath.

Table 4.2:Query Sets.A summary of the searches used to generate our evaluation sgts.

4.3.7 Search Performance

To evaluate Spyglass search performance, we generateaf sgisries derived from
real-world queries in our user study; there are, unforelgano standard benchmarks for file
system search. These query sets are summarized in TableQuRfirst set is based on a
storage administrator searching for the user and appiitdiies that are consuming the most
space €. g, total size ofandr ews virdk files)—an example of a simple two-attribute search.
The second set is an administrator localizing the same lse¢aronly part of the namespace,
which shows how localizing the search changes performaibe. third set is a storage user
searching for recently modified files of a particular type isp&cific sub-tree, demonstrating
how searching many attributes impacts performance. Eaelyget consists of 100 queries,
with attribute values randomly selected from our tracesnd®enly selecting attribute values
means that our query sets loosely follow the distributiorvaiies in our traces and that a
variety of values are used.

Figure 4.12 shows the total run times for each set of quetiegeneral, query set
1 takes Spyglass the longest to complete, while query setsl Zdinish much faster. This
performance difference is caused by the ability of sets 23atwllocalize the search to only a
part of the namespace by including a path with the query. Bpggs able to search only files
from this part of the storage system by using hierarchicditfming. As a result, the search
space for these queries is bound to the size of the sub-tcematter how large the storage
system. Because the search space is already small, usingatigbutes has little impact on
performance for set 3. Query set 1, on the other hand, mustdmrall partitions and tests each

partition’s signature files to determine which to search.ilé/imany partitions are eliminated,
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Figure 4.12:Query set run times. The total time required to run each set of queries. Each
set is labeled 1 through 3 and is clustered by trace file. Bacle is shown on a separate log-
scale axis. Spyglass improves performance by reducingetdrels space to a small number of

partitions, especially for query sets 2 and 3, which areliped to only a part of the namespace.

there are more partitions to search than in the other quesy w@ich accounts for the longer
run times.

Our comparison DBMSs perform closer to Spyglass on our sstallace, Web; how-
ever, we see the gap widen as the system size increasest, ISfgglass is over four orders of
magnitude faster for query sets 2 and 3 on our Home trace hvidiour largest at 300 million
files. The large performance gap is due to several reasorss, ¢tir DBMSs consider files from
all parts of the namespace, making the search space mueh I8&rond, skewed attribute value
distributions cause our DBMSs to process extra data even thieee are few results. Third, the
DBMSs base tables ignore metadata locality, causing exdkasgeks to find files close in the
namespace but far apart in the table. Spyglass, on the aher bses hierarchical partitioning
to significantly reduce the search space, performs onlylsssjuential disk accesses, and can
exploit locality in the workload to greatly improve cachdimation.

Using the results from Figure 4.12, we calculated queryughput, shown in Ta-
ble 4.3. Query throughput (queries per second) providesmalzed view of our results and
the query loads that can be achieved. Spyglass achievegtipot of multiple queries per sec-
ond in all but two cases; in contrast, the reference DBMSsa@chieve one query per second
in any instance, and, in many cases, cannot even sustairuengpgr five minutes. Figure 4.13

shows an alternate view of performance; a cumulative digion function (CDF) of query ex-
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System Web Eng Home

Setl| Set2| Set3| Setl| Set2| Set3| Setl| Set2| Set3

Spyglass 238 | 212 | 714 | 0.315| 141 | 189 | 0.05 | 154 | 141

PostgreSQL| 0.418| 0.418| 0.94 | 0.062| 0.034| 0.168| 0.003| 0.001| 0.003
MySQL 0.714| 0.68 | 0.063| 0.647| 0.123| 0.115| 0.019| 0.004| 0.009

Table 4.3:Query throughput. We use the results from Figure 4.12 to calculate query throug
put (queries per second). We find that Spyglass can achieny throughput that enables fast

metadata search even on large-scale storage systems.

ecution times on our Home trace, allowing us to see how eaetyqerformed. In query sets 2
and 3, Spyglass finishes all searches in less than a secomdslkedocalized searches bound the
search space. For query set 1, we see that 75% of querieetskdhlin one second, indicating
that most queries are fast and that a few slow queries catgrigignificantly to the total run
times in Figure 4.12. These queries take longer becausenthsyread many partitions from

disk, either because few were previously cached or manitipag are searched.

4.3.8 Index Locality

We now evaluate how well Spyglass exploits spatial locaditynprove query perfor-
mance. We generated another set of queries, based on quem Tdble 4.2, with 500 queries
with owner andext values randomly selected from our Eng trace. We generateithsiquery
sets for individuakext andowner attributes.

Figure 4.14(a) shows a CDF of the fraction of partitions skeed. Searching more
partitions often increases the amount of data that must && frem disk, which decreases
performance. We see that 50% of searches using jugixtregtribute reference fewer than 75%
of partitions. However, 50% of searches using bexh and owner together reference fewer
than 2% of the partitions, since searching more attributeseases the locality of the search,

thereby reducing the number of partitions that must be kedtcFigure 4.14(b) shows a CDF
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Figure 4.13:Query execution times. A CDF of query set execution times for the Eng trace.
In Figures 4.13(b) and 4.13(c), all queries are extremedy facause these sets include a path

predicate that allows Spyglass to narrow the search to a&etitipns.
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Figure 4.14:Index locality. A CDF of the number of partitions accessed and the number of
accesses that were cache hits for our query set. Searchitigleattributes reduces the number

of partition accesses and increases cache hits.
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Figure 4.15:Impact of signature file size. The percent of one bits in signature files for four
different attributes is shown. The percent of one bits dis®e as signature file size increases.
However, even in the case where signature files are only 1 K8thlean 4% of total bits are set
to one. As mentioned earlier, tlsize andatime attributes use special hashing functions that
treat each bit as a range rather than a discrete value. Tpisagh keeps the fraction of one

bits below 1% in all cases.

of cache hit percentages for the same set of queries. Higlodrechit percentages means that
fewer partitions are read from disk. Searchowgner andext attributes together results in 95%
of queries having a cache hit percentage of 95% or betteraltieethigher locality exhibited
by multi-attribute searches. The higher locality causpsaied searches in the sub-trees where
these files reside and allows Spyglass to ignore more nemamed partitions.

The number of partitions searched during a query is depératehow effectively
signature files can correctly eliminate partitions from search space. Signature files that are
small will often produce more false-positives, which caube number of partitions searched to
increase. The probability of a false-positive is dependarthe percent of bits in the signature
file that are set to one [26]. Figure 4.15 shows how the pefamte bits change with signature
file size for four different attributes in Spyglass using d\eb trace. The average percent of
one bits across all of the partitions for each of the attebus shown. We see that the percent of
one bits decreases as the size of the signature files increas¢heext andowner attributes,

the percent i€ — 3x lower for 6 KB signature files, compared to 1 KB. However, inigportant
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Figure 4.16: Versioning overhead. The figure on the left shows total run time for a set of
450 queries. Each version adds about 10% overhead. On thte aigCDF shows per-query

overheads. Over 50% of queries have an overhead of 5ms or less

to point out that even with signature files at 1 KB, the totakpat of bits set to one is less than
4%. The reason for this is that hierarchical partitioningleits namespace locality to keep files
with similar attribute values together. As a result, eadcttifi@n only has a limited number of
attribute values. Also, thsize andatime signature files use hashing functions where each bit
corresponds to a range rather than a discrete value, asldesar Section 4.1.2. As a result,
the percent of one bits is always well below 1%. Our Spyglastop/pe uses 2 KB signature
files for each of the ten attributes described in Table 3.7s $ize yields good accuracy and is

compact, requiring only 200 MB of memory for 1 billion files.

4.3.9 Versioning Overhead

To measure the search overhead added by partition vergiomegenerated 450 queries
based on query 1 from Table 4.2 with values randomly seleftted our Web trace. We in-
cluded three full days of incremental metadata changes,uaad them to perform three in-
cremental index updates. Figure 4.16 shows the time refjgreun our query set with an
increasing number of versions; each version adds about aol@%head to the total run time.

However, the overhead added to most queries is quite smajlrd-4.16 also shows, via a
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CDF of the query overheads incurred for each version, thaerian 50% of the queries have
less than a 5 ms overhead. Thus, it is a few much slower qubaesontribute to most of the
10% overhead. This behavior occurs because overhead tallypincurred when incremental
indexes are read from disk, which doesn’t occur once a artis cached. Since reading extra
versions does not typically incur extra disk seeks, thelwaal for the slower queries is mostly

due to reading partitions with much larger incremental xasdefrom disk.

4.4 Summary

Providing effective search at the scale of billions of filesbt easy. There are a
number of requirements, such as scalable file crawlingstzesich and update performance, and
efficient resource utilization, that must be addressed. dasign of an effective search index
is critical to meeting these requirements. However, exgstearch solutions rely on general-
purpose index structures, such as DBMSs, that are not defigffile search and which limit
performance and scalability.

In this chapter we examined the hypothesis that these mqaints can be better meet
with index designs that are optimized for file system searfd.examine this hypothesis we
presented the design of two new indexing structures; onéléometadata and one for content
search. Unlike general-purpose indexes, our index detegesaged the large-scale file system
properties presented in Chapter 3 to improve performandesealability. Our designs intro-
duced several novel file system indexing techniques. Hiexilnlex control is provided by an
index partitioning mechanism, called hierarchical paniihg, that leverages namespace local-
ity. We introduced the use of signature files and an indireax to effectively route queries and
significantly reduce a query’s search space. A novel indesimeing mechanism was used to
provide both fast index updates and “back-in-time” seafaevaluation of our metadata index
shows search performance improvements up to 1-4 ordersgiitnde compared to existing
DBMS based solutions, while providing faster update pennmce and using only a fraction
of the disk space. Our findings support a similar hypothesis)fthe DBMS community that

argues application-specific designs will often out perfargeneral-purpose solution.
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Chapter 5

Towards Searchable File Systems

Search is becoming an increasingly important way for use@ctess and manage
their files. However, current file systems are ill-suited teemthese emerging needs because
they organize files using a basic hierarchical namespatésthat easy to search. Modern file
organizations still resemble those designed over fortysyago, when file systems contained
orders of magnitude fewer files and basic hierarchical npams navigation was more than
sufficient [38]. As a result, searching a file system requinmege-force namespace traversal,
which is not practical at large scale. Currently to addréss problem, file search is imple-
mented with a search application—a separate index or dsgatifathe file system’s attributes
and metadata outside of the file system—as is done in Liaug,(thel ocat e tool), personal
computers [14], and enterprise search appliances [67, 85].

Though search applications have been somewhat effectickeiktop and small-scale
servers, they face several inherent limitations at largaftes. First, search applications must
track all file changes in the file system, a difficult challemge system with billions of files
and constant file changes. Second, file changes must beyguéckidexed to prevent a search
from returning very old and inaccurate results. Keepingaglication’s index and file system
consistent is difficult because collecting file changestisroglow [81, 158] and search applica-
tions are often inefficient to update [1, 173]. Third, seapplications often require significant

disk, memory, and CPU resources to manage larger file systsimg the same techniques that
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are successful at smaller scales. Thus, a new approachassaeg to scale file system search
to large-scale file systems.

An alternative solution is to build file search functiongliirectly into the file system.
This eliminates the need to manage a secondary databaseinglifile changes to be searched
in real-time, and enabling internal file organization thatresponds to the users’ need for search
functionality. However, enabling search within the filetgys has its own challenges. First, file
metadata and data must be organized and indexed so thatliecsearched quickly, even as
the system scales. Second, this organization must stligeagood file system performance.
Previous approaches, such as replacing the file system wéthtional database [59, 119], have
had difficulty addressing these challenges.

In this chapter we explore the hypothesis that search cantbegrated directly into
the file system’s design to enable scalable and efficientseehile providing good file system
performance. To examine this hypothesis we present two pgnoaches to how file systems
internally organize and index files. The first is Magellan.earshable metadata architecture
and the second is Copernicus, a semantic file system desigartanizes files into a dynamic,

search-based namespace.

Magellan: Unlike previous work, Magellan does not use relational lbasas to enable search.
Instead, it uses new query-optimized metadata layoutxinde and update techniques
to ensure searchability and high performance in a singlesyi¢em. Users view a tradi-
tional hierarchical interface, though in Magellatl, metadata and file look ups, including
directory look ups, are handled using a single search siteictliminating the redundant
data structures that plague existing file systems with kegrafted on. Our evaluation
of Magellan shows that it is possible to provide a scalatdst, fand searchable meta-
data system for large-scale storage, thus facilitatingsfitdem search without hampering

performance.

Copernicus: Unlike Magellan, which enables search withing a traditidriararchical names-
pace, Copernicus enables search to be directly integratedcaidynamic, search-based

namespace. Copernicus uses a dynamic graph-based intlelusgiars semantically re-
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lated files into vertexes and allows inter-file relationship form edges between them.
This architecture significantly differs from previous seri@afile system designs which
simply impose a naming layer over a standard file system abdat. This graph replaces
the traditional directory hierarchy, can be efficiently qed, and allows the construction
of dynamic namespaces. The namespace allows “virtualtiires that correspond to a

query and allows navigation using inter-file relationships

The remainder of this chapter is organized as follows. 8edil discusses the chal-
lenges for combining search and file systems. The Magellaigulés presented in Section 5.2
and the Copernicus design is presented in Section 5.3. Ogella prototype implementation

is evaluated in Section 5.4. We summarize our findings ini@eé&t5.

5.1 Background

Hierarchical file systems have long been the “standard” rmugisim for accessing file
systems, large and small. As file systems have grown in beghasid number of files, however,

the need for file search has grown; this need has not beenaegaunet by existing approaches.

5.1.1 Search Applications

File system search is traditionally addressed with a sépaearch application, such
asthe Linud ocat e program, Apple Spotlight [14] and Google Enterprise Segg¢h Search
applications re-index file metadata and file content in arsgépasearch-optimized structure,
often a relational database or information retrieval eagiimhese applications augment the
file system, providing the ability to efficiently search filegthout the need for file system
modifications, making them easy to deploy onto existingesyst Figure 5.1 shows how these
applications interact with the file system. The applicatioaintains search indexes for file
metadata and content, such as databases or inverted filies, avk stored persistently as files
in the file system.

These applications have been somewhat successful on gesidosmaller scale file

systems. However, they require that two separate indexedl ofietadata be maintained—
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Figure 5.1:File search applications. The search application resides on top of the file system
and stores file metadata and content in separate searchizgaliindexes. Maintaining several

large index structures can add significant space and tintheads.

both the file system’s index and the search application’sxrewhich presents several inherent
challenges as a large-scale and long-term solution:

1) File attributes and changes must be replicated in the seapgiication. Metadata and con-
tent is replicated into the search appliancedbiling it from the file system or having fiushed

in by the file system. A pull approach, as used by Google Engerpdiscovers file changes
through periodic crawls of the file system. These crawls lare & file systems containing tens
of millions to billions of files that must be crawled. Worsegffile system’s performance is usu-
ally disrupted during the crawl because of the 1/0O demangsad by a complete file system
traversal. Crawls cannot collect changes in real-time ctviniften leads to inconsistency be-
tween the search application and file system, thus causougract (out-of-date) search results
to be returned.

Pushing updates from the file system into the applicatioowallreal-time updates.
However, the file system must be modified to be aware of thelsegplication. Additionally,
search applications are search-optimized, which oftenesakdate performance notoriously
slow [1, 173]. Apple Spotlight, which uses a push approaocksaot apply updates in real-time
for precisely these reasons. As a result, searches in Agga#ight may not reflect the most

recent changes in the file system, though such files are d¢féeeortes desired by the user.
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2) Search applications consume additional resourcgsarch applications often rely on abun-
dant hardware resources to enable fast performance. Fompdéxamany commercial products
can only be purchased as a hardware and software bundle5Jj6R8quiring additional hard-
ware resources makes these systems expensive and difficoéirtage at large-scales. Modern
large file systems focus on energy consumption and consiolid@®], making efficient resource
utilization critical.

3) Search appliances add a level of indirectio®uilding databases on top of file systems
has inefficiencies that have been known for decades [160k, thccessing a file through a
search application can be much less efficient than throudh syfstem [148]. Accessing a file
requires the search application to query its index to findntlaéching files, which will often
require accessing index files stored in the file system. Oteadimes are returned, the file
names are copied to the file system and the files are thenvestrfeom the file system itself,
which requires navigating the file system’s namespace ifateach file. Accessing files found
through searches in a search application require at leastielthe number of steps, which is
both inefficient and redundant.

4) Users must interact with two interfaceé.ccessing files requires users to interact with two
different file interfaces depending on how they want to estitheir data. The application’s
query interface must be used for file search while normal @iteas is performed through the
file system’s standard interface. (g, POSIX). Using multiple interfaces to achieve a common

goal is both cumbersome and complicates interactions Wwéfstorage system.

5.1.2 Integrating Search into the File System

We believe that a more complete solution is for the file systemmrganize files in a
way that facilitates efficient search. Search applicatimmg file systems share the same goal:
organizing and retrieving files. Implementing the two fumics separately leads to duplicate
functionality and inefficiencies. With search becoming rereéasingly common way to access
and manage files, file systems must provide this functignabktan integral part of their func-
tionality. However, organizing file system metadata so ithesin efficiently be searched is not

an easy task.
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Because current file systems provide only basic directesy avigation, search ap-
plications are thenly option for flexible, non-hierarchical access. The primagson behind
this shortcoming is that, despite drastic changes in tdoggand usage, metadata designs re-
main similar to those developed over 40 years ago [38], wiesystems held less than 10 MB.
These designs make metadata search difficult for seveisimea
1) Queries must quickly access large amounts of data from #igk systems often have meta-
data scattered throughout the disk [57]. Thus, scanningritiadata of millions of files for
a search can require many expensive disk seeks. Moreoasmiag file content for a search
(e. g, gr ep) may read most of the disk’s contents, which is not only skspecially given the
rapidly increasing disk capacities compared to slower awpments in disk bandwidth, but file
data can also be highly scattered on disk [153].

2) Queries must quickly analyze large amounts of d&ike metadata and data must be linearly
scanned to find files that match the query. File systems doiresttly index file metadata or
content keywords, which forces slow linear search techesda be used to find relevant files.
3) File systems do not know where to look for fildhe file system does not know where the
relevant files for a query are located and must often searatga portion of (or the entire) the
file system. In large-scale systems, searching large pattedile system can be impractical

because of the sheer volume of data that must be examined.

5.2 Integrating Metadata Search

In this section we present the design of a searchable matadzititecture for large-
scale file systems called Magellan. We designed Magella twib primary goals. First, we
wanted a metadata organization that could be quickly sedrcBecond, we wanted to provide
the same metadata performance and reliability that usess ¢t@me to expect in other high
performance file systems. We focus on the problems that makert designs difficult to
search, leaving other useful metadata designs intact. €sigid leverages metadata specific

indexing technigues we developed in Chapter 4.
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This section discusses the new metadata techniques thatllstagises to achieve

these goals:

e The use of a search-optimized metadata layout that clustersetadata for a sub-tree in

the namespace on disk to allow large amounts of metadata qoibkly accessed for a

query.

e Indexing metadata in multi-dimensional search trees thatquickly answer metadata

queries.

e Efficient routing of queries to particular sub-trees of tHe fiystem using Bloom fil-

ters [26].

e The use of metadata journaling to provide good update peeoce and reliability for

our search-optimized designs.

Magellan was designed to be the metadata server (MDS) fdn,@eprototype large-
scale parallel file system [180]. In Ceph, metadata is mahagea separate metadata server
outside of the data path. We discuss issues specific to Ceptewmkcessary, though our design
is applicable to many file systems; systems such as PVFS Efeparate metadata servers,
and an optimized metadata system can be integrated intdesthihinux file systems via the
vf s layer, since Magellan’s interface is similar to POSIX thowgth the addition of a query

interface.

5.2.1 Metadata Clustering

In existing file systems, searches must read large amountetafdata from disk since
searching the file system require traversing the directey and may need to perform millions
of readdi r () andst at () operations to access file and directory metadata. For exxampl
a search to find where a virtual machine has saved a useraliisk images may read all
metadata below usr / to find files withowner equal to3407 (the user’s UID) andile type

equal tovndk.
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Figure 5.2:Metadata clustering. Each block corresponds to an inode on disk. Shaded blocks
labeled 'D’ are directory inodes while non-shaded blockselad 'F’ are file inodes. In the
top disk layout, the indirection between directory and filedes causes them to be scattered
across the disk. The bottom disk layout shows how metadasteting co-locates inodes for an
entire sub-tree on disk to improve search performance.éesoeference their parent directory

in Magellan; thus, the pointers are reversed.

Accessing metadata often requires numerous disk seeksdssahe file and directory
inodes, limiting search performance. Though file systertargit to locate inodes near their
parent directory on disk, inodes can still be scatteredsactive disk. For example, FFS stores
inodes in the same on disk cylinder group as their parenttding [105]. However, prior work
has shown that inodes for a directory are often spread asroliple disk blocks. Furthermore,
directory inodes are not usually adjacent to the first filedeathey name, nor are file inodes
often adjacent to the next named inode in the directory [V illustrate this concept in the

top part of Figure 5.2, which shows how a sub-tree can beesedton disk.
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Magellan addresses this problem by grouping inodes ing@lgroups calledlusters
which are similar in concept to hierarchical partitioningpieh was presented in Section 4.1.2.
Each cluster contains the metadata for a sub-tree in thespaoe and is stored sequentially in
a serialized form on disk, allowing it to be quickly acces&ath query. For example, a cluster
may store inodes corresponding to the files and directoniélsel/ pr oj ect s/ magel | an/
sub-tree. The bottom part of Figure 5.2 shows how clustersganized on disk. Retrieving all
of the metadata in this sub-tree can be done in a single lamggestial disk access. Conceptu-
ally, metadata clustering is similar to embedded inode§\Wiich store file inodes adjacent to
their parent directory on disk. Metadata clustering goethéun and stores a group of file inodes
and directories adjacent on disk. Co-locating directogied files makes hard links difficult to
implement. We address this with a table that tracks haraetiniles whose inodes are located
in another cluster.

Metadata clustering exploits several file system propertérst, disks are much bet-
ter at sequential transfers than random accesses. Metddstering leverages this to prefetch
an entire sub-tree in a single large sequential access.n8efite metadata exhibiteames-
pace locality Metadata attributes are dependent on their location im#mespace, which we
showed in Section 3.7. For example, files owned by a certan are likely to be clustered
in that user’s home directory or their active project diogiets, not randomly scattered across
the file system. Thus, queries will often need to search fibeksdirectories that are nearby in
the namespace. Clustering allows this metadata to be &ctessre quickly using fewer 1/0O
requests. Third, metadata clustering works well for marey Sifstem workloads that exhibit
similar locality in their workloads, as was shown in SectB8 and prior studies [137]. Often,

workloads access multiple, related directories, whiclstelung works well for.

5.2.1.1 Cluster organization

Clusters are organized into a hierarchy, with each clustEntaining pointers to its
child clusters—clusters containing sub-trees in the namespace. A sinxalmgle is a cluster
storing inodes fof usr/ and/ usr/ | i b/ and pointing to a child cluster that stores inodes for

[ usr/include/ and/ usr/ bi n/,each of which points to its own children. This hierarchy
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can be navigated in the same way as a normal directory treghnitpies for indexing inodes
within a cluster are discussed in Section 5.2.2.

While clustering can improve performance by allowing fastfetching of metadata
for a query, it can negatively impact performance if it beesrtoo large, since clusters that are
too large waste disk bandwidth by prefetching metadatarioeaded files. Magellan prevents
clusters from becoming too large by using a hard limit on tin@ber of directories a cluster can
contain and a soft limit on the number of files. While a hardtliom the number of directories
can be enforced by splitting clusters with too many diréegyrwe chose a soft limit on files to
allow each file to remain in the same cluster as its parenttding Our evaluation found that

clusters with tens of thousands of files provide the besbpaidince, as discussed in Section 5.4.

5.2.1.2 Creating and caching clusters

Magellan uses a greedy algorithm to cluster metadata. Whenagle is created, it
is assigned to the cluster containing its parent directbile inodes are always placed in this
cluster. If the new inode is a directory inode, and the clustes reached its size limit, a new
cluster is created as a child of the current directory andrtbeée is inserted into it. Otherwise,
it is inserted into the current cluster. Though this apphhoaorks fairly well in practice, it does
have drawbacks. First, a very large directory will resulh very large cluster. Second, no effort
is made to achieve a uniform distribution of cluster sizdsese issues can be addressed with a
clustering algorithm that re-balances cluster distrimaiover time.

Allocation of a new cluster is similar to allocation of extein extent-based file sys-
tems, such as XFS [168]. When a cluster is created, a segleggion is allocated on disk
with a size that is a function of the preset maximum clustee $generally on the order of 1
to 2 MBs). This allocated region is intended to be larger ttiensize of the cluster to allow
the cluster to grow over time without having to be relocatad without causing fragmenta-
tion. Since Magellan is being design for use in Ceph, it iseffieral if allocated regions can
correspond to a single Ceph object because it eases cluateagement. These regions are
dynamically allocated because in Ceph free space and dijecation are managed using a

pseudo-random hashing function [181]. However, it is alsssfble to use an extent tree, as is
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used in XFS. With this hashing function, the location of afeobis calculated using its object
identifier and maps to a Ceph storage device on which the tolsjstored. The storage device
manages its own internal allocation and storage of objétthie case where a cluster grows too
large for a single object it can become fragmented acrogxtband slow access times. How-
ever, Ceph provides the opportunity for parallel accessfeats that are on separate storage
devices.

Magellan manages memory usinglaster cachehat is responsible for paging clus-
ters to and from disk, using a basic LRU algorithm to deteemirhich clusters to keep in the
cache. Clusters can be flushed to disk under five conditidjsthé cluster cache is full and
needs to free up space; (2) a cluster has been dirty for tap (@) there are too many journal
entries and a cluster must be flushed to free up journal spaadigcussed in Section 5.2.4); (4)
an application has requested that the cluster be flushegl {via sync()); or (5) it is being
flushed by a background thread that periodically flushegerisigo keep the number of dirty
clusters low. Clusters index inodes using in-memory setiegs that cannot be partially paged
in or out of memory, so the cache is managed in large, clss&ted units. The cluster cache
will write the cluster to its previous on disk location prded there is enough space. If not,
the cluster will written to a new location that is large enlownd the old space will be freed.
In Ceph, clusters larger than a single object may be stripeasa multiple storage devices to

provide parallel access.

5.2.2 Indexing Metadata

Searches must quickly analyze large amounts of metadatadahie files matching
a query. However, current file systems do not index the m&taakiributes that need to be
searched. For example, searching for files vaitmer equal to UID3047 and modification
time earlier thar7 days ago, requires linearly scanning every inode because it is nokn

which may match the query.
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_ — |Directory inode
File inode @* ino: 1825(\5,
Ino: 18!_321 Parent ino: 8568,
Parent ino: 18256 |_ ), Owner: 115

Owner: 115
Title: 'magellan’

Figure 5.3:Inode indexing with a K-D tree. A K-D tree is shown with nodes that are directory

inodes are shaded with a’D’. File inodes are not shaded detbd 'F'. K-D trees are organized
based on attribute value not namespace hierarchy. Thus mdile can point to other file
inodes,etc. The namespace hierarchy is maintained by inodes contaih@gnode number of

their parent directory. Extended attributes, suditi@andfile type are included in the inode.

5.2.2.1 Indexing with K-D trees

To address this problem, each cluster indexes its inodek4b #&ree: ak-dimensional
binary search tree [24]. Inode metadata attribuéeg {owner, size) are dimensions in the tree
and any combination of these can be searched using poimgg ran nearest neighbor queries.
K-D trees are similar to binary trees, though different disiens are used to pivot at different
levels in the tree. K-D trees allow a single data structursdex all of a cluster's metadata.
A one-dimensional data structure, such as a B-tree, wougjgine an index for each attribute,
making reading, querying, and updating metadata more wliffic

Each inode is a node in the K-D tree, and contains basic atiysband any extended
attributes €. g, file type, last backup date, etc) that are indexed in the tree, as shown in
Figure 5.3. Figure 5.3 shows that inodes are organized lmas#tkir attribute values, not their
order in the namespace. For example, a file inode’s rightt@ojpoints to another file inode
because it has a lower value for some attribute. It is impbria note that inodes often store
information not indexed by the K-D tree, such as block pamte

To maintain namespace relationships, each inode storewitsiame and the inode
number of its parent directory, as shown in Figure 5.3.eaddi r () operation simply queries

the directory’s cluster for all files witlparent inode equal to the directory’s inode number.
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Storing names with their inodes allows queries fitaname to not have to locate the parent

directory first and eliminates the level of indirection beem directories and their entry inodes
that exist in normal file systems. In faell file system metadata operations translate to K-D
tree queries. For example, apen() on/ usr/f 0o0. t xt isaquery in the cluster containing

[ usr/’s inode for a file withfilename equal tof 0o. t xt , parent inode equal to/ usr/’s

inode number, and with the appropriat®de permissions.

5.2.2.2 Index updates

As a search-optimized data structure, K-D trees providéo#se search performance
when they are balanced. However, adding or removing nodeme&e it less balanced. Meta-
data modifications must do both: remove the old inode andtinsaipdated one. While updates
are fastO(log V) operations, many updates can unbalance the K-D tree. Thckache ad-
dresses this problem by rebalancing a K-D trees before ititsaw to disk. Doing so piggybacks
the O(NN log V) cost of rebalancing onto the bandwidth-limited serialmatack to disk, hid-
ing the delay. This approach also ensures that, when a KeDigneead from disk, it is already

optimized.

5.2.2.3 Caching inodes

While K-D trees are good for multi-attribute queries, theg kess efficient for some
common operations. Many file systems, such as Apple’'s HFS}; [ddex inodes using just
the inode number, often in a B-tree. Operations such as patiution that perform look ups
using just an inode number are done more efficiently in a B-ihan a K-D tree that indexes
multiple attributes, since searching just one dimensioa KD tree uses a range query that
requiresO(kN'~1/¥) time, wherek is the number of dimensions ard is the size of the tree
as compared to a B-tree3(log N) look up.

To address this issue, each cluster maintainghade cachethat stores pointers to
inodes previously accessed in the K-D tree. The inode cachéash table that short-circuits

inode look ups, avoiding K-D tree look ups for recently-useddes. The inode cache uses
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filename andparent inode as the keys, and is managed by an LRU algorithm. The cache is

not persistent; it is cleared when the cluster is evictethfreemory.

5.2.3 Query Execution

Searching through many millions of files is a daunting tasienewhen metadata is
effectively clustered out on disk and indexed. Fortunatalywe mentioned earlier in Sec-
tion 5.2.1, metadata attributes exhibit namespace lgcaltiich means that attribute values are
influenced by their namespace location and files with sinaifttibutes are often clustered in the
namespace.

Magellan exploits this property by usir®joom filters[26] to describe the contents
of each cluster and tmute queriegdo only the sub-trees that contain relevant metadata. Bloom
filters serve a similar role as signature files in our Spygiessgn from Chapter 4. Each cluster
stores a Bloom filter for each attribute type that it index&its in the Bloom filters are initialized
to zero when they are created. Asinodes are inserted intdubeer, metadata values are hashed
to positions in the bit array, which are set to one. In a Blodterfia one bit indicates that a
file with that attributemaybe indexed in the cluster, while a zero bit indicates thatctheter
contains no files with that attribute. A one bit is probaltiti9oecause of hash collisions; two
attribute values may hash to the same bit position causisg-faositives. A query only searches
a cluster wherall bits tested by the query are set to one, eliminating manyersigrom the
search space. False positives cause a query to searchhirstiedo not contain relevant files,
degrading performance but not leading to incorrect resiegellan keeps Bloom filters small
(a few kilobytes) to ensure that they fit in memory.

Unfortunately, deleting values from Bloom filters is difficusince when removing
or modifying an attribute, the bit corresponding to the ditilaute value cannot be set to zero
because the cluster may contain other values that hashttoitpasition. However, not deleting
values will cause false positives to increase. To addresshtagellan clears and recomputes
Bloom filters when a cluster’s K-D tree is being flushed to digkriting the K-D tree to disk

visits each inode, allowing the Bloom filter to be rebuilt.
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5.2.4 Cluster-Based Journaling

Search-optimized systems organize data so that it can loeareh queried as fast
as possible, often causing update performance to sufferTh]s is a difficult problem in a
search-optimized file system because updates are veryefeqparticularly for file systems
with hundreds of millions of files. Moreover, metadata mueskept safe, requiring synchronous
updates. Magellan’s design complicates efficient updatd®/d® ways. First, clusters are too
large to be written to disk every time they are modified. Sdg¢dfrD trees are in-memory
structures; thus, information cannot be inserted into tfoelha of the serialized stream on disk.

To address this issue, Magellan useduster-based journalingechnique that writes
updates safely to an on disk journal and updates the in-meohoster, but delays writing the
cluster back to its primary on disk location. This techniguavides three key advantages. First,
updates in the journal are persistent across a crash siegedh be replayed. Second, metadata
updates are indexed and can be searched in real-time. Tpitldie operations are fast because
disk writes are mostly sequential journal writes that neatdwait for the cluster to be written.
This approach differs from most journaling file systems thee the journal as a temporary
staging area and write metadata back to its primary disktimtashortly after the update is
journaled [128, 147]. In Magellan, the journal is a mean&treate the in memory state in case
of a crash; thus, update performance is closer to that of-atlogture file system [138].

Cluster-based journaling allows updates to achieve goskl ulilization; writes are
either streaming sequential writes to the journal or lagggiential cluster writes. Since clusters
are managed by the cluster cache, it can exploit temporalitpdn workloads as was shown
in Section 3.3, allowing it to keep frequently-updated t#us in memory, updating them on
disk only when they become “cold”. This approach also allovesyy metadata operations to be
reflected in a single cluster optimization and write, andved many journal entries to be freed
at once, further improving efficiency.

While cluster-based journaling provides several niceuiest it does have trade-offs.
Since metadata updates are not immediately written to fineirary on-disk location, the jour-

nal can grow very large because these journal entries areimobed until the cluster is com-
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mitted to disk. Magellan allows the journal to grow to hurdr®f megabytes before requiring
that clusters be flushed. Having a larger journal requiresemaemory resources as well as
more journal replay time in the event of a crash. Since jduwrdes are a significant part
of update performance, staging the journal in non-volatiemory such as MRAM or phase
change memory could significantly boost performance if welWware can be afforded. In ad-
dition to requiring additional memory space for the jourrtElaying cluster writes to disk and
performing them in the background still has the potentiahtpact foreground workloads. An
update to a cluster that is being flushed back to disk will egbe update to be blocked until
the flush is completed. Since flushing a cluster often reguh a rebalance and large disk
write, this latency can be quite high. It is possible to lazipply the update after the flush and
have the update return prior to the flush completing, thoudhr@guire extra data structures
and processing. One of the benefits of designing Magellanderin a parallel file system like
Ceph is that bandwidth is abundant, meaning that clusteéesvand journal writes can happen

simultaneously without have to compete for I/O bandwidth.

5.3 Integrating Semantic File System Functionality

Thus far, our discussion of index and searchable file sys&sigd have focused on
hierarchical namespaces. We highlighted the key limitstiaf these namespaces in Section 2.3.
While our new index and file system designs enable more etffisearch, which improves their
effectiveness, hierarchical namespaces are not a weddslohg-term solution. Instead it is
often argued that search-based namespaces are a morgeffieethod for managing billions
of files [47,148,170]. In these namespaces, search is thepriaccess method and files are
organized based on their attributes and search queries.

File systems that implement a search-based namespacenaralgecalled semantic
file systems. Semantic file systems are generally designacasing layer above a traditional
file system or database [63, 69, 124] as we discussed in 8&80While providing users with
a better interface to storage, this design is not very stealadcause it only changes how files

are presented to users not how they are stored and indexeal reéssilt, current designs suffer
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from many of the index and file system design limitations thathave already discussed and
are not able to effectively scale.

In this section we outline the architecture of Copernicusemantic file system that
uses new internal organization and indexing techniquespoave performance and scalability.
The architecture that we propose aims to achieve severtd:goa
Flexible naming. The main drawback with current hierarchical file systems@rtinability
to allow flexible and semantic access to files. Files shouldhe to be accessed using their
attributesandrelationships. Thus, the file system must efficiently extaacl infer the necessary
attributes and relationships and index them in real-time.

Dynamic navigation. While search is extremely useful for retrieval, users stided a way
to navigate the namespace. Navigation should be more ewedban jusparent — child
hierarchies, should allow dynamically changing (or vitfulirectories and need not be acyclic.
Relationships should be allowed between two files, ratter tinly directories and files.
Scalability. Large file systems are the most difficult to manage, makingitical that both
search and 1/O performance scale to billions of files. Eiffectcalability requires fine-grained
control of file index structures that allow disk layouts anemmory utilization to properly match
workloads.

Backwards compatibility. Existing applications rely on hierarchical namespaces. dtitical
that new file systems be able to support legacy applicatiorfadilitate migration to a new

paradigm.

5.3.1 Copernicus Design

Copernicus is designed as an object-based parallel fileraysb that it can achieve
high scalability by decoupling the metadata and data pattisBowing parallel access to stor-
age devices. However, Copernicus’s techniques are apf@i¢a a wide range of architec-
tures. As mentioned in Section 2.2, object-based file systamsist of three main components:
clients, a metadata server cluster (MDS), and a cluster jetbbased storage devices (OSD).
Clients perform file I/O directly with OSDs. File data is ptacand located on OSDs using

a pseudo-random hashing algorithm [181]. Metadata andlseaquests are submitted to the
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MDS, which manages the namespace. Thus, most of the Copgmigsign is focused on the
MDS.

Copernicus achieves a scalable, semantic namespace agerglaiew techniques as
well as techniques derived from our previous Magellan angBss designs. A dynamic graph-
based index provides file metadata and attribute layout®tteble scalable search, as shown in
Figure 5.4. Files that are semantically similar and likelyp¢ accessed together are grouped into
clusters which are similar to traditional directories, and form thetices of the graph. These
clusters are similar to the cluster’s Magellan used in $ack.2, however are not grouped
based on the hierarchical namespace. Inter-file relatipsskuch as provenance [114, 149]
and temporal access patterns [155], create edges betwesthfit enable semantic navigation.
Directories are instead “virtual,” and instantiated by mige Backwards naming compatibility
can be enabled by creating a hierarchical tree from the gr&lhsters store metadata and
attributes in search-optimized index structures. The dsmearch indexes for native storage
mechanisms allows Copernicus to be easily searched witidditional search applications.
Finally, a new journaling mechanism allows file metadata ifications to be written quickly
and safely to disk while still providing real-time index wgtds.

Before we discuss specific design details, we present soeuifispexamples of how
Copernicus can improve how files are managed in large-stéalgytems.

Understanding file dependenciesConsider a scientist running an HPC DNA sequencing ap-
plication. To interpret the results, it is useful to know htive data is being generated. As the
experiment runs, Copernicus allows the results to be sediicireal time. If a compelling result

is found, a virtual directory can be created using a quenrglidiles from past experiments with
similar results. By searching the provenance links of thdes, the scientist can find which
DNA sequencing libraries or input parameters are the comfiactor for all of the result files.
System administration. Imagine a storage administrator who discovers a seriougagcript
that has affected an unknown number of files. To locate antidisd files, the administrator can
search provenance relationships to find the contaminatsi@il g, files opened by the script)
and build a virtual directory containing these files. A coteel version of the script can be run

over the files in this directory to quickly undo the erroneochanges.
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In-memory
structures

On disk
layout

Figure 5.4: Copernicus overview. Clusters, shown in different colors, group semantically
related files. Files within a cluster form a smaller graphellasn how the files are related.
These links, and the links between clusters, create ther@iops namespace. Each cluster is

relatively small and is stored in a sequential region on thiskast access.

Finding misplaced files. Consider a user working on a paper about file system search and
looking for related work. The user recalls reading an irgeng paper while working on “mo-
tivation.tex” but does not know the paper’s title or authdowever, using temporal links and
metadata, a virtual directory can be constructed of all thes were accessed at the same time
as “motivation.tex”, argpdf s, and contain “file system” and “search”. The directorywdhe

user to easily browse the results.

5.3.2 Graph Construction

Copernicus uses a graph-based index to provide a metadh&tabute layout that
can be efficiently searched. The graph is managed by the MBé&h fie is represented with
an inode and is uniquely identified by its inode number. Iisoded associated attributes—
content keywords and relationships—are grouped into physlusters based on their semantic
similarity. Clusters are like directories in that they megent a physical grouping of related
files likely to be accessed together, in the same way thatyfiieess try to keep files adjacent

to their containing directory on disk. This grouping pragda flexible, fine-grained way to
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access and control files. However, unlike directories,tetugroupings are semantic rather than
hierarchical and are transparent to users: Clusters oalyg® physical organization for inodes.
Given a file's inode number, a pseudo-random placementitigogr CRUSH [181], identifies
the locations of the file’s data on the OSDs, meaning datatgsirare not stored within the
inode.

Inodes are grouped into clusters usahgstering policieswhich define their semantic
similarity. Clustering policies may be set by users, adstiators, or Copernicus, and can
change over time, allowing layouts to adjust to the curregeas patterns. Inodes may move
between clusters as their attributes change. Examplesdingtpolicies include clustering files
for a common projecte g, files related to an HPC experiment), grouping files with star
attributes €. g, files owned by Andrew or all virtual machine images), or ®ugsg files with
common access patterres ), files often accessed in sequence or in parallel). Previouk as
used Latent Semantic Indexing (LSI) as a policy to groupeeldiles [80]. In Copernicus, files
are allowed to reside in only one cluster because mainimaoltiple active replicas makes
synchronization difficult. Clusters are kept relativelyadinaround10°® files, to ensure fast
access to any one cluster; thus, a large file system maylitdva more clusters.

Copernicus creates a namespace using the semantic retapisrthat exist between
files. Relationships are directed and are representedpdestof the form(relationship type
source file target file, and can define any kind of relationship. Relationship limay exist
between files within the same or different clusters as iéist in Figure 5.4. The graph need
not be acyclic, permitting more flexible relationships. &ienship links are created implicitly
by Copernicus depending on how files are used and can alseatedrexplicitly by users and
applications. Unlike a traditional file system, links onlist between two files; directories in
Copernicus are “virtual” and simply represent the set o&fiteatching a search query. These
virtual directories are represented by an inode in the gemghthe associated query is stored in
the data region on the OSDs pointed to by the inode (similaotodirectory entries are pointed
to by the directory’s inode in traditional file systems). Atual directories query is periodically

evaluated to ensure the results are not too stale. Userdstafoece the file system to execute
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the query again at any time. Combining virtual directoriad &nks provides an easy way to

represent related files and navigate the namespace as \pethéde backwards compatibility.

5.3.3 Cluster Indexing

Files in Copernicus may be retrieved using their metadaiatent, or relationship
attributes. Each cluster stores these attributes in siepaearch-optimized index structures,
improving efficiency by allowing files to easily be searcheithaut a separate application.
File metadata is represented @stribute, value) pairs and includes simple POSIX metadata
and extended attributes. Metadata is indexed in a in-memuuiti-dimensional binary search
tree called a K-D tree [24], which we also used in our Spygtass Magellan designs. Since
clusters are relatively small, each K-D tree can often beedttn a sequential region on disk.
This layout, which is similar to embedded inodes [57], pded fast read access and prefetching
of related metadata.

Relationship attributes are also stored in a K-D tree thatthieee dimensions for the
three fields in the relationship triple. K-D trees allow amyrtbination of the relationship triple
to be queried. If a relationship exists between files in diife clusters, the cluster storing the
source file’s inode indexes the relationship, to preventidaioon.

Each cluster stores full-text keywords, which are extrdtem its files’ contents
using application-specifittansducersin its own inverted index. This design allows keyword
search at the granularity of clusters and helps keep pdsiisgmall so that they can be kept se-
guential on disk. A global indirect index, which we introgégcin Section 4.2, is used to identify
which clusters contain posting lists for a keyword. As mam#d previously, an indirect index
consists of a keyword dictionary with each keyword entrynfiog to a list of(cluster, weigh?
pairs, allowing the MDS to quickly identify the clusters ntikely to contain an answer to a

guery and rule out those clusters thanhnotsatisfy the query.
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5.3.4 Query Execution

All file accessesd. g, open() andst at () ) translate to queries over the Coperni-
cus graph index. While navigation can be done using graplkrsal algorithms, queries must
also be able to identify the clusters containing files raléva the search. Since semantically
related files are clustered in the namespace, it is veryylitet the vast majority of clusters
do not need to be searched. We showed this to be the case iarSédt, despite only mod-
est semantic clustering. Additionally, Copernicus emglagy LRU-based caching algorithm to
ensure that queries for hot or popular clusters do not gosta di

For file metadata and relationships, Copernicus identifilesant clusters usirigloom
filters [26]—Dbit arrays with associated hashing functions that paatly describe the contents
of a cluster. Bloom filters provided similar functionality Magellan as did signature files in
Spyglass. Each cluster maintains a Bloom filter for each daggaattribute that it indexes. In ad-
dition each cluster maintains three Bloom filters that dbscthe relationships that it contains.
These Bloom filters describe each of the fields in(tieéationship type source file target file
relationship triple. When a cluster stores a metadata atioglship attribute, it hashes its value
to a bit position in a bloom filter, which is then set to one. Btedmine if a cluster contains any
files related to a query, the values in the query are also Hashieit positions, which are then
tested. If, and only if, all tested bits are set to one is thstelr read from disk and searched. To
ensure fast access, bloom filters are kept in memory. To dpehich is kept small0? to 10°
bit positions per bloom filter. While false positives canwcahen two values hash to the same
bit position, the only effect is that a cluster is searche@mvit does not contain files relevant to
the query, degrading search performance but not impactiagracy.

The sheer number of possible keywords occurring in file gdnteake Bloom filters
ineffective for keyword search. However, the indirect inaglows fast identification of the
clusters containing posting lists for the query keywordsr &ach keyword in the query, the
list of clusters containing the keyword is retrieved. AsgugrBoolean search, the lists are then
intersected, producing the set of clusters that appearatl lists. Only the posting lists from

the clusters appearing in this set are retrieved and sahrdte weights can be used to further
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optimize query processing, first searching in clustersdhaimost likely to contain the desired

results.

5.3.5 Managing Updates

Copernicus must effectively balance search and updaterpssthce, provide real-
time index updates, and provide the data safety that uspeexCopernicus uses an approach
similar to the cluster-based journaling method used in Magdor managing metadata and
relationship updates, and a client-based approach for giranaontent keywords. When file
metadata or relationships are created, removed or modthedypdate is first written safely
to a journal on disk. By first journaling updates safely tdkdiSopernicus is able to provide
needed data safety in case of a crash. The K-D tree contdinéfile’s inode or relationship
information is then modified and marked as dirty in the cat¢hereby reflecting changes in
the index in real-time. When a cluster is evicted from theheathe entire K-D tree is written
sequentially to disk and its entries are removed from then@lu Copernicus allows the journal
to grow up to hundreds of megabytes before it is trimmed, lvhielps to amortize multiple
updates into a single disk write.

As mentioned in Section 5.2, K-D trees do not efficiently Harfcequent inserts and
modifications. Inserting new inodes into the tree can cdusebiecome unbalanced, degrading
search performance. Again like Magellan, K-D trees arealesred before they are written to
disk. Also, inode modifications first require the originabdte to be removed and then a new
inode to be inserted. Both of these operations are fast c@upa writing to the journal, but
since disk speed dictates update performance, storing@tinagl in NVRAM can significantly
boost performance.

Clients write file data directly to OSDs. When a file is clos€dpernicus accesses
the file’s data from the OSDs and use a transducer to extrgeidees. To aid this process,
clients submit a list of write offsets and lengths to the MDBew they close a file. These
offsets tell the MDS which parts of the file to analyze and caaty improve performance for

large files. Cluster posting lists are then updated witheeéd keywords. Since cluster posting
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lists are small, an in-place update method [96] can be ussdyiag that they remain sequential

on disk.

5.4 Experimental Results

In this section we evaluate the performance of our seareHdblsystem designs. To
do this we evaluate a prototype implementation of Magel@ur: Copernicus design is still in its
early stages and there are a number of practical designigpgeghat must be addressed before
it can be evaluated. However, since the two share a numbersifi features, this evaluation
is relevant to Copernicus. Our current evaluation seekgamee the following questions: (1)
How does Magellan’s metadata indexing impact performan@?How does our journaling
technique affect metadata updates? (3) Does metadatarahgsimprove disk utilization? (4)
How does our prototype’s metadata performance compardns ke systems? (5) What kind
of search performance is provided? Our evaluation showwdthgellan can search millions of
files, often in under a second, while providing performarmmparable to other file systems for

a variety of workloads.

5.4.1 Implementation Details

We implemented our prototype as the metadata server (MDShé&Ceph parallel
file system [180], for several reasons. First, parallel ffigesms often handle metadata and data
separately [34, 180]: metadata requests are handled by[Lti#&wWwhile data requests are handled
by separate storage devices, allowing us to focus solely DS Mesign. Second, Ceph targets
the same large-scale, high-performance systems as Magdilaird, data placement is done
with a separate hashing function [181], freeing Magellamfithe need to perform data block
management. Like Ceph, our prototype is a Linux user prategsises a synchronous file in a
localext 3 file system for persistent storage.

In our prototype, each cluster has a maximum of 2,000 direst@nd a soft limit of
20,000 inodes, keeping them fast to access and query. Wesdisige reasoning behind these

numbers later in this section. K-D trees were implementaagus bkdt r ee++[97], version
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Attribute Description Attribute | Description

ino inode number ctime change time

pino parentinode numbeji atime access time

name file name owner file owner
type file or directory group file group
size file size mode file mode
mtime modification time

Table 5.1:Inode attributes used. The attributes that inodes contained in our experiments.

0.7.0. Each inode has eleven attributes that are indexsteld lin Table 5.1. Each Bloom filter is
about 2 KB in size—small enough to represent many attribakees while not using significant
amounts of memory. The hashing functions we use for the fikeand time attributes allow bits
to correspond to ranges of values. Each cluster’s inodeecaschround 10 KB in size, which
can cache pointers to at most roughly 10% of the clustersemo@Given the maximum cluster
size, clusters generally contain between one to two MB oflénmetadata. When a cluster’s
inode cache is full, the ratio of memory used for inode meatada the metadata describing
the cluster €. g, Bloom filters, inode caches) is roughly 40:1. However, ilusaches contain
inode pointers for the most recently accessed inodes whi&dmnmthey generally do not use
close to the full 10 KB and only contain pointers when the tduss in memory. While our
prototype implements most metadata server functionalitgre are a number of features not
yet implemented. Among these are hard or symbolic linksdlagp of client cache leases, and
metadata replication. None of these functions presentréfisignt implementation barrier, and
none should significantly impact performance.

All of our experiments were performed on an Intel Pentium Zlnige with dual
2.80GHz CPUs and 3.1 GB of RAM. The machine ran CentOS 5.3 withx kernel ver-
sion 2.6.18. All data was stored on a directly attached Ma&i@ 7Y250M0 7200 RPM disk.
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5.4.2 Microbenchmarks

We begin by evaluating the performance of individual Maaeltomponents using

microbenchmarks.

5.4.2.1 Cluster Indexing Performance

We evaluated the update and query performance &ingle cluster in order to un-
derstand how indexing metadata in a K-D tree affects pedoa. Figure 5.5(a) shows the
latencies for creating and querying files in a single cluatethe cluster size increases. Results
are averaged over five runs with the standard deviations rshdVe randomly generated files
because different file systems have different attribut&ibligions that can make the K-D tree
un-balanced and bias results in different ways [4]. Theigaeve used used were range queries
for between two and five attributes.

We measured query latencies in a balanced and unbalancettdééas well as brute
force traversal. Querying an unbalanced K-D treé is 15x faster than a brute force traver-
sal, which is already a significant speed up for just a sinlgister. Unsurprisingly, brute force
traversal scales linearly with cluster size; in contrasD itee query performance scales mostly
sub-linearly. However, it is clear that K-D tree organimatimpacts performance; some queries
in a tree with 70,000 files are 10% slower than queries acré8900 files. A balanced clus-
ter provides a 33-75% query performance improvement ovenhalanced cluster. However,
when storing close to 200,000 files, queries can still takgédo than 10 ms. While this perfor-
mance may be acceptable for “real” queries, it is too slownfiany metadata look ups, such
as path resolution. Below 50,000 files, however, all quaggsiire hundreds of microseconds,
assuming the cluster is already in memory.

The slow performance at large cluster sizes demonstratesdad to keep cluster
sizes limited. While an exact match query in a K-D tréee(, all indexed metadata values
are known in advance) take&g(log N) time, these queries typically aren’t useful because it
is rarely the case thatll metadata values are known prior to accessing a file. Instaady

queries are range queries that use fewer thdimensions. These queries requiedg: N'—1/%)
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Figure 5.5: Cluster indexing performance. Figure 5.5(a) shows the latencies for balanced

and unbalanced K-D tree queries, brute force traversaljresmiits as cluster size increases. A

balanced K-D tree is the fastest to search and inserts devi&sin larger clusters. Figure 5.5(b)

shows latencies for K-D tree rebalancing and disk writeshaRancing is slower because it is

requiresO(N x log N) time.
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time, whereN is the number of files, and is the dimensionality, meaning that performance
increasingly degrades with cluster size. While hundredrosiecond latencies are acceptable,
Magellan further improves performance using the hash tadded inode cache that each cluster
maintains for recently accessed inodes.

In contrast to query performance, insert performance nesni@ist as cluster size in-
creases. The insert algorithm is similar to the exact matarygalgorithm, requiring only
O(log N) time to complete. Even for larger K-D trees, inserts take than 1Q:s. The down-
side is that each insert makes the tree less balanced, degreerformance for subsequent
gueries until the tree is rebalanced. Thus, while inseddamt, there is a hidden cost being paid
in slower gqueries and having to rebalance the tree later.

Figure 5.5(b) shows latencies for writing a cluster to diskl abalancing, the two
major steps performed when a dirty cluster is written to di&ch inode is roughly 100 bytes
in size, meaning a cluster with 50,000 files is close 5 MB i si8urprisingly, rebalancing is
the more significant of the two steps, takidig- 4 x longer than writing the cluster to disk. The
K-D tree rebalancing algorithm takés( N x log V) time, which accounts for this difference.
However, even if we did not rebalance the K-D tree prior totfing it to disk, K-D tree write
performance is not fast enough to be done synchronously wie¢adata is updated as they can
take tens to hundreds of milliseconds. Since a K-D tree isygdvwvritten asynchronously, its
performance does not affect user operation latenciesgthiiicanimpact server CPU utiliza-

tion.

5.4.2.2 Update Performance

To evaluate how cluster-based journaling impacts updatfonpeance, we used a
benchmark that creates between 100,000 and 2,000,000 dildsmeasured the throughput
at various sizes. To do this, we used the metadata tracesvéhabllected from three stor-
age servers deployed at NetApp and studied in Section 3.7usé@ different traces because
each has different namespace organizations that impdotrmeance [4] é. g, having few very
large directories or many small directories). The servessewvused by different groups within

NetApp: a web server (Web), an engineering build server JEagd a home directory server
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Figure 5.6:Create performance. The throughput (creates/second) is shown for various sys-
tem sizes. Magellan’s update mechanism keeps create tipatigigh because disk writes are
mostly to the end of the journal, which yields good disk métion. Throughput drops slightly

at larger sizes because more time is spent searching sluster

(Home). Files were inserted in the order that they were @dwsince multiple threads were
used in the original crawl, the traces interleave aroundliéerent crawls each doing depth-first
search order.

Figure 5.6 shows the throughput averaged over five runs amdiatd deviations as
the number of creates increases. We find that, in generayjghput is very high, between 1,500
and 2,500 creates per second, because of Magellan's ehested journaling. This throughput
is higher than those recently published for comparablellphfde system metadata servers
on comparable hardware; Ceph achieves around 1,000 createecond [180] and Panasas
achieves between 800 and 1,600 creates per second on vhaamlwgare setups [183]. Each
create appends an update entry to the on-disk journal anduffaates the in memory K-D tree.
Since the K-D tree write is delayed, this cost is paid lateth@sbenchmark streams largely
sequential updates to disk.

However, create throughput drops slightly as the numbetesfiin a cluster increases
because the K-D tree itself is larger. While only a few ogeret experience latency increases
due to waiting for a K-D tree to be flushed to disk, larger K-Bes also cause more inode
cache misses, more Bloom filter false positives, and longeryglatencies, thus increasing

create latenciese( g,, because a file creation operation must check to see if thalfitady
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exists). In most cases, checking Bloom filters is sufficiemtdetermining is a file already
exists; again, though, the higher rate of false positiveses more K-D tree searches. Since
inode caches only contain the most recently accessed filggl mot prevent K-D tree queries
when Bloom filters yield false positives. There are a limibednber of instances where a create
operation is waiting for a cluster to be written back to disk&use the create benchmark usually
updates clusters in a linear fashion and only accessesditlsters for path resolution. Thus, it

is usually unlike that a cluster will be accessed while itéglg flushed.

5.4.2.3 Metadata Clustering

We next examined how different maximum cluster sizes afpetformance and disk
utilization. To do this, we evaluated Magellan's create godry throughputs as its maximum
cluster size increases. The maximum cluster size is theasimehich Magellan tries to cap
clusters. If afile is inserted, it is placed in the clustertsfgarent directory, regardless of size.
For a directory, however, Magellan creates a new clustéeitctuster has too many directories
or total inodes. Maximum cluster size refers to the maximaoade limit; we set the maximum
directory limit to1/10" of that.

Figure 5.7(a) shows the total throughput for creating 500 files from the Web trace
over five runs as the maximum cluster size varies from 500 {00@inodes. As the figure
shows, create throughput steadily decreases as maximwsterckize increases. While the
throughput at cluster size 500 is around 2,800 creates pendgat cluster size 40,000, which
is an80x increase, throughput drops roughly 50%. Disk utilizatismot the issue, since both
use mostly sequential disk writes. Rather, the decreasenmply due to having to operate
on larger K-D trees. Smaller clusters have more effectieeléncaching (less data to cache per
K-D tree) and Bloom filters (fewer files yielding fewer falsegitives). Additionally, queries
on smaller K-D trees are faster. Since journal writes and Kde insert performance do not
improve with cluster size, a larger maximum cluster sizelitihes positive impact.

Figure 5.7(b) shows that query performance scales quitereliftly from create per-
formance. We used a simple query that represented a usehsggfor a file she owns with a

particular named. g, filename equal tonypaper . pdf andowner id equal to3704). We
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Figure 5.7:Metadata clustering. Figure 5.7(a) shows create throughput as maximum cluster
size increases. Performance decreases with cluster siaadminode caching and Bloom filters
become less effective and K-D tree operations become sldvigure 5.7(b) shows that query

performance is worse for small and large sizes.
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Name Application Metadata Operations
Multiphysics A | Shock physics 70,000
Multiphysics B | Shock physics 150,000
Hydrocode Wave analysis 210,000
Postmark E-Mail and Internet 250,000

Table 5.2:Metadata workload details.

find that query throughpubcreases’ — 8 x as maximum cluster size varies from 500 to 25,000.
When clusters are small, metadata clustering is not astidlpEause many disk seeks may still
be required to read the needed metadata. As clusters get thsl utilization improves. How-
ever, throughput decreases 15% when maximum cluster sizeaises from 30,000 to 40,000
files. When clusters are too large, time is wasted readingeosted metadata, which can also
displace useful information in the cluster cache. In additilarger K-D trees are slower to
query. The “sweet spot” seems to be around 20,000 files pstecjuvhich we use as our pro-
totype’s default and which works well for our experimentshil& the precise location of this
“sweet spot” will vary between workloads, the general trémat we observe will be consistent

across workloads.
5.4.3 Macrobenchmarks

We next evaluated general file system and search performesing a series of mac-
robenchmarks.

5.4.3.1 File System Workload Performance

We compared our prototype to the original Ceph MDS using fliffeerent application
workloads. Three workloads are HPC application traces tamdia National Laboratory [143]
and the other is the Postmark [84] benchmark. Table 5.2 gesvadditional workload details.
We used HPC workloads because they represent performaitical @pplications. Postmark

was chosen because it presents a more general workloads armbimmonly used benchmark.
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Figure 5.8:Metadata workload performance comparison.Magellan is compared to the Ceph
metadata server using four different metadata workloadall tases, both provide comparable

performance. Performance differences are often due to ked®udtilization.

Multiphysics A | Multiphysics B | Hydrocode| Postmark
Magellan 3041 2455 10345 1729
Ceph 2678 2656 14187 1688

Table 5.3:Metadata throughput (ops/sec). The Magellan and Ceph throughput for the four

workloads.

While the benchmarks are not large enough to evaluate adictsjpf file system performance
(many common metadata benchmarks are not [174]), they &aambighlight some important
performance differences. We modified the HPC workloads suenthat directories were cre-
ated before they were used. We used Postmark version 1.5¢omfigured it to use 50,000
files, 20,000 directories, and 10,000 transactions. Alleexpents were performed with cold
caches.

Figure 5.8 shows the run times and standard errors averagadfiee runs, with
the corresponding throughputs shown in Table 5.3. Totaltimes are comparable for both,
showing that Magellan is able to achieve similar file systerfggmance to the original Ceph
MDS. However, performance varies between the two; at mostpmtotype ranges from 13%
slower than Ceph to 12% faster. As in the previous experighenkey reason for performance
decreases was K-D tree performance. The Multiphysics A anttiphysics B traces have

very similar distributions of operations, though Multiggs B creates about twice as many
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Set Query Metadata Attributes

Setl Where is this file located? Retrieve files usindilename andowner.

Set2 Where, in this part of the system, is this file located? Use query 1 with an additional directopgth.

Set 3| Which of my files were modified near this time and at least tizis%| Retrieve files usingwner, mtime, andsize.

Table 5.4:Query Sets.A summary of the searches used to generate our evaluation sgts.

files. Table 5.3 shows that between the two, our prototygesughput drops by about 20%
from about 3,000 operations per second to 2,500, while Geghinbughput remains close to
consistent. This 20% overhead is spent almost entirelygdiiHD tree searches.

Our prototype yields a 12% performance improvement ovethGepthe Postmark
workload. Postmark creates a number of files consecutiveigimbenefit from cluster-based
journaling. Throughput for these operations can bé.gp- 2x faster than Ceph. Additionally,
the ordered nature of the workload produces good inode daithatios (path resolution look
ups frequently hits the inode cache because these inodes&gamtly created).

These workloads show differences and limitatioasy, large K-D tree performance)
with our design, though they indicate that it can achievedgide system performance. A key
reason for this is that, while Magellan makes a number ofgteshanges, it keeps the basic
metadata structuree(g, using directory and file inodes, organizing inodes into gsptal hier-
archy). This validates an important goal of our design: Addrissues with search performance

while maintaining many aspects that current metadata agsig well.

5.4.3.2 Search Performance

To evaluate search performance, we created three file systages using the Web,
Eng, and Home metadata traces with two, four, and eightanifiles, respectively. The cluster
cache size is set to 20, 40, and 80 MB for each image, respbgtso that searches are not
performed solely in memory. Before running the queries, veemed the cluster cache with
random cluster data.

Unfortunately, there are no standard file system searchbearks. Instead, we gen-

erated synthetic query sets based on queries that we bedipresent common metadata search
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Figure 5.9:Query execution times.A CDF of query latencies for our three query sets. In most

cases, query latency is less than a second even as systemcseases. Query set 2 performs

better than query set 1 because it includes a directory path Where Magellan begins the

search, which rules out files not in that sub-tree from theckespace.
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use cases. The queries and the attributes used are givehlan5ld. Query attributes are pop-
ulated with random data from the traces, which allows theigsdo follow the same attribute
distributions in the data sets while providing some randessn Query set 1 and 2 produced
very few search results (generally around one to five) whilerg set 3 could yield thousands
of results.

Figure 5.9 shows the cumulative distribution functions f}fbr our query sets run
over the three different traces. Our prototype is able taemehsearch latencies that are less
than a second in most cases, even as file system size incréadast, all queries across all
traces are less than six seconds, with the exception ofaewvethe Home trace that were
between eight and fifteen seconds. Evaluating query setnty @sbrute force search, which
is the only search option if no separate search applicasi@vailable, took 20 minutes for the
Web trace and 80 minutes on the Home trace on a kxtB file system on the same hardware
configurations. Compared to Magellan, brute force searclpito 4-5 orders of magnitude
slower. In addition, to the search-optimized on disk layemud inode indexing, Magellan is able
to leverage namespace locality by using Bloom filters toielate a large fraction of the clusters
from the search space. Figure 5.10 shows a CDF of the frasfiolusters accessed for a query
using query set 1 on all three of our traces. We see that 50%esfas access fewer than 40%

of the clusters in all traces. Additionally, over 80% of gaeraccess fewer than 60% of the
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clusters. Query set 2 includes a directory path from whidbeigin the search, which explicitly
limits the search space. As a result, search performancguiEny set 2 is consistently fastest.
However, in some cases query set 1 is faster than query sdtig.isTbecause the queries for
query set 2 use a different set of randomly selected at&ribzalues than query set 1, which can
alter run time and cache hit ratios.

While queries typically run in under a second, some quesks longer. For exam-
ple, latencies are mostly between 2 and 4 seconds for quedy@eour Web data set in Fig-
ure 5.9(a). In these cases, many of the clusters are acdessedisk, which increases latency.
The Web trace contained a lot of common file naneeg(i ndex. ht nl andbanner. j pg)
that were spread across the file system. We believe theseragpés show that Magellan is
capable of providing search performance that is fast entaigiiow metadata search to be a

primary way for users and administrators to access and neahag files.

5.5 Summary

The rapid growth in data volume is changing how we access athge our files.
Large-scale systems increasingly require search to Hettate and utilize data. While search
applications that are separate from the file system are atkedor small-scale systems, they
have inherent limitations when used as large-scale, leng-file search solutions. We believe
that a better approach is to build search functionalityddiyanto the file system itself.

In this chapter, we analyzed the hypothesis that it is ptessienable effective search
performance directly within the file system without sacnifgcfile system performance. We pre-
sented the design of a new file system metadata architeclieel ¢1agellan that enables meta-
data to be efficiently searched while maintaining good filtesyn performance. Unlike previ-
ous solutions that relied on relational databases, Mayekas several novel search-optimized
metadata layout, indexing, and update techniques. Addiliy we outlined the architecture
of Copernicus, as scalable, semantic file system. Unlikeique semantic file system designs
which are designed as naming layers on top of a normal filesyst database, Copernicus uses

a novel graph-based index to enable a scalable search-basexspace and namespace naviga-
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tion using inter-file relationships. Using real-world datar evaluation showed that Magellan
can search over file systems with millions of files in less tha®cond and provide file system
performance comparable to other systems. While MagelldrCapernicus’s search-optimized
designs do have limitations, they demonstrates that seargHile systems can be effectively
combined, representing a key stepping stone in the pathablieg better ways to locate and

manage our data.
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Chapter 6

Future Directions

In this thesis we present a very different approach to omjagpiand indexing files in
large-scale file systems. While we discuss some initialgihssand findings that support our
hypotheses, this research area is in its nascent stagelemedare number of practical trade-
offs and design issues that need to be addressed. In additere a number of ways in which
this work can be extended in the future to further improvecatnagement in large-scale file

systems. We outline possible future work for each chaptévidually.

6.1 Large-Scale File Systems Properties

There are a number of studies that can impact file systemtsdasigns that have not
been examined before. Our examination of file system wodddaoked at many traditional
properties such as access sequentially and access palilenmg of our initial observations can
be extended to provide additional useful information. Bameple, we found that a small frac-
tion of clients can constitute a large portion of the worklaeaffic. Taking a closer look at the
access patterns of individual clients, particularly thewer clients” who generate significant
traffic, could provide valuable insights into how the wowddbproperties are distributed across
the clients and how file systems can better tailor data orgéionh, caching, and prefetching
for client needs. Also, our study found that metadata reaguasnstitute roughly half of all

requests, making a closer examination of metadata worklmagortant. In particular, the tem-
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poral correlations between metadata requesstg,(in Linux r eaddi r () may be commonly
followed by multiplest at () operations) are highly relevant.

An important area that has not been thoroughly examinedaisasmamespace local-
ity. Thus far, we have examined only how the namespace impaetadata attribute values. It
is important to also know how workload properties differ f@rious parts of the namespace.
For example, directories containing read-only system filey have very different workload
properties than a directory storing database or log filesdestanding how namespace loca-
tion impacts workload can be used to improve disk layoutfgbching, and caching designs.
Previous work has demonstrated potential file system paegnce benefits using file type and
size attribute information to guide on disk layout [190],iethwe have shown are influenced
by location in the namespace. Our index designs and otheiopeefile systems [57, 182] as-
sume some amount of namespace locality in the workload bub@ep characterization, such
as calculating the distribution of requests across dirextan the namespace, is important. Ad-
ditionally, understanding namespace locality can impttowe file systems organize and index
data for different parts of the namespace.

Our Spyglass metadata index design benefited from empaiei/sis of real-world
metadata properties. Similarly, large-scale web seargmerdesigns [15] have benefited from
studies of web page content and keyword properties [19 Hi&jever, to the best of our knowl-
edge, no equivalent study has been conducted for large-Slgasystem content keywords. The
collection and analysis of file keywords will help guide ftégifile system inverted index de-
signs. Particular areas of interest include keyword naamsfocality and keyword correlations
for ranking. An important consideration for keyword cotiea in file systems is security as

many users will not want their data analyzed in the clear.

6.2 New Approaches to File Indexing

Our index designs are among the first meant specifically fersfistems. However,
there is only limited knowledge of how file system users wikewsearch and only a limited

corpus of available file search data from which to draw desigcisions. As a result, there
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are many design trade-offs and improvements that can stithbde as search becomes more
ubiquitous. In our designs we only leveraged namespacétiota partition the index. How-
ever, using other partitioning mechanisms may providetemidil benefits. Partitioning based
on access patterns may be able to improve cost-effectiseas example, files that have not
been accessed in over six months may be rarely queried sinnest cases querying for a file
is indicative of a future access. These files can be groupgether and possibly migrated to
cheaper, lower-tier storage. Other mechanisms, such abjmedearning clustering algorithms,
classification algorithms, or provenance may also be useful

Another important area that we have not fully addressedvstbalistribute the index
across a large-scale file system. Itis likely that in largales file systems the index will have to
be distributed to achieve the needed performance and ditgladowever, there are a number
of trade-offs that must be considered when distributingitidex and many of these depend on
the file system’s architecture. For example, in a cluster&& Mnvironment [46], it may be
appropriate to build an inverted index on each file servaresgach manages an entire sub-tree
(e. g, a logical volume) and files are not striped across serversweler, in a parallel file
system [62], it may be beneficial to centralize some partb@fridex €. g, the dictionary) at
the metadata server for management purposes. Additipratipcating index structures with

the files they index can greatly improve update performance.

6.3 Towards Searchable File Systems

We presented the designs of two file systems that use nevaaht@mganizations that
allow files to be efficiently searched. These file systems arg different from traditional
designs and thus a number of practical questions remain.u$tef K-D trees in Magellan
and Copernicus provided a reasonably effective method totiHgimensional attribute search.
However, it does have drawbacks, such as being an in-membyrylata structure, needing to be
rebalanced for better performance, and providing poomopeardince when large. Thus, looking
at how other multi-dimensional index structures can improv enable new functionality is

important. For example, FastBit [187] provides high comspien ratios that trade-off CPU
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with disk and cache utilization. Also, K-D-B-trees [136¢a£-D trees that need to only reside
partially in-memory. While this structure may negate sorhéhe prefetching of metadata
clustering, it may reduce unneeded data being read or wiibtelisk.

Thus far our work has not looked at how to enforce file secyeiymissions in search.
Doing so is an important problem because many data sets,asuctedical records and scien-
tific results, are in need of effective search but have higggsitive data. As discussed in
Section 2.4, enforcing security while maintaining goodfgenance is difficult. EXxisting so-
lutions either ignore permissions [66], build a separatieinfor each user [110] that adds
significant space and update overhead, or perform permissiecks for every search result
(e. g, stat ()) that degrades search performance and pollutes the fileecagtditionally,
permission changes must be synchronously applied to trexjratherwise a security leak is
possible. One approach to this problem is to embedded se@aimission information into
the metadata clustering. This approach can partition texiralong permission boundaries
and use this information to eliminate clusters from the deapace that the user does not have
permission to access. Doing so can help reduce the size sé#tieh space while enforcing file
permissions.

Additionally, the dynamic graph-based index that Copersigses still has a number
of basic questions that need to be resolved. For exampgegixdected that a general graph that
is based on inter-file relationships will perform similarciarrent hierarchical graphs. However,
it is unclear if it can provide the kinds of efficient updatefpemance under normal to intense
file system workloads. An effective implementation is nektieverify theses ideas and under-
stand the differences. Additionally, automatic ways toa&ttinter-file relationships and proper

clustering attributes are needed.
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Chapter 7

Conclusions

The world is moving towards a digital infrastructure, ciegtan unprecedented need
for data storage. Today'’s file systems must store petabytdata across billions of files and
may be storing exabytes of data and trillions of files in tharrfeture [58]. This data stor-
age need has introduced a new challenge: How do we effectimahage and organize such
large file systems? This is a challenge because large-stmkyfitems organize files using a
hierarchical namespace that was designed over forty year$oa file systems containing less
than 10 MB [38]. This organization is restrictive, difficiitt use, and can limit scalability. As
a result, there has been increasing demand for search-filesadcess, which allows users to
access files by describinghatthey want rather thawhereit is.

Unfortunately, large-scale file systems are difficult torska Current file system
search solutions are designed as applications that areasefiieom the file system and utilize
general-purpose index structures to provide search fumality. Keeping search separate from
the file system leads to consistency and efficiency issuesr@ge-scales and general-purpose
indexes are not optimized for file system search, which aait their performance and scala-
bility. As a result, current solutions are too expensivewsland cumbersome to be effective at
large-scales.

This thesis has demonstrated several novel approachesamdilae are organized,
indexed, and searched in large-scale file systems. We hsgintd that more effective search

can be achieved using new index structures that are spdyifitessigned for file systems and
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new file system designs that better integrate search-basedsa We explored these hypotheses
we three main contributions: (1) a fresh look at large-stildesystem properties using workload
and snapshot traces, (2) new index designs for file metadatac@ntent that leverage these
properties, (3) and new file metadata and semantic file sydesigns that directly integrate
search functionality.

We now describe the conclusions of each specific contributio

Properties of large-scale file systemsWe measured and analyzed file system workload and
snapshot traces collected from several large-scale fitersygsin the NetApp data center.
Our study represents the first major workload study sincel 208], the first large-scale
analysis of CIFS [92] workloads, and the first to study lasgale enterprise snapshot and

workload traces in over a decade.

Our analysis showed that a number of important file systenklwad properties, such
as access patterns and sequentially, have changed sinézuprstudies and are different
on network file systems than on previous local file systemdithahally, we found new
observations regarding file sharing, file re-access, miadaibute distributions, among
others. Some of our important findings include workloadsnaoee write-heavy than in
the past: read to write byte ratios are only 2:1, comparedli@#higher in past studies.
Also, a large portion of file data is cold with less than 10%odék storage being accessed
during our three month tracing period and files are infretjyee-accessed with 66%
of opened files not being accessed again. We found that nmatatiebute values are
heavily clustered in the namespace. Attribute values weiestiuoccurred in fewer than
1% of the total directories. Also, metadata attribute dhation are highly skewed though
their intersections are more uniformly distributed. Wecdssed how these observation

can impact future file system design and organization.

New approaches to file indexing: We developed two new index structures that aim to improve
search and update performance and scalability by levagapim file system properties
that we observed. We presented designs of an index for filadatt and an index for

file content search. Unlike general-purpose indexes thaewcusolutions rely on, our
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index designs are the first that are meant specifically fosfisgems and which exploit
file system properties. We introduced hierarchical partitig as a method for providing
flexible index control that leveraged namespace locality: i@etadata index used signa-
ture files to reduce the search space during query executbow content index used a
new index structure called the indirect index for the samp@se. Our metadata index
introduced partition-based versioning to provide fastaipgerformance, while our con-
tent index used a merge-based algorithm to update possitsgiti our indirect index. An
evaluation of our metadata index using real-world traca gabwed that it can provide
search performance that is up to 1-4 orders of magnituderftestn basic DBMS setups,
while providing update performance that is upifix faster and using less than 0.1% of
the file system’s disk space. These results showed that Blersysearch performance

and scalability can be significantly improved with speciadi index designs.

Towards searchable file systemsWe designed two new file systems that can directly pro-
vide file search. Rather than rely on external search apigitawhich face significant
consistency and efficiency problems at large-scales, aigiae use novel internal data
layout, indexing, and update algorithms to provide fast $garch directly within the
file system. We introduced a new metadata architecturegccdllagellan, that uses a
novel metadata layout to improve disk utilization for sé@s Also, inodes are stored
in multi-dimensional index structures that provide effintienulti-attribute search and a
new journaling mechanism allows fast and reliable metadpttates. We also outlined
the design of a new semantic file system called Copernicudik&Jprevious semantic
file system designs that used a basic naming layer on top edaitmal file system or
database, Copernicus uses a novel graph-based index idgadynamic, searchable
namespace. Semantically related files are clustered tgatid inter-file relationships
allow navigation of the namespace. An evaluation of our Mageprototype showed
that searches could often be performed in under a seconditiéxddly, performance
for normal file system workloads ranged from 13% slower to ¥a%ter than the Ceph

file system. We also found that cluster-based journalindglexdagood performance for
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metadata updates and showed the performance trade-aftsaiss with indexing inodes
in multi-dimensional data structures. Our evaluation destrated that efficient search
performance can be enabled within the file system while pinginormal workload per-

formance comparable to that of other file systems.

In summary, effective data access is a primary goal of a fééesy, though is becom-
ing increasingly difficult with the rapid growth of data vahes. The new file indexing and file
system search designs presented in this thesis allow ddta maoore effectively accessed and
managed at large-scales. This work, along with the new relseaieas that follow, should play

a key role in enabling the continued construction of higlaglable file systems.
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